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The currently predicted increase in computational demand for the upcoming High-Luminosity Large 
Hadron Collider (HL-LHC) event reconstruction, and in particular jet clustering, is bound to challenge 
present day computing resources, becoming an even more complex combinatorial problem. In this paper, 
we show that quantum annealing can tackle dijet event clustering by introducing a novel quantum 
annealing binary clustering algorithm. The benchmarked efficiency is of the order of 96%, thus yielding 
substantial improvements over the current quantum state-of-the-art. Additionally, we also show how to 
generalize the proposed objective function into a more versatile form, capable of solving the clustering 
problem in multijet events.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

In high-energy physics jets play a fundamental role, signaling 
the presence of partons produced in the interaction, and providing 
us with valuable information regarding the underlying Quantum 
Chromodynamics (QCD) processes.When a quark-antiquark pair is 
produced, as the distance between quarks increases, the energy as-
sociated with this separation also increases. This means that for 
a sufficiently large distance the energy will eventually be large 
enough for a new, more energetically favorable quark-antiquark 
pair to be produced. Since quarks obey color-confinement the final 
hadronic states produced from these quarks must evolve to color-
less bound states – a process called hadronization. These hadrons 
and subsequent final stable particles tend to travel all in the same 
direction, forming narrow, collimated sprays of particles called jets.

From the collection of final-state particles produced in a given 
event, jet clustering aims at finding which particles belong to 
which jet clusters by analyzing these particles’ properties in an 
approximate attempt to reverse-engineer the underlying quantum 
mechanical QCD processes of fragmentation and hadronization. A 
jet algorithm then maps the momenta of N collimated and ener-
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getic final-state particles {�pi}, into the momenta of K cluster jets 
{�jk}, dependent on the collision conditions and the particles’ sub-
sequent final-state geometry and distribution.

As the center of mass energy and/or luminosity increases in fu-
ture high-energy particle accelerators, the computational resources 
demand is set to increase drastically, resulting in the near future 
in a predicted ∼ 10X increase in both pile-up, from < μ >∼ 20 to 
< μ >∼ 200, [1,2] and subsequent produced particle multiplicity. 
As a consequence, event reconstruction, and in particular jet clus-
tering, is bound to become an even more complex combinatorial 
problem, with a significant increase in final-state number of parti-
cles N to be clustered. The amount of clustering possibilities will 
increase thus challenging present day computing resources.

In this work, we study the possibility of using quantum an-
nealing to tackle the problem of jet clustering, by introducing a 
new, angle-based quantum annealing formulation and establish-
ing its performance. For this, we implement, for the first time, the 
quantum state-of-the-art by Wei et al. [3] as well as the proposed 
quantum annealing algorithm, on the latest cloud-available D-Wave
annealing machine, the Advantage Quantum Processing Unit (QPU) 
[4], hoping to understand how both algorithms perform and com-
pare in terms of clustering efficiency. By benchmarking the ob-
tained results against those of the widely used kt clustering al-
gorithm [5], we have shown that the proposed algorithm yields 
improved results over the quantum state-of-the-art [3].
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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2. Quantum annealing

Quantum annealing aims at solving global optimization prob-
lems, its primary goal being to find the minimum of a defined 
objective function. Making the analogy between the global mini-
mum of this function and the ground state of a system, quantum 
annealing makes use of quantum tunneling processes to lead the 
system to its global minimum [6].

At its core lies the adiabatic theorem [7], which tells us that if 
the gap E1(t) − E0(t) between the two lowest energy levels of our 
quantum system is strictly greater than zero for the entire anneal-
ing evolution time window and if the evolution is taken to be slow 
enough, our Schrödinger equation obeying quantum state |ψ(t)〉
will then remain very close to the instantaneous ground state for 
all t from 0 ≤ t ≤ T , where T is the annealing time. We now define 
the minimum gap gmin as:

gmin = min
0≤s≤1

(
E1(s) − E0(s)

)
, (1)

with s = t/T and T ∼ O (g−2
min).

Typically, the quantum system is initialized in the ground state 
of a simple and known hamiltonian Hi . We want to find out the 
ground state of another hamiltonian, H f , which is rather simple to 
specify, but whose ground state turns out to be hard to find (this 
corresponds to the definition of our optimization problem/function 
to be minimized). We now perform the annealing slowly enough as 
to go from the known ground state of Hi to the unknown ground 
state of H f [6]:

H(t) =
(

1 − t

T

)
Hi + t

T
H f , (2)

By preparing the state in such way that at t = 0 it corresponds to 
the ground state of H(0) = Hi and if gmin > 0, then in the end 
of the annealing process, for large enough T , |ψ(t)〉 will be very 
close to the ground state of H f , that is, to the solution of our 
optimization problem.

There are two key formulations for the objective function re-
garding its input form for the D-Wave computer: the Ising and the 
Quadratic Unconstrained Binary Optimization (QUBO) formulations 
(with the possibility of trivial conversion through si = 2xi − 1). In 
the Ising model, the variables si take the values of either “spin up” 
(↑) with si = +1, or “spin down” (↓) with si = −1. The N-variable 
objective function expressed as an Ising model takes the following 
form:

E Ising(s) =
N∑

i=1

hi si +
N∑

i< j=1

J i j si s j, si ∈ {−1,+1} . (3)

Equivalently, the QUBO formulation is defined by a N × N upper-
triangular matrix, Q , of real weights, and a vector of binary vari-
ables x. The goal is then to minimize the function:

E Q U B O (x) =
∑

i

Q ii xi +
∑
i< j

Q i jxi x j ≡
N∑

i, j=1

Q ijxi x j , (4)

where xi ∈ {0, 1}. The second form of equation (4) is obtained by 
summing i and j with repeated indices given that x2

i = xi allows 
us to absorb the linear terms into the quadratic terms.

3. Dijet events

To illustrate dijet events, we shall take the e+e− collision case 
as an example. An electron and a positron are accelerated in oppo-
site colliding directions on the same beam axis, up until the point 
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at which they collide, annihilate (given that they possess opposite 
momenta, charge, and the same energy), and end up emitting a 
quark-antiquark pair, through either a virtual Z 0 gauge boson or a 
virtual photon.

This quark-antiquark pair then hadronizes, giving rise to highly 
collimated sprays of hadrons known as jets. Since the original state 
is composed of two highly energetic partons with opposite mo-
menta, the N produced hadrons will mostly give rise to K = 2 jets. 
Taking as input this hadronic final-state, we now face the task of 
understanding which hadrons belong to which jet, grouping them 
together, and finally computing both jet’s final momenta in order 
to gain insight into the original parton state.

We can take advantage of the geometrical properties of dijet 
events in order design an effective solution. It turns out that it is 
intuitive to formulate the task as an optimization problem, where 
we seek to minimize some cleverly defined quantity, leading di-
rectly to the desired particle-to-jet association. Once this appropri-
ate quantity (here denoted by Q ) that fits the underlying nature 
of the problem and which unveils the desired solution has been 
found, the next step is to write down the related objective func-
tion, or the function which is to be minimized/optimized. What 
does this quantity Q depend on? What are the key variables and 
parameters that, once tweaked to the right values, will reveal the 
minimum value of Q and hence guide us to the correct configura-
tion of jets? This function then needs to be expressed in a certain 
way, typically in the form of equation (3) or equation (4), depend-
ing on both the nature of the problem at hand and on the defined 
quantity Q .

In the state-of-the-art work by Wei et al. [3], the Thrust [8] T is 
used, taking advantage of the collimated nature of jets and claim-
ing that the more “pencil-like” the momenta of the grouped parti-
cles are, the closer one is to the desired final jets configuration. By 
maximizing T the authors aim at sorting the N final-state parti-
cles to be clustered into two hemispheres, thus inherently tackling 
dijet events. Given the nature of its partitioning/hemisphere for-
mulation, the authors further choose to express the problem in the 
QUBO form. In contrast, as we will see, we shall define and use a 
more general quantity.

4. Quantum angle-based clustering

We now introduce a novel quantum annealing formulation for 
jet clustering, aiming at describing the physical concept and ra-
tionale behind it. The results of the algorithm’s implementation 
and the runs on the D-Wave Advantage’s 5000-qubit QPU (avail-
able to the general public via cloud) [4] are also presented and 
discussed according to its benchmarks, hoping to understand how 
well it performs relative to the state-of-the-art.

As opposed to the quantum state-of-the-art formulation [3], the 
algorithm introduced here relies on a more general angle-based 
quantity, which can be applied to any kind of K -jet final-state in 
order to perform clustering. Unfortunately, given current hardware 
constraints, we aim at implementing the e+e− collision event case, 
briefly introducing its K -jet generalization formulation in the end.

4.1. Algorithm

Our goal is to map a collection of N particles’ momentum vec-
tors {�pi}, corresponding to N final-state particles, onto a set of 
output final jets, {�jk} (here with k ∈ {1, 2}). All these particles are 
assumed to originate from the same point in space, and should be 
sorted into the relevant jet clusters, adequately recombined into 
the jet’s final total momenta, �jk . Starting from the assumption that 
N particles are to be assigned to K = 2 jets, we express the ob-
jective function in terms of Ising variables si = ±1 where si = 1
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indicates that a given particle i belongs to jet cluster j1, while 
si = −1 indicates that the same particle i does not belong to j1, 
thus belonging to the remaining jet cluster j2. We start by writing 
a general objective function ansatz:

H = 1

2

N∑
i, j=1

d(�pi, �p j)si s j , (5)

where d(�pi, �p j) represents a dissimilarity metric, analogous to the 
quantity Q mentioned above. Whenever the dissimilarity d(�pi , �p j)

between two particles �pi and �p j is large, si and s j tend to take 
opposite signs, thus being assigned to different clusters. On the 
other hand, if d(�pi, �p j) is small, si and s j take the same value 
and are assigned to the same cluster. Since si can never be set 
to zero there is only one si per particle for the N particles. This 
means that each particle is assigned to one and only one cluster. 
The factor 1/2 accounts for the symmetric nature of the dissimi-
larity metric d(�pi, �p j) = d(�p j, �pi) in the sum. Moreover, since we 
have an si variable, and thus a qubit per particle, we end up with 
a qubit usage O (N), representative of the N final-state particles 
being clustered.

When choosing d(�pi, �p j), it is important to note that a stan-
dard Euclidean distance metric would not be the best choice. This 
can be understood by picturing two soft particles with momenta 
�pi and �p j belonging to different jets. These are registered as be-
ing closer to the vertex than their hard companions, that is, they 
possess a smaller momentum norm relative to the others. In the 
cases where the energy gap is sufficiently large, the minimization 
process will be harmed since d(�pi, �p j) is smaller relative to the 
average d, thus erroneously grouping �pi and �p j together.

We now search for a quantity which facilitates the minimiza-
tion of its objective function, and is aligned with our views and 
goals for this problem: as this hypothetical d(�pi , �p j) increases, the 
probability that the two particles belong to the same jet should be 
as correlated with it as possible. In other words, the larger/smaller 
the chosen quantity gets, the larger/smaller the output energy of 
the corresponding Ising hamiltonian should be.

Given the high energy of the initial outgoing quark-antiquark 
pair, the final jets tend to be highly collimated, such that, in gen-
eral, we have θ(�pi, �p j) � π

2 for any two particles �pi and �p j in the 
same jet. One can thus leverage upon this important feature of jets 
by using the angle θ between particles as a starting point to build 
an appropriate dissimilarity metric. As such, for our hamiltonian, 
we write:

H = 1

2

N∑
i, j=1

− cos
[
θ(�pi, �p j)

]
si s j

= 1

2

N∑
i, j=1

− �pi · �p j

|�pi| · |�p j| si s j ,

(6)

where dij = − cos
(
θi j

)
. When particles �pi and �p j belong to the 

same jet, we measure θi j � π
2 , thus yielding cos

(
θi j

) ≈ 1. On the 
other hand, whenever two particles �pi and �p j belong to opposite 
jets), we measure θi j ∼ π , yielding cos(θi j) ≈ −1.

Because our goal is to minimize H and not to maximize it, 
we introduce a minus sign in equation (6). As a result, the mini-
mization of H will therefore favor the clustering of particles closer 
in angular distance, that is, with smaller θ(�pi, �p j) relative to one 
another. This is exactly what we are looking for, as particles in 
the same jet tend to have significantly smaller angular separations 
when compared to particles in opposite jets.

Even though equation (6) refers to simpler cases of dijet events, 
the dissimilarity metric used is much more versatile and can be 
3

generalized to more complex events. As such, opposed to the 
Thrust discussed in Wei et al. [3], we are therefore safe while car-
rying this concept to more elaborate, K -jet generalizations.

4.2. K -jet generalization

In order to generalize the above quantum annealing algorithm, 
one must first realize that the way the algorithm is formulated in 
equation (6) does not allow for more than two jets (K > 2) per 
event. When K > 2, the two variables si and s j cannot, on their 
own, sort a given particle to an hypothetical third jet: given that 
si = ±1, each of the two allowed states accounts for one jet each, 
meaning that each particle �pi can only be sorted into either the 
jet corresponding to s = 1 or to the jet corresponding to s = −1.

When moving to a more elaborate K -jet event, it is intuitively 
clear that one needs K binary variables for each particle in order 
to successfully sort any given particle to any of the K jets. This 
can easily be done by assigning a positive variable value if the 
corresponding particle is to be sorted into the jet in question, and 
a negative (or zero) value for every other variable corresponding to 
every other jet. It is essential that each of the final-state particles 
is assigned to one and only one jet at a time, since particles are 
not physically allowed to be present in more than one jet.

Given the more complex nature of the problem at this point, 
we opt to change the way we express the objective function to be 
minimized. We shall use the usual binary variables xk

i and xk
j to 

denote whether or not two given particles �pi and �p j belong to the 
same jet jk . As such, if particle �pi is considered to be included in 
jet jk , it will have xk

i = 1. If not, it would have xk
i = 0. To this type 

of formulation where we have one qubit per particle per jet, we 
call One-Hot Encoding [9]. It comes at the cost of a more inten-
sive qubit usage of the order of O (K N). As such, we can start by 
writing the first term of our K -jet objective function:

H ′
K = 1

2

K∑
k=1

N∑
i, j=1

− cos
[
θ(�pi, �p j)

]
xk

i xk
j . (7)

However, since now the lowest energy possible for a given con-
figuration is zero, we know that the minimization process of the 
objective function favors the scenario in which all particles are as-
signed to zero jets, such that we have xk

i = 0 either for a given 
particle �pi and all jets jk with k ∈ {1, . . . , K }, or for a given jet jk
and all particles �pi with i ∈ {1, . . . , N}. Furthermore, as mentioned 
above, we must not allow for any given particle to be assigned to 
more than one jet.

Both of these issues can be solved by adding an adequately 
built constraining term. Again, one needs to guarantee that for 
each particle �pi , there is one and only one xk

i = 1 for some jet 
jk , with the rest of xk′ �=k

i = 0. We thus introduce

φi =
(

1 −
K∑

k=1

xk
i

)2

, (8)

and add it with a tunable parameter λ to (7) in order to obtain the 
complete hamiltonian:

H K : = H ′
K + λ

N∑
i=1

φi

= 1

2

K∑
k=1

N∑
i, j=1

− cos
[
θ(�pi, �p j)

]
xk

i xk
j

+ λ

N∑(
1 −

K∑
xk

i

)2

.

(9)
i=1 k=1
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When it comes to defining the magnitude of λ, it is important 
to remember the reason that justifies the need for this constraining 
term just added to (7). As mentioned above, one needs to guaran-
tee that for each particle with momentum �pi , one and only one 
xk

i = 1 for some jet jk while the remaining xk′ �=k
i = 0. If a parti-

cle is assigned to more than one jet, the constraining term grows 
with each additional jet the particle is assigned to. Consequently 
H ′

K will never energetically favor this possibility, since it will al-
ways result in an increase of its energy. However, in the remaining 
case in which a given number of particles are assigned to zero 
jets, the corresponding first terms of the hamiltonian will be set to 
zero and reduce the value of H K , thus being energetically favored. 
One can thus say that the goal to be achieved with the addition of 
the constraint (8), is simply to offset the largest possible “incorrec-
t” energy reduction in H ′

K . When a particle �pi is assigned to zero 
jets, it can, in a worst case scenario basis, result in N − K pairwise 
dissimilarity metrics set to zero [9]. Furthermore, the maximum 
possible reduction in H ′

K would correspond to when each of the 
remaining particles are at a maximum (angular) distance from par-
ticle �pi . In such a setting, we can write:∑
�p j∈ jk

d(�pi, �p j) ≤ (N − K ) · max
�p j∈ jk

d(�pi, �p j) . (10)

We are now in conditions to conclude that the approximate or-
der of magnitude for λ should be

λ ∼ (N − K ) · max
(

− cos
[
θ(�pi, �p j)

])
, ∀�pi, �p j . (11)

It is important to mention that in practice, and even though some-
times desirable, λ cannot be made arbitrarily large due to the 
current hardware state of the art inherent limitations mainly re-
lated to the allowed range of the qubits’ couplings [3]. As such, it 
should be pointed out that when compared to the K = 2 jet event, 
the K -jet one-hot encoding formulation is considerably harder to 
implement on current quantum annealing hardware, with previ-
ous numerical studies [9] having shown that clustering problems 
making use of multiple qubits to implement one-hot encoding are 
prone to errors, thus widening the performance gap between dijet 
and multijet events.

5. Implementation

5.1. QPU inputs

In the standard QUBO formulation, the QPU takes as input the 
matrix elements Q ij , as seen in equation (4). However, in the case 
of an Ising formulation, the input values are hi and J i j , according 
to equation (3). The algorithm was implemented on the D − W ave
machine with the Advantage QPU (5000 qubits) using cloud com-
puting through the D − W ave website.

Since the proposed algorithm has been formulated in the Ising
form, by looking at equation (6) and comparing it to equation (3), 
we see that there is no term of the form si , but only a term of form 
si s j . As such, we have the si corresponding factor hi = 0. Similarly, 
we immediately obtain the following expression for J i j :

J i j = −1

2

�pi · �p j

|�pi| · |�p j| . (12)

After conducting a series of small runs to determine the perfor-
mance’s sensitivity to the annealing parameters, we have chosen 
to run the quantum annealing algorithm with the default anneal-
ing_time parameter set to annealing_time = 20 μs. Furthermore, we 
have also set the num_reads parameter, which defines the num-
ber of anneals performed, to num_reads = 5000, in order to have 
4

a reasonable amount of accumulated statistics resulting in a good 
balance between running time and accuracy.

5.2. Event generation

The PYTHIA Monte-Carlo event generator [10] (version 8.3) was 
used to as realistically as possible simulate real data. Given the 
K = 2 binary nature of the jet events being studied, we gener-
ated e+e− → Z 0 → qq̄, with all Z 0 decays switched off with only 
those to quarks having been manually switched on. Using the data 
output by PYTHIA, we then process it using a program specially 
designed to calculate J according to equation (12).

5.3. Benchmarks

When it comes to measuring the quantum algorithms’ jet clus-
tering quality, it would be ideal to compare them to some implicit 
jet regrouping rules for any given generated event. Unfortunately 
such Monte-Carlo generated information is not available by design. 
Consequently, we have chosen to measure the algorithms’ perfor-
mance against that of the classical state-of-the-art kt clustering 
algorithm [5].

The kt clustering algorithm has been implemented and used 
through the FastJet software package [11,12]. By using the Jet Def-
inition jet_def(kt_algorithm, R), the kt clustering algorithm [5] has 
been selected and chosen to run with an R parameter of R = 0.8. 
Its output, was then a list of the final jets’ total transverse mo-
menta ||�jTk ||, its pseudorapidity ηk and the corresponding az-
imuthal angle φk . In addition, the list of the regrouped final-state 
particles for each final jet was also produced, so that it could be 
used to compare the classical benchmark’s results with those of 
the developed quantum algorithm.

5.3.1. Clustering efficiency
For the purpose of measuring the algorithm’s clustering quality, 

we have created an efficiency metric, ε , adequately developed to 
serve our purpose. It is important to realize that the PYTHIA gen-
erated e+e− events are not bound to K = 2 events despite being 
the most common. Indeed, one could observe, even though with 
smaller probability, K = 3 or even K = 4 events (e.g. due to gluon 
radiation) within the generated data sets. As such, given that the 
developed algorithm is meant to be applied to binary clustering 
dijet events where K = 2, we have made the choice of always 
considering only the two highest pT jets obtained by the kt bench-
mark for comparison with the (always) binary results obtained by 
the quantum annealing algorithms. Consequently, we developed 
the following efficiency metric to evaluate the obtained results for 
a given event n:

ε(n) = # of particles grouped in the same way as kt

# of particles in the two highest-pT jets (kt)
. (13)

We have thus obtained two different total clustering efficiencies 
for n generated events, εQBC and εThr, which reflect the efficiencies 
of the proposed quantum binary clustering algorithm and of the 
Thrust-based quantum annealing of Wei et al. [3], respectively:

εQBC = 1

n

∑
n

ε
(n)
QBC , εThr = 1

n

∑
n

ε
(n)

Thr . (14)

6. Results

Given the limited amount of QPU time allowed for use on the 
D-Wave machine, we have only been able to run the algorithms on 
a maximum number of n = 110 PYTHIA generated e+e− collision 
events. The resulting efficiency plots can be seen in Figs. 1 and 2.
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Fig. 1. Histogram of the obtained efficiency for the proposed quantum binary clus-
tering algorithm, εQBC.

Taking into account the small number of events generated, we 
have obtained for the proposed quantum binary clustering anneal-
ing algorithm, an efficiency of εQBC = 96%. This efficiency εQBC has 
been obtained by computing each event-level efficiency through 
equation (13), and then finding the mean of all those efficiencies 
through equation (14). In a similar procedure, for the Thrust-based 
quantum annealing algorithm [3], we have obtained an efficiency 
of εThr = 85%. Moreover, it can also be seen from Figs. 1 and 2
that the obtained efficiencies per event are much more stable for 
the quantum algorithm proposed, since almost 100% of clustered 
events yield ε(n)

QBC = 100%, whereas for the state-of-the-art quantum 
algorithm [3] that percentage is much smaller, closer to 50%. The 
run time was 607 ms/event, which is better than the 621 ms/event 
result of reference [3].

Therefore, we can conclude that the proposed quantum binary 
clustering algorithm formulation yields superior results, resulting 
in a greater number of particles clustered in the same way as 
the kt algorithm, according to the efficiency metric developed of 
equation (13). This improvement can be explained not only by the 
inherently different clustering metric introduced, based on the an-
gular separation of the particles being clustered, but also by the 
resulting Ising formulation, which differs from the original QUBO 
being used, and tends to have significant impact due to its hard-
ware implementation.

7. Conclusions

By focusing on an angular distance-based approach for jet clus-
tering, we have introduced a new quantum annealing algorithm 
that performs binary clustering, thus being designed especially for 
the dijet event case. Nonetheless, it has been formulated having in 
mind the possibility of its use for a more generic K -jet event. This 
generalization has been shown to be reachable, although not yet 
implementable due to the current state of the art hardware con-
straints.

Upon implementing and running the proposed algorithm on 
the D-Wave’s QPU,1 we compared its performance to that of the 
Thrust-based quantum annealing algorithm proposed in Wei et 
al. [3], successfully demonstrating that it yields improved results 
(εQBC = 96% versus εThr = 85%) according to the developed effi-

1 The implemented code (open source) can be retrieved online on Github at 
https://github .com /DiogoPires97 /adiabaticmultijetclustering.
5

Fig. 2. Histogram of the obtained efficiency for the Thrust-based algorithm by Wei 
et al. [3], εThr .

ciency metric, resulting in a greater total number of particles clus-
tered in the same way as the kt benchmark.

As such, making use of a more intuitive angle-based metric, 
and despite being modestly introduced in a K = 2 context, the 
introduced algorithm has shown superior results relative to the 
available quantum state-of-the-art. Furthermore, it has also been 
shown to be easily generalizable into the more complex case of 
the K -jet event, thus proving once again that quantum annealing 
is a suitable choice for future use in highly particle-dense HEP en-
vironments such as the projected HL-LHC.

On a final note, it is important to notice that there is currently 
no viable option for jet clustering when it comes to digital quan-
tum computation. Although here focusing on quantum annealing 
techniques, we strongly recognize the need for new digital quan-
tum computation solutions for jet clustering. This would bring an 
entirely new approach to the task at hand, allowing us to better as-
sess performance and scaling in comparison to the classical state-
of-the-art, and further reinforcing the idea that quantum computa-
tion is indeed a suitable option for the high-energy physics realm.
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