
Neural Networks 122 (2020) 273–278

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Perceptrons frommemristors
Francisco Silva a,∗, Mikel Sanz b, João Seixas a,c,d,e, Enrique Solano b,f,g, Yasser Omar a,c

a Instituto de Telecomunicações, Physics of Information and Quantum Technologies Group, Portugal
b Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
c Instituto Superior Técnico, Universidade de Lisboa, Portugal
d CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Portugal
e Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisbon, Portugal
f IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
g International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist), and Department of Physics, Shanghai
University, 200444 Shanghai, China

a r t i c l e i n f o

Article history:
Received 26 December 2018
Received in revised form26 September 2019
Accepted 17 October 2019
Available online 2 November 2019

Keywords:
Perceptron
Memristor
Backpropagation
Delta rule
Neural network

a b s t r a c t

Memristors, resistors with memory whose outputs depend on the history of their inputs, have been
used with success in neuromorphic architectures, particularly as synapses and non-volatile memories.
However, to the best of our knowledge, no model for a network in which both the synapses and
the neurons are implemented using memristors has been proposed so far. In the present work we
introduce models for single and multilayer perceptrons based exclusively on memristors. We adapt
the delta rule to the memristor-based single-layer perceptron and the backpropagation algorithm
to the memristor-based multilayer perceptron. Our results show that both perform as expected
for perceptrons, including satisfying Minsky–Papert’s theorem. As a consequence of the Universal
Approximation Theorem, they also show that memristors are universal function approximators. By
using memristors for both the neurons and the synapses, our models pave the way for novel
memristor-based neural network architectures and algorithms. A neural network based on memristors
could show advantages in terms of energy conservation and open up possibilities for other learning
systems to be adapted to a memristor-based paradigm, both in the classical and quantum learning
realms.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The perceptron, introduced by Rosenblatt (1958), was one of
the first models for supervised learning. More generally, artifi-
cial neural networks such as the multilayer perceptron (MLP)
have proven extremely useful in solving a wide variety of prob-
lems (Devlin et al., 2014; Ercal, Chawla, Stoecker, Lee, & Moss,
1994; Rowley, Baluja, & Kanade, 1998), but they have thus far
mostly been implemented in digital computers. This means that
we are not profiting from some of the advantages that these
networks could have over traditional computing paradigms, such
as very low energy consumption and massive parallelization (Jain,
Mao, & Mohiuddin, 1996). Keeping these advantages is, of course,
of utmost interest, and this could be done if a physical neural
network was used instead of a simulation on a digital computer.
In order to construct such a network, a suitable building block

∗ Corresponding author.
E-mail addresses: francisco.horta.ferreira.da.silva@tecnico.ulisboa.pt

(F. Silva), mikel.sanz@ehu.eus (M. Sanz), joao.seixas@tecnico.ulisboa.pt
(J. Seixas), enr.solano@gmail.com (E. Solano), yasser.omar@lx.it.pt (Y. Omar).

must be found, with the memristor being a good candidate due
to its memory and inherent non-linearity.

Besides these energy considerations, exploring the fact that
MLPs are universal function approximators, i.e. they can approxi-
mate any smooth function to arbitrary accuracy (Cybenko, 1989),
our proposal of MLPs based only on memristors implies that
memristive circuits are also universal function approximators.

Memristive behaviours were observed as early as 1968 (Argall,
1968), but the first time the connection was made between such
behaviours and the theoretical formulation of memristors was
in 2008 at HP Labs (Strukov, Snider, Stewart, & Williams, 2008),
which led to a new boom in memristor-related research (Pro-
dromakis & Toumazou, 2010). In particular, there have been
proposals of how memristors could be used in Hebbian learn-
ing systems (Pershin & Di Ventra, 2010), in the simulation of
fluid-like integro-differential equations (Barrios, Retamal, Solano,
& Sanz, 2019), in the construction of digital quantum comput-
ers (Pershin & Di Ventra, 2012) and of how they could be used to
implement non-volatile memories (Ho, Huang, & Li, 2009).

The pinched current–voltage hysteresis loop inherent to mem-
ristors endows them with intrinsic memory capabilities, leading

https://doi.org/10.1016/j.neunet.2019.10.013
0893-6080/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2019.10.013
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2019.10.013&domain=pdf
mailto:francisco.horta.ferreira.da.silva@tecnico.ulisboa.pt
mailto:mikel.sanz@ehu.eus
mailto:joao.seixas@tecnico.ulisboa.pt
mailto:enr.solano@gmail.com
mailto:yasser.omar@lx.it.pt
https://doi.org/10.1016/j.neunet.2019.10.013


274 F. Silva, M. Sanz, J. Seixas et al. / Neural Networks 122 (2020) 273–278

to the belief that they might be used as a building block in neu-
ral computing architectures (Traversa & Di Ventra, 2015; Yang,
Strukov, & Stewart, 2013). Furthermore, the relatively small di-
mension of memristors, the fact that they can be laid out in
a very dense manner and their non-volatile nature may lead
to highly parallel, energy efficient neuromorphic hardware (In-
diveri, Linares-Barranco, Legenstein, Deligeorgis, & Prodromakis,
2013; Jeong, Kim, Kim, Choi, & Hwang, 2016; Strachan, Torrezan,
Medeiros-Ribeiro, & Williams, 2011; Taha, Hasan, Yakopcic, &
McLean, 2013).

The possibility of using memristors as synapses in neural net-
works has been extensively studied (Adhikari, Yang, Kim, & Chua,
2012; Bayat, Prezioso, Chakrabarti, Kataeva, & Strukov, 2017;
Demin et al., 2015; Duan, Hu, Dong, Wang, & Mazumder, 2015;
Emelyanov et al., 2016; Hasan & Taha, 2014; Negrov et al., 2017;
Prezioso et al., 2015; Soudry, Di Castro, Gal, Kolodny, & Kvatinsky,
2015; Wang, Duan, & Duan, 2013; Wen, Xie, Yan, Huang, & Zeng,
2018; Wu, Wen, & Zeng, 2012; Yakopcic & Taha, 2013), with two
major architectures being put forward, one based on memristor
crossbars and another on memristor arrays.

Despite all these results, and to the best of our knowledge, all
existent proposals use memristors exclusively as synapses, with
the networks’ neurons being implemented by some other device.
The main goal of this work is thus to introduce a memristor-
based perceptron, i.e., a single-layer perceptron (SLP) in which
both synapses and neurons are built from memristors. It will be
generalized to a memristor-based multilayer perceptron (MLP)
and we will also introduce learning rules for both perceptrons,
based on the delta rule for the SLP, and on the backpropagation
algorithm for the MLP.

Recently the universality of memristors has been studied for
Boolean functions (Lehtonen, Poikonen, & Laiho, 2010) and as a
memcomputing equivalent of a Universal Turing Machine (Uni-
versal Memcomputing Machine (Traversa & Di Ventra, 2015)).
However, to the best of our knowledge, it has not yet been shown
that the memristor is a universal function approximator. This
result will come as a consequence of the introduction of the
aforementioned memristor-based MLP.

2. The memristor as a dynamical system

In general, a current-controlled memristor is a dynamical sys-
tem whose evolution is described by the following pair of equa-
tions (Chua, 1971){
V = R(γ⃗ , I)I (a),
˙⃗γ = f⃗ (γ⃗ , I) (b).

(1)

The first one is Ohm’s law and relates the voltage output of
the memristor V with the current input I through the mem-
ristance R(γ⃗ , I), which is a scalar function depending both on
I and on the set of the memristor’s internal variables γ⃗ . This
dependence of the memristance on the internal variables induces
the memristor’s output dependence on past inputs, i.e., this is the
mechanism that endows the memristor with memory. The second
equation describes the time-evolution of the memristor’s internal
variables by relating their time derivative, ˙⃗γ , to an n-dimensional
vector function f⃗ (γ⃗ , I), depending on both previous values of the
internal variables and the input of the memristor.

2.1. Memristor-based single-layer perceptron

Our goal is to implement a perceptron and an adaptation of the
delta rule to train it using only a memristor. To this end, we use
the memristor’s internal variables to store the SLP’s weights and
the learning rate, a hyperparameter controlling how much the

Algorithm 1 Delta rule for Single-layer Perceptron

Initialization
Set the bias current Ib to 0.
Initialize the weights w1, w2, wb.
Set the internal state variables γ1, γ2, γ3 to w1, w2 and wb,
respectively.
for d in data do

Forward Pass
Compute the net input to the perceptron:

I = w1x1 + w2x2. (2)

Compute the perceptron’s output:

V = g(I, γ1, γ2, γ3). (3)

Backward Pass
Compute the difference ∆ between the target output and
the actual output:

∆ = T − V . (4)

Compute the derivative of the activation function with
respect to the net input, g ′.
for i in internal variables do

if ∆ ≥ 0 then
Set the bias Ib = Iγi .

else
Set the bias Ib = −Iγi .

end if
Update γi by inputting I = ∆xig ′

+ Ib.
end for
Update the weights by setting them to the updated values
of the internal state variables.
Set the bias Ib = 0.

end for

weights of the network are adapted with respect to the gradient
of the cost function. Eq. (1b) allows us to control the evolution
of the memristor’s internal variables and implement a learning
rule. If, for example, we want to implement a SLP with two
inputs we need a memristor with four internal variables, two
of them to store the weights of the connections between the
inputs and the SLP, a third one to store the SLP’s bias weight and
another for the learning rate. An equivalent memristor with four
internal variables can be obtained by coupling memristors whose
behaviours are described by fewer internal variables. An in-depth
explanation of how this can be done is given in Barrios et al.
(2019), particularly in section Equivalent Memristors for Enhancing
Simulations.

Let us then consider a memristor with four internal state
variables, from now on labelled by γ⃗ = (γ1, γ2, γ3, γ4). It could
be difficult to externally control multiple internal variables. How-
ever, a possible solution is to use several memristors with the
chosen requirements and with an externally controlled internal
variable each.

In order to understand the form of these functions, we must
remember that we expect different behaviours from the percep-
tron depending on the stage of the algorithm. In the forward
propagation stage, the weights must remain constant to obtain
the output for a given input. In this phase the internal variables
must not change. On the other hand, in the backpropagation
stage, we want to update the perceptron’s weights by changing
the internal variables. However, it may happen that the update is



F. Silva, M. Sanz, J. Seixas et al. / Neural Networks 122 (2020) 273–278 275

different for each of the weights, so we need to be able to change
only one of the internal variables without affecting the others.

There are thus three different possible scenarios in the back-
propagation stage: we want to update γ1, while γ2 and γ3 should
not change; we want to update γ2, while γ1 and γ3 should not
change, and we want to update γ3, while γ1 and γ2 should not
change. To conciliate this with the fact that a memristor takes
only one input, we propose the use of threshold-based functions,
as well as a bias current Ib, for the evolution of the internal
variables

V (t) = g(I, γ1, γ2, γ3, γ4), (5)

γ̇i = (I − Ib)
(
θ (I − Iγi ) − θ

(
I −

(
Iγi + a

)))
+ (I + Ib)

(
θ (−I − Iγi ) − θ (−I − (Iγi + a))

)
,

(6)

where g is an activation function, θ is the Heaviside function, Iγi
is the threshold for the internal variable γi and a is a parameter
that determines the dimension of the threshold, i.e., the range
of current values for which the internal variables are updated.
The first term of the update function can only be non-zero if
the input current is positive, whereas the second term can only
be non-zero if the input current is negative, allowing us to both
increase and decrease the values of the internal variables. If Iγ1 , Iγ2
and Iγ3 are sufficiently different from each other and from zero,
we can reach the correct behaviour by choosing the memristor’s
input appropriately. The thresholds and the a parameter are thus
hyperparameters that must be calibrated for each problem. In the
aforementioned construction in which our memristor with three
internal variables is constructed as an equivalent memristor, we
can also use an external current or voltage control to keep the
internal variable fixed. In fact, this is how it is usually addressed
experimentally (Budhathoki, Sah, Adhikari, Kim, & Chua, 2013;
Xia et al., 2009; Yang et al., 2013; Yu, Iu, Liang, Fernando, &
Chua, 2015). Therefore, we can assume that this construction is
possible. It is important to note that, in an experimental imple-
mentation, this threshold system does not need to be based on
the input currents. It can, for instance, be based on the use of
signals of different frequencies for each of the internal variables
or in the codification of the signals meant for each of the internal
variables in AC voltage signals.

We are now ready to present a learning algorithm for our SLP
based on the delta rule, which is described in Algorithm 1. In case
one wants to generalize this procedure to an arbitrary number of
inputs n, this can be trivially achieved by using a memristor with
n + 2 internal variables and adapting Algorithm 1 accordingly.

2.2. Memristor-based multilayer perceptron

In this model, memristors are used to emulate both the con-
nections and the nodes of a MLP. In principle, the nodes could be
emulated by non-linear resistors, but using memristors allows us
to take advantage of their internal variable to implement a bias
weight, which in some cases proves fundamental for a successful
network training.

The equations describing the evolution of the memristor at
each node in this model are the same as in the seminal HP Labs
paper (Strukov et al., 2008). We have chosen the experimentally
tested set

V (t) =

(
RON

γ (t)
D

+ ROFF

(
1 −

γ (t)
D

))
I(t), (7)

γ̇ =

{
µV

RON
D I(t) − Iγ if µV

RON
D I(t) > Iγ ,

0 o.w.
(8)

Here, RON and ROFF are, respectively, the doped and undoped
resistances of the memristor, D and µV are physical memristor

Algorithm 2 Backpropagation for Multilayer Perceptron
Initialization

Set the bias current Ib to 0.
Initialize the weights {wij} and {wbk}.
Set the internal variable γij of each connection memristor ij
to the respective connection weight wij.
Set the internal variable γk of each connection memristor k
to the respective bias weight wbk .

for d in data do
Forward Pass

for l in layers do
Compute the output of each connection memristor ij in
layer l:

Vij(wij, I) = wijI. (9)

Sum the outputs of the connection memristors con-
nected to each node memristor k in layer l

ink =

∑
Iik (10)

Compute the node memristor’s output:

Vk = ROFF

(
1 −

γbk

D
+

RON

ROFF

γbk

D

)
ink.

end for
end for
for d in data do

Backward Pass
for k in output layer do

Compute the difference ∆ between the target output and
the actual output of the node memristor:

∆k = Tk − Vk. (11)

Compute the local gradient of the node memristor using
Eq. (19a).

end for
for layer in hidden layers do

for node in layer do
Compute the local gradient of node memristor l in
layer using Eq. (19b).

end for
end for
for connection in connections do

Compute the weight update.
Set the bias current: Ib = Iγij .
Update the connection memristor’s internal variable by
inputting I = ∆wij + Ib to it.
Update the connection’s weight by setting it to the
updated value of the respective internal variable.

end for
for node in nodes do

Compute the bias weight update according to Equa-
tion Eq. (20).
Set the bias current: Ib = Iγb .
Update the node memristor’s internal variable by
inputting I = ∆wk + Ib.
Update the bias weight by setting it to the updated value
of the respective internal variable.

end for
end for



276 F. Silva, M. Sanz, J. Seixas et al. / Neural Networks 122 (2020) 273–278

parameters, namely the thickness of its semiconductor film and
its average ion mobility, and Iγ is a threshold current playing the
same role as the Iγ⃗ in the model for the memristor-based SLP
introduced above. Eq. (7) can be approximated by

V (t) = ROFF

(
1 −

γ (t)
D

)
I(t), (12)

since we have that RON
ROFF

≈
1

100 . If, for instance, we impose a
constant current input I0 + Iγ to the memristor and we integrate
Eq. (8), we get:

γ (t) = µV
RON

D
I0t. (13)

Subbing this equation back into Eq. (7):

V (t) = ROFF

(
1 −

µVRON

D2 I0t
)
I0 (14)

For the memristor described in Strukov et al. (2008), we have
D ≈ 10−8, µV ≈ 10−14 and RON ≈ 1, all in SI units. It thus follows
that µVRON/D2

≈ 100, so we can approximate the above equation
to obtain:

V (t) ≈
µVRONROFF

D2 I20 t. (15)

This finally leads us to the desired relation between voltage
output and current input:

V (t) ∝ −I2t. (16)

It is then possible to implement non-linear activation func-
tions starting from Eq. (7), which is an important condition for
the universality of neural networks (Hornik, 1991).

In deriving this result, we have made some assumptions on
the parameters describing the memristor. These assumptions are
correct for the memristor presented in Strukov et al. (2008), but
as we have discussed, there is an extensive literature on memris-
tors, with a wide range of physical parameter values. However,
one can couple memristors to obtain an effective or equivalent
memristor with any parameters one desires. This can be seen in
detail in Barrios et al. (2019), particularly in the section entitled
Equivalent memristors for enhancing simulations. Taking this into
account, it becomes clear that the assumptions we made do not
jeopardize the applicability of our models.

Looking now at synaptic memristors, their evolution is de-
scribed by

V (t) = γ (t)I(t), (17)

γ̇ =

(
µV

RON

D
I(t) − Iγ

)
θ

(
µV

RON

D
I(t) − Iγ

)
. (18)

In synaptic memristors, the internal variable γ is used to
store the weight of the respective connection, whereas in node
memristors the internal variable is used to store the node’s bias
weight.

As explained before, the node memristors are chosen to op-
erate in a non-linear regime, which allows us to implement
non-linear activation functions. On the other hand, we choose
a linear regime for synaptic memristors, which allows us to
emulate the multiplication of weights by signals. It is important
to note that this does not imply that different memristors must
be used. In fact, these different behaviours can be attained by
coupling memristors, with the result being an equivalent compos-
ite memristor with another behaviour. This process is detailed in
section Equivalent Memristors For Enhancing Simulations of Barrios
et al. (2019).

It must be mentioned that Eq. (8) is only valid for γ ∈

[0,D]. If we were to store the network weights in the internal

variables using only a rescaling constant A, i.e., w = Aγ , then
the weights would all have the same sign. Although convergence
of the standard backpropagation algorithm is still possible in this
case (Dickey & DeLaurentis, 1993), it is usually slower and more
difficult, so it is convenient to redefine the variable (Strukov et al.,
2008) D → D′ so that the interval of the internal variable in which
Eq. (8) is valid becomes [−D′/2,D′2]. Using a rescaling constant B,
the network weights can then be in the interval [−BD′/2, BD′/2].

The new learning algorithm is an adaptation of the back-
propagation algorithm, chosen due to its widespread use and
robustness. In our case, the activation function of the neurons is
the function that relates the output of a node memristor with its
input, as seen in Eq. (7). The local gradients of the output layer
and hidden layer neurons are respectively given by:{
Output: δk = Tkφ′

(∑
i Vik

)
, (a)

Hidden: δk = φ′
(∑

i Vik
)∑

l δlwkl. (b)
(19)

In Eq. (19a), Tk denotes the target output for neuron k in the
output layer. In Eqs. (19a) and (19b), φ′ is the derivative of the
neuron’s activation function with respect to the input to the
neuron

∑
i Vik. Finally, in Eq. (19b), the sum

∑
l δlwkl is taken over

the gradients of all neurons l in the layer to the right of the neuron
that are connected to it by weights wkl. The update to the bias
weight of a node memristor is given by:

∆wk = ηδk, (20)

where η is the learning rate. The connection weight wij is updated
using ∆wij = ηδjVi, where δj is the local gradient of the neuron
to the right of the connection, and Vi is the output of the neuron
to the left of the connection.

We count now with all necessary elements to adapt the back-
propagation algorithm for our memristor-based MLP, as described
in Algorithm 2.

3. Simulation results

In order to test the validity of our SLP and MLP, we tested their
performance on three logical gates: OR, AND and XOR. The first
two are simple problems which should be successfully learnt by
SLP and MLP, whereas only the MLP should be able to learn the
XOR gate, due to Minsky–Papert’s theorem.

The Glorot weight initialization scheme (Glorot & Bengio,
2010) was used for all simulations, as it has been shown to bring
faster convergence in some problems when compared to other
initialization schemes. In this scheme the weights are initialized
according to U(−1, 1), weighed by

√
6

nin+nout
, where nin and nout

are the number of neurons in the previous and following layers,
respectively. The data sets used contain 100 randomly generated
labelled elements, which were shuffled for each epoch, and the
cost function is:

E =
1
2
(T − O)2, (21)

where T is the target output and O the actual output.

3.1. Single-layer perceptron simulation results

For the SLP, a learning rate of 0.1 was used for all tested gates,
a value set by trial and error. The metric we used to evaluate the
evolution of the network’s performance on a given problem was
its total error over an epoch, which is given by Eq. (22).

Etotal =

∑
j

Ej =
1
2

∑
j

(Tj − Oj)2, (22)



F. Silva, M. Sanz, J. Seixas et al. / Neural Networks 122 (2020) 273–278 277

Fig. 1. Evolution of the learning progress of our single-layer perceptron (SLP),
quantified by its total error, given by Eq. (22), for the OR, AND and XOR gates
over 1000 epochs. The total error of our SLP for the OR and AND gates goes
to 0 very quickly, indicating that our SLP successfully learns these gates. The
same is not true for the XOR gate, which our SLP is incapable of learning, in
accordance with Minsky–Papert’s theorem (Minsky, Papert, & Bottou, 2017).

where the sum is taken over all elements in the training set. In
Fig. 1, the evolution of the total error over 1000 epochs, averaged
over 100 different realizations of the starting weights, is plotted.

We observe that our SLP successfully learns the gates OR and
AND, with the total error falling to 0 within 200 epochs, as
expected from a SLP. However, the total error of our SLP for the
XOR gate does not go to zero, which means that it is not able to
learn this gate, in accordance with Minsky–Papert’s theorem.

3.2. Multilayer perceptron simulation results

The structure of the network was chosen following Walczak
and Cerpa (1999). There, a network with one hidden layer of
two neurons is recommended for the case of two inputs and one
output. As noted in Walczak and Cerpa (1999), networks with
only one hidden layer are capable of approximating any function,
although in some problems, adding extra hidden layers improves
the performance. However, the results obtained by employing
only one hidden layer are satisfactory, thus there is no need for
a more complex network structure. There is also the matter of
how many neurons must be employed in the hidden layer. In this
case, there is a trade-off between speed of training and accuracy.
A network with more neurons in the hidden layer counts with
more free parameters, so it will be able to output a more accurate
fit, but at the cost of a longer time required to train the network.
A rule of thumb for choosing the number of neurons in the hidden
layer is to start with an amount that is between the number of
inputs and the number of outputs and adjust according to the re-
sults obtained. This leads to two neurons for the hidden layer and,
similarly to what happened with the number of hidden layers,
the results obtained using two neurons in the hidden layer are
sufficiently accurate, so there was no need to try other structures.
The learning rates used, which we have chosen through trial and
error, are 0.1 for the OR and AND gates, and 0.01 for the XOR
gate. In Fig. 2, the evolution of the total error over 1000 epochs,
averaged over 100 different realizations of the starting weights,
is plotted.

As was the case for our SLP, our MLP successfully learns the OR
and AND gates. In fact, it is able to learn them faster than our SLP,
which is a consequence of the larger number of free parameters.
Additionally, it is able to learn the XOR gate, indicating that it
behaves as well as a regular MLP.

In summary, both memristor-based perceptrons behave as
expected. Our SLP is able to learn the OR and AND gates, but
not the XOR gate, so it is limited to solving linearly separable

Fig. 2. Evolution of the learning progress of our multilayer perceptron (MLP),
quantified by its total error, given by Eq. (22) for the OR, AND and XOR gates
over 1000 epochs. As can be seen, the total error of our MLP for these gates
approaches 0, indicating that it successfully learns all three gates.

problems, just as any other single-layer neural network. However,
our MLP is not subject to such a limitation and it is able to learn
all three gates.

4. Conclusion

In this paper, we introduced models for single and multi-
layer perceptrons based exclusively on memristors. We provided
learning algorithms for both, based on the delta rule and on
the backpropagation algorithm, respectively. Using a threshold-
based system, our models are able to use the internal variables
of memristors to store and update the perceptron’s weights. We
also ran simulations of both models, which revealed that they
behaved as expected, and in accordance with Minsky–Papert’s
theorem. Our memristor-based perceptron models have the same
capabilities of regular perceptrons, thus showing the feasibility
and power of a neural network based exclusively on memristors.

To the best of our knowledge, our neural network models
are the first ones in which memristors are used as both the
neurons and the synapses. Due to the Universal Approximation
Theorem for multilayer perceptrons, this implies that memristors
are universal function approximators, i.e., they can approximate
any smooth function f : Rn

→ Rm to arbitrary accuracy, which is
a novel result in their characterization as devices for computation.

Our models also pave the way for novel neural network ar-
chitectures and algorithms based on memristors. As previously
discussed, such networks could show advantages in terms of
energy optimization, allow for higher synaptic densities and open
up possibilities for other learning systems to be adapted to a
memristor-based paradigm, both in the classical and quantum
learning realms. In particular, it would be interesting to try to
extend these models to the quantum computing paradigm, us-
ing a recently proposed quantum memristor (Pfeiffer, Egusquiza,
Di Ventra, Sanz, & Solano, 2016), and its implementation in quan-
tum technologies, such as superconducting circuits (Salmilehto,
Deppe, Di Ventra, Sanz, & Solano, 2017) or quantum photon-
ics (Sanz, Lamata, & Solano, 2018).

Acknowledgements

Work by FS was supported in part by a New Talents in
Quantum Technologies scholarship from the Calouste Gulbenkian
Foundation. FS and YO thank the support from Fundação para
a Ciência e a Tecnologia (Portugal), namely through programme
POCH and projects UID/EEA/50008/2013 and IT/QuNet, as well as
from the project TheBlinQC supported by the EU H2020 QuantERA
ERA-NET Cofund in Quantum Technologies and by FCT, Portugal
(QuantERA/0001/2017), from the JTF project NQuN (ID 60478),



278 F. Silva, M. Sanz, J. Seixas et al. / Neural Networks 122 (2020) 273–278

and from the EU H2020 Quantum Flagship projects QIA (820445)
and QMiCS (820505). MS and ES are grateful for the funding
from Spanish MCIU/AEI/FEDER (PGC2018-095113-B-I00), Basque
Government IT986-16, the projects QMiCS, Spain (820505) and
OpenSuperQ, Spain (820363) of the EU Flagship on Quantum
Technologies and the EU FET Open Grant Quromorphic (828826).

References

Adhikari, S. P., Yang, C., Kim, H., & Chua, L. O. (2012). Memristor bridge synapse-
based neural network and its learning. IEEE Transactions on Neural Networks
and Learning Systems, 23(9), 1426–1435.

Argall, F. (1968). Switching phenomena in titanium oxide thin films. Solid-State
Electronics, 11(5), 535–541.

Barrios, G. A., Retamal, J. C., Solano, E., & Sanz, M. (2019). Analog simulator
of integro-differential equations with classical memristors. Scientific Reports,
9(1), 1–10.

Bayat, F. M., Prezioso, M., Chakrabarti, B., Kataeva, I., & Strukov, D. (2017).
Memristor-based perceptron classifier: Increasing complexity and coping
with imperfect hardware. In Proceedings of the 36th international conference
on computer-aided design (pp. 549–554). IEEE Press.

Budhathoki, R. K., Sah, M. P., Adhikari, S. P., Kim, H., & Chua, L. (2013). Composite
behavior of multiple memristor circuits. IEEE Transactions on Circuits and
Systems. I. Regular Papers, 60(10), 2688–2700.

Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on
Circuit Theory, 18(5), 507–519.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4), 303–314.

Demin, V., Erokhin, V., Emelyanov, A., Battistoni, S., Baldi, G., Iannotta, S., et al.
(2015). Hardware elementary perceptron based on polyaniline memristive
devices. Organic Electronics, 25, 16–20.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., & Makhoul, J. (2014). Fast
and robust neural network joint models for statistical machine translation.
In Proceedings of the 52nd annual meeting of the association for computational
linguistics (volume 1: long papers) (pp. 1370–1380).

Dickey, F., & DeLaurentis, J. (1993). Optical neural networks with unipolar
weights. Optics Communications, 101(5–6), 303–305.

Duan, S., Hu, X., Dong, Z., Wang, L., & Mazumder, P. (2015). Memristor-based
cellular nonlinear/neural network: design, analysis, and applications.. IEEE
Transactions on Neural Networks and Learning Systems, 26(6), 1202–1213.

Emelyanov, A., Lapkin, D., Demin, V., Erokhin, V., Battistoni, S., Baldi, G., et al.
(2016). First steps towards the realization of a double layer perceptron based
on organic memristive devices. AIP Advances, 6(11), 111301.

Ercal, F., Chawla, A., Stoecker, W. V., Lee, H.-C., & Moss, R. H. (1994). Neural net-
work diagnosis of malignant melanoma from color images. IEEE Transactions
on Biomedical Engineering, 41(9), 837–845.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics (pp. 249–256).

Hasan, R., & Taha, T. M. (2014). Enabling back propagation training of mem-
ristor crossbar neuromorphic processors. In Neural networks (IJCNN), 2014
international joint conference on (pp. 21–28). IEEE.

Ho, Y., Huang, G. M., & Li, P. (2009). Nonvolatile memristor memory: device
characteristics and design implications. In Computer-aided design-digest of
technical papers, 2009. ICCAD 2009. IEEE/ACM international conference on
(pp. 485–490). IEEE.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward
networks. Neural Networks, 4(2), 251–257.

Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., & Prodromakis, T.
(2013). Integration of nanoscale memristor synapses in neuromorphic
computing architectures. Nanotechnology, 24(38), 384010.

Jain, A. K., Mao, J., & Mohiuddin, K. (1996). Artificial neural networks: A tutorial.
Computer, 29(3), 31–44.

Jeong, D. S., Kim, K. M., Kim, S., Choi, B. J., & Hwang, C. S. (2016). Memristors
for energy-efficient new computing paradigms. Advanced Electronic Materials,
2(9), 1600090.

Lehtonen, E., Poikonen, J., & Laiho, M. (2010). Two memristors suffice to compute
all boolean functions. Electronics Letters, 46(3), 230.

Minsky, M., Papert, S. A., & Bottou, L. (2017). Perceptrons: An introduction to
computational geometry. MIT press.

Negrov, D., Karandashev, I., Shakirov, V., Matveyev, Y., Dunin-Barkowski, W.,
& Zenkevich, A. (2017). An approximate backpropagation learning rule for
memristor based neural networks using synaptic plasticity. Neurocomputing,
237, 193–199.

Pershin, Y. V., & Di Ventra, M. (2010). Experimental demonstration of associative
memory with memristive neural networks. Neural Networks, 23(7), 881–886.

Pershin, Y. V., & Di Ventra, M. (2012). Neuromorphic, digital, and quantum
computation with memory circuit elements. Proceedings of the IEEE, 100(6),
2071–2080.

Pfeiffer, P., Egusquiza, I., Di Ventra, M., Sanz, M., & Solano, E. (2016). Quantum
memristors. Scientific Reports, 6, 29507.

Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G., Likharev, K. K., &
Strukov, D. B. (2015). Training and operation of an integrated neuromorphic
network based on metal-oxide memristors. Nature, 521(7550), 61.

Prodromakis, T., & Toumazou, C. (2010). A review on memristive devices and
applications. In Electronics, circuits, and systems (ICECS), 2010 17th IEEE
international conference on (pp. 934–937). IEEE.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain.. Psychological Review, 65(6), 386.

Rowley, H. A., Baluja, S., & Kanade, T. (1998). Neural network-based face
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1),
23–38.

Salmilehto, J., Deppe, F., Di Ventra, M., Sanz, M., & Solano, E. (2017). Quantum
memristors with superconducting circuits. Scientific Reports, 7, 42044.

Sanz, M., Lamata, L., & Solano, E. (2018). Invited article: Quantum memristors in
quantum photonics. APL Photonics, 3(8), 080801. http://dx.doi.org/10.1063/1.
5036596.

Soudry, D., Di Castro, D., Gal, A., Kolodny, A., & Kvatinsky, S. (2015). Memristor-
based multilayer neural networks with online gradient descent training. IEEE
Transactions on Neural Networks and Learning Systems, 26(10), 2408–2421.

Strachan, J. P., Torrezan, A. C., Medeiros-Ribeiro, G., & Williams, R. S. (2011).
Measuring the switching dynamics and energy efficiency of tantalum oxide
memristors. Nanotechnology, 22(50), 505402.

Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing
memristor found. Nature, 453(7191), 80.

Taha, T. M., Hasan, R., Yakopcic, C., & McLean, M. R. (2013). Exploring the design
space of specialized multicore neural processors. In Neural networks (IJCNN),
the 2013 international joint conference on (pp. 1–8). IEEE.

Traversa, F. L., & Di Ventra, M. (2015). Universal memcomputing machines. IEEE
Transactions on Neural Networks and Learning Systems, 26(11), 2702–2715.

Walczak, S., & Cerpa, N. (1999). Heuristic principles for the design of artificial
neural networks. Information and Software Technology, 41(2), 107–117.

Wang, L., Duan, M., & Duan, S. (2013). Memristive perceptron for combinational
logic classification. Mathematical Problems in Engineering, 2013.

Wen, S., Xie, X., Yan, Z., Huang, T., & Zeng, Z. (2018). General memristor
with applications in multilayer neural networks. Neural Networks, 103,
142–149.

Wu, A., Wen, S., & Zeng, Z. (2012). Synchronization control of a class of
memristor-based recurrent neural networks. Information Sciences, 183(1),
106–116.

Xia, Q., Robinett, W., Cumbie, M. W., Banerjee, N., Cardinali, T. J., Yang, J. J., et al.
(2009). Memristor- CMOS hybrid integrated circuits for reconfigurable logic.
Nano Letters, 9(10), 3640–3645.

Yakopcic, C., & Taha, T. M. (2013). Energy efficient perceptron pattern recognition
using segmented memristor crossbar arrays. In Neural networks (IJCNN), the
2013 international joint conference on (pp. 1–8). IEEE.

Yang, J., Strukov, D. B., & Stewart, D. R. (2013). Memristive devices for computing.
Nature nanotechnology, 8(1), 13.

Yu, D., Iu, H. H.-C., Liang, Y., Fernando, T., & Chua, L. O. (2015). Dynamic behavior
of coupled memristor circuits. IEEE Transactions on Circuits and Systems. I.
Regular Papers, 62(6), 1607–1616.

http://refhub.elsevier.com/S0893-6080(19)30335-1/sb1
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb1
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb1
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb1
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb1
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb2
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb2
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb2
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb3
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb3
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb3
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb3
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb3
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb4
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb4
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb4
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb4
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb4
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb4
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb4
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb5
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb5
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb5
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb5
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb5
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb6
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb6
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb6
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb7
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb7
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb7
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb8
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb8
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb8
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb8
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb8
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb10
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb10
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb10
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb11
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb11
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb11
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb11
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb11
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb12
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb12
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb12
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb12
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb12
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb13
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb13
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb13
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb13
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb13
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb15
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb15
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb15
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb15
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb15
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb17
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb17
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb17
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb18
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb18
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb18
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb18
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb18
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb19
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb19
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb19
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb20
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb20
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb20
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb20
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb20
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb21
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb21
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb21
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb22
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb22
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb22
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb23
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb23
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb23
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb23
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb23
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb23
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb23
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb24
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb24
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb24
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb25
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb25
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb25
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb25
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb25
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb26
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb26
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb26
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb27
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb27
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb27
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb27
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb27
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb28
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb28
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb28
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb28
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb28
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb29
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb29
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb29
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb30
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb30
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb30
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb30
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb30
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb31
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb31
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb31
http://dx.doi.org/10.1063/1.5036596
http://dx.doi.org/10.1063/1.5036596
http://dx.doi.org/10.1063/1.5036596
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb33
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb33
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb33
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb33
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb33
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb34
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb34
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb34
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb34
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb34
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb35
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb35
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb35
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb36
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb36
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb36
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb36
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb36
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb37
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb37
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb37
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb38
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb38
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb38
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb39
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb39
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb39
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb40
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb40
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb40
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb40
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb40
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb41
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb41
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb41
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb41
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb41
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb42
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb42
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb42
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb42
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb42
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb43
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb43
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb43
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb43
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb43
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb44
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb44
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb44
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb45
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb45
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb45
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb45
http://refhub.elsevier.com/S0893-6080(19)30335-1/sb45

	Perceptrons from memristors
	Introduction
	The memristor as a dynamical system
	Memristor-based single-layer perceptron
	Memristor-based multilayer perceptron

	Simulation results
	Single-layer perceptron simulation results
	Multilayer perceptron simulation results

	Conclusion
	Acknowledgements
	References


