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a b s t r a c t

The fidelity between two infinitesimally close states and the fi-
delity susceptibility of a system are known to detect quantum
phase transitions. Here we show that the k-space fidelity between
two states far from each other and taken deep inside (bulk) of
two phases, generically vanishes at the k-points where there are
gapless points in the energy spectrum that give origin to the lines
(edges) separating the phases in the phase diagram. We consider
a general case of two-band models and present a sufficient con-
dition for the existence of gapless points, given there are pairs of
parameter points forwhich the fidelity between the corresponding
states is zero. By presenting an explicit counter-example, we show
that the sufficient condition is not necessary. Further, we show
that, unless the set of parameter points is suitably constrained, the
existence of gapless points generically implies accompanied pairs
of parameter points with vanishing fidelity. Also, we show the
connection between the vanishing fidelity and gapless points on a
number of concrete examples (topological triplet superconductor,
topological insulator, 1d Kitaev model of spinless fermions, BCS
superconductor, Ising model in a transverse field, graphene and
Haldane Chern insulator), as well as for the more general case
of Dirac-like Hamiltonians. We also briefly discuss the relation
between the vanishing fidelity and gapless points at finite temper-
atures.
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1. Introduction

The fidelity and other quantum information signatures have been used to distinguish and charac-
terize quantum phases, with particular emphasis on signaling their transitions [1,2]. Traditionally one
compares states that differ infinitesimally due to some change of parameters of the Hamiltonian or
due to some change in temperature or other intensive quantities associated with some reservoirs.
The results together with some generalization, such as partial state fidelity [3,4] or the fidelity
spectrum [5,6], have been used to detect quantum phase transitions including those of a topological
nature. This includes topological insulators and topological superconductors [7–10].

The procedurewas used to study the topological phases and transitions in various systems [11–38]
and, in particular, in a two-dimensional triplet superconductor [39], which displays several trivial and
topological phases, labeled by Chern numbers or a Z2 invariant. Spinful electrons in the presence of a
Zeeman term (that breaks time reversal symmetry) and in the presence of Rashba spin–orbit coupling
are in a superconducting state with both singlet and triplet pairing symmetry (parity is broken due to
the presence of the spin–orbit coupling). The Hamiltonian is written as

Ĥ =
1
2

∑
k

(
c†
k , c−k

)(Ĥ0(k) ∆̂(k)
∆̂†(k) −ĤT

0 (−k)

)(
ck
c†
−k

)
=

1
2

∑
k

(
c†
k , c−k

)
HBdG(k)

(
ck
c†
−k

)
(1)

where
(
c†
k , c−k

)
=

(
c†
k↑
, c†

k↓
, c−k↑, c−k↓

)
,

Ĥ0 = ϵkσ
s
0 − Mzσ

s
z + ĤR ,

ĤR = s · σs
= α

(
sin kyσ s

x − sin kxσ s
y

)
, (2)

and HBdG(k) is the so-called Bogoliubov–de Gennes Hamiltonian. Here, ϵk = −2t(cos kx + cos ky)−µ
is the kinetic part, t denotes the hopping parameter set in the following as the energy scale, µ is the
chemical potential, k is a wave vector in the xy plane, and we have taken the lattice constant to be
unity. Mz is the Zeeman splitting term responsible for the magnetization, in energy units and the ĤR
is the Rashba spin–orbit term. α is measured in the energy units and s = α(sin ky,− sin kx, 0). The
matrices σ s

x , σ
s
y , σ

s
z are the Pauli matrices acting on the spin sector, and σ s

0 is the 2 × 2 identity. The
pairing matrix reads

∆̂ = i
(
d · σs

+∆s
)
σ s
y =

(
−dx + idy dz +∆s
dz −∆s dx + idy

)
. (3)

By introducing Pauli matrices acting in the Nambu space, τµ, µ = 0, . . . , 3, we can write the
Bogoliubov–de Gennes Hamiltonian in the following compact form:

HBdG(k) = ϵkτ3 ⊗ σ s
0 − Mzτ3 ⊗ σ s

3 + α
(
sin(ky)τ0 ⊗ σ s

1 − sin(kx)τ3 ⊗ σ s
2

)
+∆t (sin(kx)τ2 ⊗ σ s

0 − sin(ky)τ1 ⊗ σ s
3) −∆sτ2 ⊗ σ s

2. (4)

The system has a rich phase diagramwith trivial and topological phases. These are shown in Fig. 1
considering dz = 0 and choosing dx = ∆t sin ky, dy = −∆t sin kx. The Hamiltonian studied has
therefore in general a 4 × 4 matrix structure. The problem is easily diagonalized and the lines where
gapless points occur separate the different topological phases.

This model was studied in Refs. [40,41]. A particular interest was the study of entanglement and
fidelity. These quantities were determined by numerical diagonalization of density matrices and the
fidelity. Since the model factorizes in k-space the fidelity may be calculated for each momentum
separately. In addition to the usual sensitivity of the fidelity around the critical points it was noted
that some signature of these critical lines emerges at specific momentum values (associated with
the points where the gap vanishes and the transitions occur) such that the k-space fidelity vanishes.
This occurs even though it is calculated with density matrices that correspond to points in the phase
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Fig. 1. (Color online) Phase diagram of a triplet superconductor as a function of chemical potential and Zeeman term. C is the
Chern number. k is the momentum of each transition line.

diagram that are deep inside the various phases and not necessarily in the vicinity of the transition
lines.

In this work we aim to understand better this result.
We begin by noting that the topology is not changed if∆s = 0, α = 0 as shown in [39]. If we take

these values the 4 × 4 matrix decouples in two 2 × 2 matrices since the spin components do not get
mixed anymore as

H↑↑ =

(
ϵk − Mz −i∆t

(
sin kx − i sin ky

)
i∆t

(
sin kx + i sin ky

)
−ϵk + Mz

)
, (5)

and

H↓↓ =

(
ϵk + Mz −i∆t

(
sin kx + i sin ky

)
i∆t

(
sin kx − i sin ky

)
−ϵk − Mz

)
. (6)

These matrices can be written in terms of Pauli matrices, σ, as

H↑↑ = (ϵk − Mz)σz −∆t sin kyσx +∆t sin kxσy ,

H↓↓ = (ϵk + Mz)σz +∆t sin kyσx +∆t sin kxσy . (7)

Denoting a vector hσ=↑ = h↑↑ and hσ=↓ = h↓↓ we get that the Hamiltonian matrices may be written
in the form hσ · σ, with

h↑ = (−∆t sin ky,∆t sin kx, ϵk − Mz) (8)

and

h↓ = (∆t sin ky,∆t sin kx, ϵk + Mz). (9)

The reduction of the problem to two 2 × 2 matrices simplifies the problem considerably and an
analytical solution for the fidelity is easy to obtain. Its analysis clarifies that the vanishing of the k-
space fidelity at selected points is a general feature associated to a gapless point. We verify this result
considering several models that display transitions either topological or non-topological.

In Section 2 we recall the definition of the fidelity and the k-space fidelity both in the finite
temperature and zero temperature regimes. Then we apply it to the 2d triplet topological super-
conductor emphasizing the connection between the momenta where the fidelity vanishes and the
spectrum gapless points at the transition lines. We perform an abstract analysis of the relation
between zero-fidelity and gapless points, for the case of a general 2 × 2 Hamiltonian. Other models
are considered also at zero temperature, both topological and non topological. In Section 3, models
such as topological insulators, 1d Kitaev model of spinless fermions and the Haldane Chern insulator
are discussed. Further, in Appendix A we analyze a conventional superconductor, the Ising model in
a transverse field and graphene. Also, in Appendix B the triplet 2d superconductor is considered at
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finite temperature showing that as temperature decreases the k-space fidelity approaches the regime
of vanishing points at the gapless points that occur at the transition lines between different phases. In
Section 4 we consider a generalization to higher dimensional Hamiltonians. The zero temperature
fidelity is obtained and applied to a 3d topological insulator, further establishing the connection
between transition lines with gapless points and zeros in the k-space fidelity. The reverse however
is not always true. It is possible to find models where, although vanishing points in the fidelity can
correspond to gapless excitations, they are not associated with transition lines. This is shown in
Section 5 for a normal non-topological tight-bindingmodel with a Zeeman term. The fidelity vanishes
in extended regions that correspond to gapless points in the spectrum that are not associated with
transition lines between phases. Another example is also considered that leads to a vanishing fidelity
as a function of some control parameter introduced in a model of graphene that allows a continuous
transition between the two opposite poles of the h vector Hamiltonian, with no specific gapless point
in momentum space, since the spectrum vanishes for all momenta. We conclude with Section 6.

2. Fidelity

The quantum fidelity between two pure states (for two sets of parameters) is the absolute value
of the overlap between the ground states for the two sets of parameters. In general, the quantum
fidelity [42] between two states characterized by two density matrices ρ1 and ρ2, may be defined as
the trace of the fidelity operator, F , as F (ρ1, ρ2) = TrF = Tr

√√
ρ1ρ2

√
ρ1. The fidelity operator F

can be studied using different basis states, associated with different representations, such as position,
momentum, energy or charge and spin.

Since the Hamiltonian is separable inmomentum space, the densitymatrix operator for amomen-
tum k may be defined as usual as

ρ̂k =
e−βĤk

Zk
, (10)

In the diagonal basis it is written as

ρk =
⟨
n|ρ̂k |n

⟩
=

e−β⟨n|Ĥk |n⟩

Zk
. (11)

In Ref. [40] a basis representation for the density matrix in terms of the occupation numbers for a
given momentum (and its symmetric) and the two spin projections was used. The eigenvalues of the
density matrix are obtained if we diagonalize the Hamiltonian in the same basis. We considered the
representation

H̃k =
⟨
nk↑

n−k↑
nk↓

n−k↓

⏐⏐ Ĥk
⏐⏐nk↑

n−k↑
nk↓

n−k↓

⟩
(12)

The diagonalization of the Hamiltonian matrix in this enlarged basis is written as

H̃kQ k,n = λk,nQ k,n , n = 1, . . . , 16 , (13)

where Q k,n is the eigenvector of H̃k associated to the eigenvalue λk,n. Note that n here is just an index
number and should not be confused with the occupation number of Eq. (12). In the same basis the
density matrix may be written as

ρk =
e−βH̃k

Zk
. (14)

Therefore the eigenvalues of the density matrix may be written as ρkQ k,n = Λk,nQ k,n where

Λk,n =
e−βλk,n∑
n′ e−βλk,n′

. (15)

A simpler way to calculate the fidelity is to use a representation in the basis of the creation and
destruction operators. In the case of the Sato and Fujimoto model this leads to a 4 × 4 representation
(the same dimension of the Hamiltonian matrix).
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Fig. 2. (Color online) k-space fidelity for the 2d triplet superconductor with∆t,1 = ∆t,2 = 0.6, µ1 = −3, µ2 = −0.1,Mz,1 =

Mz,2 = 0.5, T = 0.

As mentioned in the introduction the problem may be further simplified noting that the density
matrix for the Sato and Fujimoto model with∆s = α = 0 may be written as

ρ = ρ↑ρ↓

ρσ =

∏
k e

−βHσk∏
k Tr

(
e−βHσk

) (16)

where now the matrices have a dimension 2 × 2.
The case of anHamiltonianwith a 2× 2 structure has been considered before [43–45]. The k fidelity

between two states ρ1 and ρ2 can be written as

F12(k) =

2 +

√
2
(
1 + A12(k) + B12(k)nk,1 · nk,2

)√
(2 + 2 cosh(βEk,1/2))(2 + 2 cosh(βEk,2/2))

(17)

where ±Ek,i = ±|hk,i| are the energy eigenvalues of the Hamiltonian Hk,i = hk,i · σ, nk,i = hk,i/|hk,i|,
i = 1,2, and

A12(k) = cosh(βEk,1/2) cosh(βEk,2/2)

B12(k) = sinh(βEk,1/2) sinh(βEk,2/2) (18)

In the zero temperature limit β → ∞ the expression simplifies. The fidelity is given by

F12(k) =

√
1
2

(
1 +

hk,1

|hk,1|
·

hk,2

|hk,2|

)
(19)

In this case Ek = |hk |. It is easy to see that if hk,1 = hk,2 the fidelity is one.

2.1. k-space fidelity of 2d triplet superconductor

We begin by considering the case of zero temperature. Recalling that

F12 = F↑

12F
↓

12 (20)

the fidelity for a given momentum may be obtained using Eqs. (8), (9).
In Fig. 2 we show the k-space fidelity for two density matrices that correspond to states in phases

with different Chern numbers that are separated by a transition such that the spectrum gap closes at
the point k = (π, 0) (and equivalent points). As obtained before numerically, the fidelity vanishes at
thesemomenta values [40]. Similar results may be obtained for other examples, as shown in Ref. [40].
We also consider in the left panel of Fig. 3 two density matrices that correspond to a transition from
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Fig. 3. (Color online) k-space fidelity for the 2d triplet superconductor with∆t,1 = ∆t,2 = 0.6, (left panel) µ1 = −6.0, µ2 =

6.0,Mz,1 = Mz,2 = 0.5, T = 0. One gets the same result for Mz,1 = Mz,2 = 0. In the right panel µ1 = −2.0, µ2 =

6.0,Mz,1 = 4,Mz,2 = 0.5, T = 0. The behavior of the fidelity has linear dispersion around k = (0, 0), (π, 0) and quadratic
around k = (π, π ).

a trivial phase at µ1 = −6 to another trivial phase at µ2 = 6 and Mz,1 = Mz,2 = 0.5. In the right
panel of the same figure we consider a density matrix at a topological phase with C = −1 to the same
final trivial phase with C = 0. Tracing a straight line between the initial and final points in the phase
diagramwe see that in the left panel we cross twice gapless points at k = (0, 0), (π, 0), (π, π ). In the
case of the right panel we cross gapless points at k = (0, 0) (once), k = (π, π ) (twice) and k = (π, 0)
(once).

Taking the neighborhood of a pointwhere the k-fidelity vanishes one can show that there is a factor
proportional to the momentum displacement from the gapless point for each term that vanishes.
Therefore evaluating the fidelity between two points in the phase diagram such as, for instance,
Mz = 0.5 and µ1 = −2, µ2 = 2 there is factor proportional to k coming from each spin contribution
leading to a factor of k2, and therefore a quadratic dispersion. In the case of Fig. 2 the dispersion is
linear neark = (π, 0) since the gapless point is only crossed once and looking at Fig. 3we the spectrum
is quadratic near all gapless points in the left panel and linear near k = (0, 0), (π, 0) in the right panel
and quadratic near k = (π, π ). These results just confirm those obtained numerically before [40].

This result is explained next.

2.2. General result for 2 × 2 Hamiltonian matrix

Given a set Q of Hamiltonian parameters (which, in case of, say, effective Hamiltonians, may in-
clude temperature aswell), for eachmomentum kwehaveHamiltoniansHq(k) and the corresponding
Gibbs states ρq(k) = e−βHq(k)/Z(k), with q ∈ Q and β being the inverse temperature. Consequently,
we consider the fidelity F12(k) = F (ρq1 (k), ρq2 (k)) and the energies Eq(k).

At β → ∞ limit, we are interested in finding the relation between the pairs of parameter points
(q1, q2) for which the fidelity vanishes, F12(k) = 0, and the existence of critical gapless points qc , for
which Eqc (k) = 0.

Given the Hamiltonian

Hq(k) = hq(k) · σ, (21)

its eigenvalues are E±
q (k) = ±|hq(k)|, and the fidelity is

F12(k) =

√
1
2

(
1 +

hq1 (k)
|hq1 (k)|

·
hq2 (k)
|hq2 (k)|

)
. (22)

Thus, gapless points are given by

Eqc (k) = |hqc (k)| = 0, (23)

and the condition that the fidelity vanishes translates to

hq1 (k) · hq2 (k) = −|hq1 (k)||hq2 (k)|, (24)

which implies that the angle between hq1 (k) and hq2 (k) is π .
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This observation hints at the existence of the ‘‘gapless vector’’ hqc (k) = 0 between hq1 (k)
and hq2 (k), defining the critical point qc of potential quantum phase transition (see Section 5.1 for
examples in which gapless excitations are not accompanied by transition lines). A simple sufficient
condition that allows to infer gapless points (23) from the existence of zero fidelity pairs (24) is the
linearity, with respect to q, of the function hq(k), provided that the set of parameters Q is not too
restricted. Indeed, condition (24) implies hq2 (k) = −λhq1 (k), for some positive λ. Assuming thatQ is
a subspace of a real linear space, define qc = µq1 + νq2, for some µ, ν ∈ R. Assuming linearity, we
have

hqc (k) = h(µq1+νq2)(k) = (µ− λν)hq1 (k). (25)

To satisfy (23), we need to satisfy

µ = λν, (26)

which gives a line of critical points qc(ν) = (λq1 + q2)ν, parametrized by ν (note the above disclaimer
— we require that for at least one ν ∈ Q, we also have (λq1+q2)ν ∈ Q).We show the above statement
on the examples of topological insulator and 1d Kitaev model of spinless fermions (Sections 3.1 and
3.2, respectively), as well as for BCS superconductor, Ising model in a transverse field and graphene
(Appendices A.1–A.3, respectively).

Nevertheless, linearity of hq(k) with respect to q is not a necessary condition for the existence
of gapless points. Consider h(ρ,ϕ) = ρ cos(ϕ)ex + ρ sin(ϕ)ey , with the parameters ϕ ∈ [0, 2π ), and
ρ ∈ [0,+∞). Although h is not linear function of its parameter ϕ, it is obvious that h(ρ,ϕ) · h(ρ,ϕ+π ) =

−|h(ρ,ϕ)||h(ρ,ϕ+π )| and Eρ=0,ϕ = 0 for every ϕ.
Note again that here, as in the above sufficient condition, we needed to assure the space of

parameters Q to be ‘‘sufficiently large’’, in particular to include the ρ = 0 point. Had we restricted
the parameters, say from q = (ρ, ϕ) to q = ϕ, this simple ‘‘rotational’’ counter example shows that,
at least in principle, there exist models for which there exists no q = qc for which hqc (k) = 0. Indeed,
consider hϕ(k) = cos(ϕ)ex + sin(ϕ)ey , for q = ϕ ∈ [0, 2π ). We see that in this model there exist
no gapless points, as the two energy bands are flat, E±

q (k) = ±1, while for each two ‘‘antipodal’’
parameter points ϕ and ϕ + π , we have that the corresponding fidelity is zero. See Section 5.2 for a
particular tight binding model of graphene perturbed with a mass term.

One could pose an ‘‘opposite’’ question, whether the existence of a gapless point qc , for which
Eqc (k) = |hqc (k)| = 0, implies the existence of pairs of parameters (q1, q2) for which the corre-
sponding vectors hq1 (k) and hq2 (k) satisfy (24), for which the fidelity vanishes, F12(k) = 0. A simple
counterexample shows that this, in general, is not the case. Take q = (ρ, ϕ), such that ρ ∈ [0, 1]
and ϕ ∈ [0, π/2]. Define h(ρ,ϕ) = ρ cos(ϕ)ex + ρ sin(ϕ)ey . There is one gapless point, ρ = 0, but the
fidelity is never zero, regardless of (q1, q2). Again, as in the above counter-examples, the way to avoid
the existence of ‘‘zero-fidelity pairs’’ (q1, q2) is to restrict, this time the co-domain of the mapping
hq(k) to a set that excludes the existence of any two pairs of vectors for which hq2 (k) = −λhq1 (k).
Otherwise, having hqc (k) = 0, for some qc , we can always find q1 and q2 for which

hq1 (k) = hqc (k) + δhq1 (k)
hq2 (k) = hqc (k) + δhq2 (k). (27)

Then, it follows that

hq1 (k) · hq2 (k) = δhq1 (k) · δhq2 (k). (28)

Consider for instance the Sato and Fujimoto model simplified to the case where∆s = α = 0, since
the topological properties are not changed. The transitions between the various phases occur at the
momentum points k = (0, 0), (0, π ), (π, π ) (and equivalent points). Consider for instance the point
k = (0, 0). The gapless point implies that

4t + µ+ Mz = 0 (29)

The vanishing of the fidelity implies that

−1 = sgn(4t1 + µ1 + Mz,1)sgn(4t2 + µ2 + Mz,2) (30)
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Fig. 4. (Color online) k-space fidelity for the topological insulator of Eq. (31) with (left panel) tx,1,1 = tx,1,2 = ty,1,1 = ty,1,2 =

1, t2,1 = 1.2, t2,2 = 0.3, t ′1,1 = t ′1,2 = 0.5, δ1 = δ2 = 0.1. In the right panel we take tx,1,1 = tx,1,2 = 1, ty,1,1 = ty,1,2 = 0, t2,1 =

1.2, t2,2 = 0.3, t ′1,1 = t ′1,2 = 0, δ1 = δ2 = 0.

which is satisfied if the signals are opposite. The transitions at the momentum origin occur in the
vicinity of µ = −4 if the magnetization is small (we fix t = 1). Similar expressions can be obtained
in the vicinity of other transition lines.

3. Application to other systems

3.1. Topological insulator

A simple toy model for a two-dimensional topological insulator with two bands may be written
as [46]

hx =
√
2tx,1

(
cos kx + cos ky

)
hy =

√
2ty,1

(
cos kx − cos ky

)
hz = 4t2 sin kx sin ky + 2t ′1

(
sin kx + sin ky

)
+ δ (31)

The terms hy and t ′1 break time reversal symmetry and the t2 term breaks inversion symmetry. Since
the system is two-dimensional, the system displays regimes with non-vanishing Chern numbers. For
instance,

t2 > t ′1 −
δ

4
, C = 2

t2 < t ′1 −
δ

4
, C = 1 (32)

At the points k = (±π/2,±π/2) both hx and hy vanish. Around these points and taking δ = 0, hz
has the form hz = 4t2 − 4t ′1 at (−π/2,−π/2), hz = 4t2 + 4t ′1 at (π/2, π/2) and hz = −4t2 at the
remaining points (π/2,−π/2), (−π/2, π/2). Therefore the momentum value that is associated with
the transition from t2 > t ′1 to t2 < t ′1 is the one where the gap closes and the fidelity vanishes.

In Fig. 4 we show the k-space fidelity for this toy model. In the left panel we consider two phases
such that phase 1 has C = 2 and phase 2 has C = 1, as discussed above. In the right panel we
consider an example where there is no time reversal symmetry breaking. Also, there is no gapless
point between the two sets of parameters. Therefore the fidelity has no zeros.

Another simple toy model that involves a transition between two topological regimes with C = 2
and C = −2 is the Hamiltonian

hx = cos kx + cos ky
hy = cos kx − cos ky
hz = t2 sin kx sin ky (33)

The two regimes are obtained changing the sign of t2. The gap closes at the points k = (π/2, π/2),
(π/2,−π/2), and equivalent points. This is clearly shown by the fidelity in Fig. 5.
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Fig. 5. (Color online) Fidelity for topological insulator of Eq. (33): t2,1 = 1, t2,2 = −1.

3.2. 1d Kitaev model of spinless fermions

In momentum space we may write the Kitaev model [47] as

Ĥ =
1
2

∑
k

(
c†
k , c−k

)(
ϵk − µ −2i∆ sin k
2i∆ sin k −ϵk + µ

)(
ck
c†
−k

)
(34)

with ϵk = −2t cos k. The Hamiltonian may be written using the Pauli matrices with

h = (0, 2∆ sin k, ϵk − µ) (35)

The eigenvalues are therefore ±|h|, where

|h| =

√
4∆2 sin2 k + (−2t cos k − µ)2 (36)

The transitions lines occur for µ = 2 and k = π , for µ = −2 and k = 0 and for ∆ = 0 and
cos k = −µ/(2t). Therefore for∆ = 0 and µ = 0 the transition occurs at k = π/2. It is easy to check
the vanishing of the fidelity. For this problem we can write that

h1 · h2

|h1||h2|
=
(
4∆1∆2 sin2 k + (2t cos k + µ1)(2t cos k + µ2)

)
× 1/

√
4∆2

1 sin
2 k + (2t cos k + µ1)2

× 1/
√
4∆2

2 sin
2 k + (2t cos k + µ2)2 (37)

Considering for instance µ1 = µ2 = 0 it is easily seen that choosing for instance∆1 > 0,∆2 < 0 the
expression reduces to −1 (vanishing fidelity) if k = π/2, which is the condition for the gapless point.

The vanishing of the fidelity may also be calculated directly using the eigenstates. At the points
µ = 0,∆ = ±t the eigenvalues are ±2 and the eigenvectors are

ψ+ = sgn
[
cos

k
2

]⎛⎜⎝−i
∆

t
sin

k
2

cos
k
2

⎞⎟⎠ , (38)

ψ− = sgn
[
cos

k
2

]⎛⎜⎝ cos
k
2

−i
∆

t
sin

k
2

⎞⎟⎠ (39)

Taking now µ = 0 but any value of∆, the eigenvalues are

λ± = ±2
√
(t cos k)2 + (∆ sin k)2 (40)
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The eigenvectors are (see for example Ref. [48])

ψ∆
+

=

⎛⎜⎜⎜⎝
−i2∆ sin k

√
2λ+ (λ+ + 2t cos k)√
λ+ + 2t cos k

2λ+

⎞⎟⎟⎟⎠ , (41)

ψ∆
−

=

⎛⎜⎜⎜⎝
√
λ− − 2t cos k

2λ−

−i2∆ sin k
√
2λ− (λ− − 2t cos k)

⎞⎟⎟⎟⎠ (42)

Consider for instance the states ψ∆1
+ and ψ∆2

+ . Consider ∆1 > 0,∆2 < 0. Their overlap is easily
obtained

F12 = |−2
|∆1||∆2| sin2 k√

λ+,1(λ+,1 + 2t cos k)λ+,2(λ+,2 + 2t cos k)

+

√
λ+,1 + 2t cos k

2λ+,1

√
λ+,2 + 2t cos k

2λ+,2
| (43)

At the momentum k = π/2 we get that λ+ = 2|∆|. Therefore the fidelity vanishes.

3.3. Haldane Chern insulator

Wemay also consider a graphene like model with the addition of hopping terms between nearest-
neighbors on the same sublattice, t2, with a periodic magnetic flux that breaks time-reversal inversal
and therefore the possibility of a non-vanishing Chern number (but with zero total flux through a
unit cell). This generalization was considered by Haldane [49] as an example of a topological Chern
insulator in the absence of an external magnetic field. Themagnetic flux is included by adding a phase
to the hopping amplitude t2. The Hamiltonian, including a mass term is given in momentum space by

H(k) = 2t2 cosφ
∑

i

cos(k · bi)I

+ t1
∑

i

(cos(k · ai)σ1 + sin(k · ai)σ2)

+

(
M − 2t2 sinφ

∑
i

sin(k · bi)

)
σ3 (44)

Here t1 is the hopping between nearest-neighbors between one sublattice and the other, M is the
mass term and the lattice vectors are a1 = (1, 0), a2 = (−1/2,

√
3/2), a3 = (−1/2,−

√
3/2) and

b1 = a2 − a3, b2 = a3 − a1, b3 = a1 − a2. As shown in Fig. 6a, there are topological regions
characterized by non-vanishing Chern numbers ±1 for |t2/t1| < 1/3 that lead to non-vanishing Hall
conductances. As a function of the phase φ and the gap magnitude, M , the non trivial phases occur if
|M/t2| < 3

√
3|sinφ|.

The fidelity may be calculated diagonalizing the Hamiltonian and by direct evaluation of the
absolute value of the overlap of the eigenfunctions for two different sets of parameters. As for the
abovemodels, the k-space fidelity vanisheswhen comparing two states that are in two distinct phases
that can be connected by a straight line in the phase diagram that cuts a transition or transition
lines. As an example, we show in Fig. 6b the fidelity between states that differ by the value of
φ = π/2,−π/2 with the other parameters fixed at t1 = 1, t2 = 0.25,M = 0.5. The fidelity has
zeros at the six corners of the Brillouin zone. This occurs because as one crosses from ν = 1 to
ν = 0 and from ν = 0 to ν = −1, each transition line is characterized either by the Dirac zeros
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Fig. 6. (Color online) In the left panel we show the phase diagram of the Haldane model and in the right panel the fidelity with
t1 = 1, t2 = 0.25,M1 = M2 = 0.25, φ1 = π/2, φ2 = −π/2.

at K =
2π
3

(
1, 1

√
3

)
(and equivalent points) or K ′

=
2π
3

(
1,− 1

√
3

)
(and equivalent points). Therefore

the fidelity is linear around each of the vanishing points, as discussed above.

4. Generalization to higher dimensional hamiltonians

4.1. Fidelity

Consider a Hamiltonian of the form

H =

d∑
µ=1

hµγµ, (45)

where γµ, µ = 1, . . . , d are Hermitian matrices corresponding to an irreducible representation of a
Clifford algebra over the field of the complex numbers with d generators with Euclidean signature,

γµγν + γνγµ = 2δµν I2n , (46)

where I2n is the 2n
× 2n identity matrix and n = ⌊d/2⌋. From now on we will drop the index of the

dimension of the vector space on the identity matrix. These matrices satisfy

Tr
(
γµγν

)
= 2nδµν . (47)

We have H2
= ∥h∥

2I and, therefore, the eigenvalues are ±∥h∥, with ∥h∥
2

≡
∑

hµhµ. Let us assume
h ̸= 0 and, without loss of generality, that ∥h∥ = 1, i.e. h = (hµ) determines an element of the
(d − 1)-dimensional sphere Sd−1. Notice that

P =
1
2

(
I − H

)
, (48)

commutes with H and is a projector. Similarly, Q = I − P = (1/2)(I + H), also commutes with H and
is a projector. Moreover,

H = Q − P = I − 2P . (49)

So P corresponds to the projector onto the −1 eigenvalue sector and Q corresponds to the projector
onto the +1 eigenvalue sector.

Associated to P we can build a density matrix

ρ(h) =
P

Tr
(
P
) =

P
2n−1 . (50)
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The fidelity between two such density matrices, which we denote by F (h1, h2), is given by

F (h1, h2) = Tr
(√√

ρ(h1)ρ(h2)
√
ρ(h1)

)
=

1
2n−1 Tr

(√
P1P2P1

)
, (51)

where we wrote Pi = (1/2)(1 −
∑

µ hµi γµ) ≡ (1/2)(1 − Hi), i = 1, 2. Now, using H1H2 + H2H1 =

2⟨h1, h2⟩I , with ⟨h1, h2⟩ =
∑

µ hµ1 h
µ

2 ,

P1P2P1 =
1
8

(
2I − 2H1 − H2 + H1H2 + H2H1 − H1H2H1

)
=

1
8

(
2I − 2H1 + 2⟨h1, h2⟩(I − H1)

)
=

1
2

(
1 + ⟨h1, h2⟩

)
P1.

So that,

F (h1, h2) =

√
1
2

(
1 + ⟨h1, h2⟩

)
, (52)

similarly to the result in Eq. (22). Therefore if h1 and h2 form an angle of π , i.e., if they are antipodal
with respect to each other, the fidelity will vanish.

4.2. Example: 3D topological insulator

Consider the following model for a 3D topological insulator [50,51]

H(k) = vτ z
(∑
µ

σµ sin(kµ)
)
+
(
M − t

∑
µ

cos(kµ)
)
τ x, (53)

with µ = x, y, z. The γ matrices,

γ1 = τ z ⊗ σ x
=

(
σ x 0
0 −σ x

)
,

γ2 = τ z ⊗ σ y
=

(
σ y 0
0 −σ y

)
,

γ3 = τ z ⊗ σ z
=

(
σ z 0
0 −σ z

)
,

γ4 = τ x ⊗ I2 =

(
0 I2
I2 0

)
,

form an irreducible representation of a Clifford algebra in four generators with Euclidean signature.
Our vector h is then given by

h(k) =
(
v sin(kx), v sin(ky), v sin(kz),M − t

∑
cos(kµ)

)
. (54)

The time-reversal operator is given by Θ = −i
(
I2 ⊗ σ y

)
K , where K is complex conjugation. Under

time reversal k → −k. The time-reversal invariant (TRI) momenta of the Brillouin zone B.Z. ∼= T 3 are
given by

(0, 0, 0), (π, 0, 0), (0, π, 0), (0, 0, π ),
(π, π, 0), (0, π, π ), (π, 0, π ), (π, π, π ).

The spatial inversion operator is given by Π = τ x. At a time-reversal invariant momentum k, the
Hamiltonian commutes withΠ and also

H(k) =
(
M − t

∑
µ

cos(kµ)
)
Π ≡ m(k)Π . (55)
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Fig. 7. The four lines M = ±t and M = ±3t separate the phases where ν = ±1.

The strong Z2 invariant is given by the product of the signs of the masses at TRI points,

ν =

∏
{k∈B.Z.: k=−k}

sgn
(
m(k)

)
∈ Z2. (56)

Explicitly, it reads

ν = sgn
[
(M − 3t)(M − t)3(M + t)3(M + 3t)

]
= sgn

[
(M2

− 9t2)(M2
− t2)

]
. (57)

The phase diagram is presented in Fig. 7.
We can now consider the k-space fidelity between groundstate subspaces associated with two

Hamiltonians H1 ≡ H(M1, t2) and H2 ≡ H(M2, t2).

F (H1(k),H2(k)) =

√
1
2

(
1 +

⟨h1(k), h2(k)⟩
∥h1(k)∥ ∥h2(k)∥

)
(58)

At TRI points we always have H(k) = m(k)Π , or, equivalently, h(k) = (0, 0, 0,m(k)). So for the
fidelity to vanish at one point, we just need, for some TRI momenta k

sgn(m1(k)m2(k)) = −1, (59)

i.e., the masses have opposite signs. In fact, this condition means that the elements of the three-
dimensional sphere S3 defined by h1(k)/|h1(k)| and h2(k)/|h2(k)| are antipodal at this specific TRI
momentum k. More strikingly, at these TRI momenta, the fidelity will always be either zero or one. A
straight line connecting h1 and h2 with this property will always close the gap at this TRI momentum.

For example, if we consider v = 1, take M1 = M2 = 1 and t1 = 1 ± s, with s = 0.5, we get at
k = (0, 0, π ),

⟨h1(k), h2(k)⟩
∥h1(k)∥ ∥h2(k)∥

= −1. (60)

In fact this holds for any of the following TRI points:

(0, 0, 0), (π, 0, 0), (0, π, 0), (0, 0, π ), (π, π, π ). (61)

ForM = t , the system is gapless at the TRI invariant momenta

(π, 0, 0), (0, π, 0), (0, 0, π ). (62)
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Fig. 8. (Color online) k-space fidelity for the 2d triplet superconductor with (left panel)∆t,1 = 0.6,∆t,2 = 0., µ1 = −3, µ2 =

−0.1,Mz,1 = Mz,2 = 0.5, T = 0, (middle panel) ∆t,1 = 0,∆t,2 = 0., µ1 = −3, µ2 = −0.1,Mz,1 = Mz,2 = 0.5, T = 0 and
(right panel)∆t,1 = 0,∆t,2 = 0., µ1 = −3, µ2 = −0.1,Mz,1 = Mz,2 = 1.0, T = 0.

The fact that themasses have opposite signs in anoddnumber of points implies therewas a topological
phase transition in between, as confirmed by the phase diagram.

5. Absence of transition lines and vanishing fidelity

As noted in Section 2.2, althoughwe are primarily interested in the points of phase transitions, it is
also interesting to analyze situations in which gapless points, in the presence of the vanishing fidelity,
do not characterize some change of phase. Additionally, it is possible to find situations in which the
fidelity vanishes, but this is not associated necessarily with a gapless point at some specific value of
the coupling constants. We consider these two situations on the following two physical examples.

5.1. Gapless points without transitions

We now present an example of a physical model where there exist gapless points, see Eq. (23),
which do not correspond to phase transition lines. Consider first the 2d triplet superconductor studied
above. Turning off superconductivity, and since the normal term is not topological the topological
nature is destroyed. In Fig. 8 we consider first (left panel) a transition from the superconductor to a
point where superconductivity is turned off. The region where the fidelity vanishes widens but the
overall features of Fig. 2 remain. However, turning off superconductivity altogether, as shown in the
other panels of Fig. 8, the fidelity now vanishes in extended zones that correspond to gapless points
in regions of momentum space and that are not associated with any transitions.

5.2. Zero fidelity without gapless points

A physical example where the fidelity goes to zero, see Eq. (24), at a given k and there is no
parameter in the theory for which the gap closes at that same k, see Eq. (23), is the following. Consider
the tight binding of graphene. The Hamiltonian in momentum space is

H(k) = tA(k)σ+ + tA∗(k)σ−, (63)

where t is a hopping amplitude, σ are the pseudo-spin Pauli matrices and

A(k) =

3∑
i=1

exp(ik · ai), (64)

where the ai are nearest neighbor vectors. We can add a mass term, which amounts to taking

H(k) −→ H(k) + Mσz . (65)

Bring a parameter θ , such that t = t(θ ) = t0 cos(θ ) and M = M(θ ) = t0 sin(θ ). For θ = 0, we have a
vector h(k) = (t0ReA(k),−t0ImA(k), 0) with gapless points at K and K ′. For θ = π , the vector goes
to −h(k). Therefore, for every k ̸= K ,K ′, we always have,

Fk(θ1 = 0, θ2 = π ) = 0, (66)
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but

E(k) = ±t0
√
cos(θ )2|A(k)|2 + sin(θ )2, (67)

will never be zero regardless of the value of θ (note that t0 ̸= 0 is fixed). Only for momenta K ,K ′ will
the gap vanish, when θ = nπ , with n integer.

6. Conclusions

In this work we studied two-band models or more generally models that can be factorized to a
set of two-bands. We investigated whether the k-space fidelity between states described by density
matrices that correspond to points deep inside phases can provide information about the transition
lines or sequence of transition lines that separate those phases. This extends previous numerical
calculations for a 2d triplet spinful superconductor [40] where the result was identified.

In particular, we analyzed the relation between the existence of vanishing points of the k-space
fidelity and gapless points. We analyzed general 2 × 2 Hamiltonians and presented a sufficient
condition for the existence of gapless points, given there are pairs of parameter points for which
the fidelity between the corresponding states is zero. By presenting an explicit counter-example,
we showed that the sufficient condition is not necessary. Further, we showed that, unless the set
of parameter points is suitably constrained, the existence of gapless points generically imply the
accompanied pairs of parameter points with vanishing fidelity.

We showed explicitly that the vanishing fidelity is accompanied by the gapless points of zero-
temperature quantum phase transitions on a number of concrete models: a topological insulator, the
1d Kitaev model of spinless fermions, the BCS superconductor, the Ising model in a transverse field,
graphene and the Haldane model for a Chern insulator.

General Dirac-like Hamiltonians were also considered. We observed that the fidelity has the same
form as in the two-band case. As a consequence, the same type of behavior is found, i.e., the k-space
fidelity can vanish for points arbitrarily far from each other in parameter space, for momenta where
the gap is found to close along a straight line joining the twopoints. As an example of thismore general
scenario, we considered a 3D topological insulator, classified by a Z2 topological invariant.

We also briefly discussed the finite-temperature case on the example of a 2d triplet superconduc-
tor.

Finally, we presented examples of systems in which, although vanishing fidelity can infer gapless
points, those do not correspond to phase transition lines.

We conclude therefore that the results suggest that a vanishing fidelity strongly hints at a gapless
point and eventually a transition between phases, but it does not hold in general and some specific
counter-examples can be found. Thenone cando the establishedprocedure of going through the phase
diagram step by step to search for a singular point.
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Fig. A.9. (Color online) BCS superconductor with∆1 = 1,∆2 = 0.5 and∆1 = 1,∆2 = −1.

Appendix A. Zero-temperature applications to other systems

A.1. BCS superconductor

Consider a conventional, non-topological, s-wave superconductor in two dimensions at finite
temperature described by the effective mean-field BCS Hamiltonian

Heff
BCS =

∑
k

εk(nk↑ + n−k↓)

−

∑
k

(∆kc
†
k↑

c†
−k↓

+∆∗

kc−k↓ck↑ −∆∗

k⟨c−k↓ck↑⟩), (A.1)

To simplify we consider ∆k = ∆ a parameter independent of momentum but an extended s-wave
superconductor could also be considered and it could also be determined self-consistently.Wewill be
interested in situations where ρ1 and ρ2 correspond to points in parameter space, which we choose
to be the temperature, T , and the gap, ∆, that are far apart and may be in the same or different
thermodynamic phases [43].

In Fig. A.9 we consider a transition between two points at µ = 0, one where the sign of ∆ does
not change and one where ∆1 = −∆2 = 1. In the first case the fidelity is close to one, as expected
since we are in the same phase. In the second case as∆ changes sign it crosses zero and there is a set
of gapless points and the fidelity vanishes at those points since cos kx + cos ky = 0.

A.2. Ising model in a transverse field

The Ising model in a transverse field [52,53] described by

H = −

N∑
j=1

(
σ x
j σ

x
j+1 + hσ z

j

)
(A.2)

where h is the transverse field, can be related to the Kitaev model performing a Jordan–Wigner
transformation [54]. The fidelity between two states has been shown to be given by [1,2]

F (h, h′) =

∏
k≥0

cos
(
θk − θ ′

k

)
(A.3)

where the Bogoliubov angles are defined (for two values of the transverse field) in the form

cos(2θk) =
cos k − h

√
1 − 2h cos k + h2

sin(2θk) =
sin k

√
1 − 2h cos k + h2

(A.4)
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The energy spectrum is given by

ϵk =

√
1 − 2h cos k + h2 (A.5)

Taking h = 1 the spectrum becomes gapless at k = 0 and if h = −1 at k = π . Taking k = 0 we get
that

cos(2θ0) = sgn(1 − h) (A.6)

Therefore

cos θ0 =

√
1
2
(1 + sgn(1 − h))

sin θ0 =

√
1
2
(1 − sgn(1 − h)) (A.7)

Therefore

cos
(
θ0 − θ ′

0

)
=

√
1
2
(1 + sgn(1 − h))

√
1
2
(1 + sgn(1 − h′))

+

√
1
2
(1 − sgn(1 − h))

√
1
2
(1 − sgn(1 − h′)) (A.8)

As a consequence if we choose two points on the h axis such that the sgn(1 − h) = sgn(1 − h′) the
fidelity at k = 0 is one while if they are different the fidelity vanishes.

A.3. Graphene

Weconsider nowanon-topological non-superconducting systemsuch as graphene [55]. In order to
gap the spectrumwe add a mass term. We can model this massive graphene considering a mass term
like hz = M . In this case the system is non-topological since, even though there is a non-trivial Berry
curvature emerging from each Dirac cone, the total Berry curvature cancels. However, introducing a
mass term that depends on momentum such that it has opposite signs at the two Dirac cones leads
to a non-vanishing Berry curvature and topological properties [49]. We consider therefore in addition
the case

hx = 1 + cos
(√

3ky
)

+ cos

(√
3
2

ky

)
cos

(
3
2
kx

)

− sin

(√
3
2

ky

)
sin
(
3
2
kx

)

hy = sin
(√

3ky
)

+ sin

(√
3
2

ky

)
cos

(
3
2
kx

)

+ cos

(√
3
2

ky

)
sin
(
3
2
kx

)

hz = 4M sin

(√
3
2

ky

)(
cos

(
3
2
kx

)
− cos

(√
3
2

ky

))
(A.9)

The Dirac points are situated at K =
2π
3

(
1, 1

√
3

)
and K ′

=
2π
3

(
1,− 1

√
3

)
and hz(K ) = −hz(K ′).

In Fig. A.10 we consider the two cases where themass is the same in both Dirac cones or it changes
sign. We consider M1 = −M2 = 0.5. Both models show vanishing fidelity at the Dirac cones since by
changing the sign of the mass at each Dirac point implies a crossing through zero energy.
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Fig. A.10. (Color online) Fidelity for graphene withM1 = −M2 = 0.5. In the left panel samemass on different Dirac cones and
right panel opposite masses in different Dirac cones.

Fig. A.11. (Color online) Fidelity for the 2d triplet superconductor for∆t,1 = ∆t,2 = 0.6, µ1 = −2, µ2 = 0,Mz,1 = Mz,2 = 0.5
and several temperatures: T = 0, 0.25, 0.5, 1.

Appendix B. Temperature effects on 2d triplet superconductor

The effect of a finite temperature leads to a smoothening of the fidelity and the vanishing points of
the fidelity disappear. In Fig. A.11we compare for the case of the Sato and Fujimotomodel the k-space
fidelity for different temperatures. Even though the vanishing points are absent, if the temperature is
low there are signatures of their locations, as expected.
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