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Abstract
The role of noise in the transport properties of quantum excitations is a topic of great importance in
many fields, fromorganic semiconductors for technological applications to light-harvesting
complexes in photosynthesis. In this paper we study a semi-classicalmodel where a tight-binding
Hamiltonian is fully coupled to an underlying spatially extended nonlinear chain of atoms.We show
that the transport properties of a quantumexcitation are subtlymodulated by (i) the specific type
(local versus non-local) of exciton–phonon coupling and by (ii)nonlinear effects of the underlying
lattice.We report a non-monotonic dependence of the exciton diffusion coefficient on temperature,
in agreementwith earlier predictions, as a direct consequence of the lattice-induced fluctuations in the
hopping rates due to long-wavelength vibrationalmodes. A standardmeasure of transport efficiency
confirms that both nonlinearity in the underlying lattice and off-diagonal exciton–phonon coupling
promote transport efficiency at high temperatures, preventing the Zeno-like quench observed in other
models lacking an explicit noise-providing dynamical system.

1. Introduction

Transport of quantum excitations in complex low-dimensional systems is a topic of paramount importance in
many physical contexts, such as semiconductor nanowires and nanotubes [1], metallic wires [2], ultracold atom
systems in one-dimensional optical lattices [3], quasi one-dimensional organic superconductors, such as
semiconducting [4] andmetal carbon nanotubes [5],π-conjugated polymers [6] andmore complex quasi-1D
nano-architectures formodern technological applications [7], including plastic light-emitting devices and
organic solar cells [8].

Due to their crucial role in directing light energy to reaction centers during the early stages of photosynthesis
[9], excitons occupy a prominent role among the studied quantum excitations [10]. The exciton concept was
introduced in solid-state physics by Frenkel in 1931 [11]. However, it was not until the 1948 seminal paper by
Davydov [12] that this ideawas applied to geometry-determinedmolecular systems, such asmolecular crystals.
These and related studies have paved theway for the investigation of exciton transport in light-harvesting
biomolecules, which contain embedded networks of light-absorbing pigments [10].

Considerable boost to the investigation of exciton transport in biomolecules has been brought about by
recent advances in 2Dphoton echo experiments, which have revealed unusually long decoherence times for
excitons in light-harvesting complexes [13–16] and conjugated polymer systems [17].Moreover, theoretical
evidence has been accumulated that noise in certain regimes could act as a protective factor for quantum
coherences [18–20], increasing suitably definedmeasures of quantum efficiency related to the transfer of
electronic excitation energy from a chromophore to a distant one. In turn, suchfindings have corroborated
more detailed investigations of the coupled dynamics of exciton transfer and protein vibrations, pointing at a
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functional role of specific vibrationalmodes in promoting possibly function-related, long-lived electronic
coherences [21–28].

However, despite the great experimental and theoretical advances,many fundamental questions remain
open. In particular, pinpointing the structural determinants of the electron–phonon coupling that seem to
provide noise-induced protection of exciton dephasing remains a challenging task.Moreover, few studies have
addressed the role of the dynamical determinants of suchmechanisms, i.e. the influence of specific inter-atomic
and inter-molecular potential energy terms beyond the harmonic approximation. Importantly, nonlinearity is
known to play a subtle role inmany quantum transport processes, fromheat conduction [29] and vibrational
energy transfer [30–32] to photon-assisted electronic transport in different nanostructures [33].More generally,
it is well known that nonlinear effectsmodulate non-trivially transport in disordered dynamical systems
[34–38].

Another issue of paramount importance that needs further investigation concerns the details of how the
environment (e.g. the degrees of freedomof the protein in photosynthetic complexes) couples to the quantum
degrees of freedom. In a tight-binding (TB) perspective, where the quantum excitation is characterized by a
given set of site energies {òi} and hopping rates ,i{ } thismeans investigating the effects of the specific
functional dependence of ,i i { }on the degrees of freedomof the environment (dynamical disorder). For
example, letting only site energies fluctuate with the environment amounts to adding a pure dephasing term to
the unitary evolution in the Liouville equation for the time evolution of the one-particle densitymatrix of the
quantum excitation. It has been proved that this leads to noise-enhanced transfer efficiency [19, 20]. However, it
has been observed that pure dephasing is not a physically realistic scheme of coupling and that in general
fluctuations of the hopping rates, even if smaller than those of the site energies, can have a considerable impact
on the dynamics of quantum excitations [39, 40]. For example, this is the case of high-mobility organic crystals,
such as pentacene and rubrene, where largefluctuations in the hopping rates occur at room temperature
[41, 42]. In this case, it has been shown that Zeno effect at high dephasing rates is suppressed and one recovers
asymptoticmobility of the quantum excitation at increasing noise, albeit with a diffusion coefficient that
decreases with temperature [43–45].

Motivated by the above described open questions, in this paperwe adopt a semi-classicalmodeling strategy
to investigate the effect of noise on themobility and transfer efficiency of a quantum excitation coupled to the
vibrations of a one-dimensional atomic chain.More specifically, the twomain points that wewish to address are:
(i) the role of nonlinearity of the interatomic potentials of the underlying lattice and (ii) the role of local versus
non-local dynamical disorder.

The structure of this paper is as follows. In section 2we briefly discuss existingmodeling strategies and
present themicroscopicmodel that we study in this paper, describing a quantum-mechanical quasiparticle (e.g.
an exciton or an electron)hopping on a one-dimensional lattice6. In section 3we present themain results
regarding the spreading properties of an initially localized state in a thermalized one-dimensional chain. In
section 4we analyze the quantum transport efficiency in ourmodel in the presence offinite local recombination
rates. Finally, in section 5we summarize our conclusions and further discuss ourmain results.

2. Exciton-lattice coupled dynamics

The time evolution of non-isolated (open) quantum systems, i.e. systems in contact with a thermal bath, is an
extremely difficult problem in general [46, 47]. Several approximate schemes have been proposed, including
master equation approaches [44, 48–50] usually based on the projection operator technique [51], different non-
perturbativemethods [52–54] and path-integral basedmethods [55–57]. In some cases the exact solution of the
master equation can be determined analytically [58].

Othermolecularmodeling approaches allow to consider a greater amount ofmicroscopic detail through ab-
initio simulations of both the quantumand the bath (e.g. the protein) degrees of freedom. These techniques
combinemolecular dynamics simulations for the dynamics of the environment with the time integration of the
Schrödinger equation for the reduced quantum system, based on quantum electronic structure calculations
[23, 59–62]. Suchmethods, often referred to as quantummechanics/molecularmechanics aremore
sophisticated and detailedmodeling schemes belonging to amore general family ofmodeling strategies, where
the full quantum evolution of the system is parametrized by the classical coordinates of the underlying lattice/
protein, that evolves in parallel according toNewton equations. Such schemes have been appliedwith success to
a variety of problems, including energy and charge transport in polypeptide chains [63] and other biomolecules
[31, 64–66].

6
Without loss of generality, wewill refer to the quantumquasiparticle in the following as the exciton.
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In the TB approximation, themost generalHamiltonian governing the propagation of an exciton coupled to
a one-dimensional lattice can bewritten as

H J u u B B
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whereM is the beadmass, Bn
† is an exciton creation operator at site n, and un is the displacement of the nthmass

with respect to its equilibriumposition. The termV (un, um) represents the total potential energy of the nodesm
and n including possible onsite termsThe energies Jnm (un, um) describe themodulation of the quantum
Hamiltonian due to the fluctuations of the underlying chain. In principle, depending on the physical nature of
the system, both the site energies (n=m terms) and the hopping rates (n m¹ terms) can be be influenced by
the vibrations of the chain atoms.

TheHamiltonian in equation (1) describes a general class of semi-classicalmodels, including theDavydov
[67, 68], theHolstein [69, 70], and the Su–Schrieffer-Heeger [71]Hamiltonians, that have been employed to
describe the dynamics of different kinds of quantum excitations in a variety of physical systems. In such
modeling schemes, one treats the exciton as a quantummechanical particle, while describing the oscillations of
the lattice classically. Thus, the equations ofmotion (EOM) are given by a time-dependent effectiveHamiltonian
for the exciton, which depends on the lattice variables un. The EOMs for the chain are those of a set of coupled
oscillators driven by the excitonwave function.

In this paperwe specialize to a nearest-neighbor TB schemewith fully fluctuating parameters (i.e. both site
energies and hopping rates), coupled to a nonlinear Fermi–Pasta–Ulam (FPU) chain [72]. The FPUpotential can
be derived as a fourth-order Taylor expansion of a generic nearest-neighbor interaction potential with respect to
the equilibriumpositions of the chain. For the sake of simplicity wewill neglect cubic terms, which are known to
give rise to specific topological (kink) excitations in the system,where also the equilibriumposition of atoms are
shifted and also tomore complex combined breather-kinkmodes [73].

TheHamiltonian governing the system is the sumof two termsH=He+Hl.He is theHamiltonian for an
exciton propagating on the lattice in a given dynamical configuration, whileHl is the latticeHamiltonian.
Explicitly, we have

H u B B J u B B B B 2
n

L

n n n
n

L

n n n n ne
1 1

1 1å å= + +
= =

+ +( )( ) ( ) ( )† † †

and

H
p

M
u u u u

2 2 4
, 3

n

L
n

n n n nl
1

2

1
2

1
4

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥å k b

= + - + -
=

+ +( ) ( ) ( )

where L is the lattice size,M is themass of the atoms andβ is the anharmonicity parameter. The operatorBn (Bn
†)

destroys (creates) an exciton at the position occupied by the nth bead.
According to our scheme, the energies appearing in the exciton hamiltonianHe are renormalized over time

by the lattice fluctuations, namely

E u u , 4n n E n n
0
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and
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0
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In the above equations, the 0 superscript refers to the unperturbed values of site energies and hopping
integrals, while the parametersχE andχJ gauge the strength of the exciton-lattice coupling. In the followingwe
will consider E J n1 ,n n

0 0= = " unless specifically stated otherwise. Notice that with the above choice of coupling
the totalHamiltonian is invariant under global spatial translations of the un, so that the totalmomentumof the
lattice is conserved during the evolution.Moreover, the invariance of theHamiltonian under phase
transformations of the variables Bn guarantees the conservation of the total excitonic probability. Equations (4)
and(5) are a natural way tominimally couple the exciton to the chain, as they can be seen as the first order term
of a Taylor expansion of the effective local energies and exchange integrals in powers of un.

In our semi-classical approach, only the exciton state is treated quantum-mechanically, while the lattice
variables un evolve according to the laws of classicalmechanics. Aswework in the single-excitonmanifold, in
order to determine the time-evolution of the systemwe consider a trial wave-function for the exciton in the form

t b t B 0 6
n

n n*åy ñ = ñ∣ ( ) ( ) ∣ ( )†

and derive the appropriate coupled EOMs for the coefficients bn and lattice variables un. The amplitudes bn*
define thewavefunction in the basis of lattice sites. In the followingwewill always impose the normalization

3

New J. Phys. 17 (2015) 113030 S Iubini et al



condition b 1.
n n

2å =∣ ∣ The time evolution of the coefficients bn follows directly from Schrödinger’s equation

b
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where the parameters Jn and òn are those of equations (4) and(5), and depend on the lattice variables. The EOMs
of the underlying lattice are obtained from the expectation value of theHamiltonian on the exciton
wavefunction, that is
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In the followingwewill takeκ=M=1 so that the upper frequency of the linear spectrumof the chain is
2 .0w = Moreover, throughout this paper we consider periodic boundary conditions. It is worth noting that

equations (7) and(8) also correspond to the deterministic version of a set of equations that can be derived
through a path-integral approach [55]. Furthermore, we observe that, despite our choice of a bilinear exciton-
lattice coupling, the ensuing time evolution governed by equations (7) and(8) is a nonlinear one.

For the analysis reported in the following, we evolved numerically the coupled EOMs(7) and(8) starting
fromdifferent initial conditions and referring both to equilibrium and non-equilibrium setups. For this we used
a standard 4th order Runge–Kutta algorithmwith a time step dt=10−3. In particular, we prepared the lattice
initial condition by sampling a characteristic configuration of the variables un and pn representative of afinite
temperatureT. This task is accomplished by thermalizing the lattice via a Langevin heat bath [74] at temperature
T for a sufficiently long transient time t0. Explicitly, the Langevin thermalization is achieved by augmenting the
free lattice EOMswith a suitable friction term and a stochastic force, namely

u F p T t¨ 2 , 10n n
l

n na a x= - + ( ) ( )

whereαdefines the coupling strength of the reservoir and ξn (t) is aGaussianwhite noise with zeromean and
unit variance. Notice that the present setup corresponds to the thermalization of each site of the lattice chain
with an independent heat bath at temperatureT (measured setting the Boltzmann constant kB=1).Moreover,
for all the simulationswewill set t0=L andα=1. This choice of parameters guarantees an efficient
thermalization of the lattice in thewhole range of parameters studied in this paper. Finally, once the lattice has
reached a stationary, thermalized state, the Langevin reservoir is disconnected in order to sample the
microcanonical dynamics of the total (lattice+ exciton) system.

2.1. Equilibrium spectral analysis
The explicit treatment of the lattice dynamics bymeans of equation (8) represents a simple and direct way to
includemore realistic, explicit spatio-temporal correlations in the environmental noise that perturbs the exciton
evolution, as opposed tomore abstract treatments where the environment only enters the picture as a spectral
density. It is therefore interesting to provide a spectral characterization of the lattice dynamics, focusing on
equilibrium stationary states at a given temperatureT. The same analysis also allows us to explore the near-
equilibrium exciton transfer processes.

In order to show the relevant transport properties of the lattice, it is instructive to look at the power spectra of
its long-wavelength Fouriermodes. These are reported in the upper panel offigure 1. Simulations have been
performed evolving the system in the presence of a Langevin thermal bath at temperatureT [74] for a transient
time t0=L.We remark that, according to our prescriptions, time in our simulations ismeasured in units of

M .k The external heat bathwas switched off at t=t0 and the power spectrumwas then computed by
sampling themicrocanonical dynamics over an interval of 216 temporal units and averaging over different
thermalized initial conditions.

For awhite-noise signal, onewould obviously observe aflat spectrum. The sharp peaks that are visible in
figure 1 flag the nontrivial propagation of correlations inside the nonlinear chain. Their presence is also closely
related to the anomalous heat transport properties observed in the FPU chain [74] and clearly shows that the
lattice dynamics cannot be approximated by a diffusive uncorrelated process like a pure-dephasing (PD)noise.
We conclude that nonlinearity in the interatomic potentials of the underlying dynamical system couples the
exciton to a noise possessing a complex structure. This is likely to be the case a fortiori for excitons propagating
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within complex fluctuating biomolecules. The necessity of including the proper correlations in the noise beyond
PD, possibly encoded in the underlying lattice structure, appears therefore important.

We thenmove on to examine the lattice spectrum in the presence of non-vanishing exciton-lattice coupling,
as this can informon the back-action exerted by the exciton on the underlying dynamical system. In this
situation, the thermalization process and the following free dynamics were performed by evolving the coupled
equations (7) and(8)with an excitonic initial condition corresponding to a random-phase delocalized state. The
corresponding lattice spectra are shown in the lower panel offigure 1.Wefind that, even in the regime of strong
coupling, the relevant features of the characteristic peaks are essentially unchanged. The only difference with the
zero-coupling case is a slight deformation of the low-frequency and low-wavenumber region of the spectrum.
We therefore conclude that our combined exciton-latticemodel exhibits environmental correlations that
generally survive forfinite temperatures and coupling strengths.

It is instructive to carry out a similar spectral analysis also for the excitonic degrees of freedom. Infigure 2we
show the power spectrum Se(k,ω) of the exciton amplitude field b tn

2∣ ( )∣ in the presence of a thermal background
atfinite temperature. The spectrumof each normalmode k is well fitted by a Lorentzian distribution, amanifest

Figure 1.Equilibriumpower spectra S(k,ω) of the lattice dynamics (power spectrumof the time series u t e
n n

kniå ( ) ) for low-k
Fouriermodeswith k=2πm/L andm={1, 2, 4, 8} for a thermalized nonlinear chainwithT=1,β=1 and L=256. The upper
panel refers to an isolated lattice, while the lower panel shows the lattice spectrum in a regime of a strong couplingwith the exciton.
Each spectrum is computed by averaging over 50 independent realizations of the dynamics.

Figure 2.Power spectra Se(k,ω) of the exciton amplitudes (i.e. power spectra of the time series b t e
n n

kn2 iå ∣ ( )∣ ) for an exciton-lattice
couplingχE=χJ=1 in a chainwithT=1,β=1 and L=256 (with k=2πm/L). Each spectrum is computed by averaging over
50 independent realizations of the dynamics of the underlying lattice. The dashed black line is a power-lawwith exponent−2 and
indicates the characteristic diffusive behavior.
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evidence that sufficiently strong perturbations resulting from the underlying lattice dynamics produce a
diffusion-dominated exciton transport.

It is important to observe that the spectral analysis reported here allows to explore the out-of-equilibrium
properties of the exciton-lattice chain only perturbatively, i.e. in the spirit of linear-response theory. On the
other hand,many realistic situations are characterized by strong out-of-equilibrium conditions. For example,
this is the case of the propagation of photosynthetic excitons created in light-harvesting antenna complexes
following the absorption of a photon. Such physical scenarios properly correspond to far-from-equilibrium
initial condition that cannot be included in linear-response schemes. For this reason, in the next sectionwe
discuss in detail non-stationary exciton transport arising from spatially localized initial conditions.

3. Exciton spreading on a chain atfinite temperature

In this sectionwe study the spreading of an initially localized excitonwave-function interactingwith the chain.
The initial conditions for the lattice are taken by sampling randomvelocities from aMaxwell distribution at a
given temperatureT, which is one of the parameters in these simulations. The initial displacements are set to
zero. The lattice is then evolved for a transient time t0=L in the presence of a Langevin heat bath at temperature
T that interacts independently with each site of the chain [74]. After this thermalization process, the external heat
bath is disconnected and the lattice-exciton interaction term in theHamiltonian is switched on. Furthermore,
we average the time evolution of the same initial condition for the exciton overmany independent trajectories,
each corresponding to different initial conditions of the chain sampled from the same thermal distribution. In
our picture, the decoherence of the excitonwave-function is brought about by averaging overmany
independent realizations of the explicit noise (the lattice dynamics).

For sufficiently low temperatures and couplings, one can argue that the exciton evolution should be only
weakly perturbed by the environment. Indeed, the exciton is found to spread over the chain almost ballistically
in this regime, with a slow loss of coherence. However, onemay speculate that for larger values of couplings and
temperatures the non-Markovian nature of the noise acting upon the exciton and the nonlinearity of the
dynamicsmay play a fundamental role inmodulating the spreading of an exciton. For instance, very large
couplings typically result in the emergence of immobile self-trapped states of nonlinear origin. The net effect is
that a substantial amount of the vibrational energy gets pinned around a handful of sites in the chain, producing
a pinning potential where the exciton self-traps,making de facto impossible any kind of exciton transport. Self-
trapped states arewell-known inmany problems studiedwithmodels belonging to the same class as ours, such
as theHolstein polaron [69, 70] and discrete breathers (DBs) in dilute Bose–Einstein condensates trapped in
optical potentials [75–78].

The situation is perhapsmore interesting at intermediate couplings, where it is not clear a priori over what
timescale the spreading is diffusive andwhat is the dependence of the exciton diffusion constantD on the lattice
temperature.

In order to gather information on the fraction of lattice sites that are significantly occupied during the time
evolution of the system, we compute the participation ratioΠ, defined as

t

b t

b t b t
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1. 11n

n

n
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4 4

å

å å
P = - = -( )
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With this choice of normalization, it is easy to show thatΠ=0 for a completely localized excitonwavefunction,
while one hasΠ=L–1 for a perfectly uniform state. Therefore, one should think atΠ as an effective length,
measuring the spatial extent of the excitonwavefunction over the chain. As such, diffusive spreadingwould be
flagged by a law of the typeΠ(t)∝ t1/2, while ballistic propagationwould correspond to a linear dependence on
time,Π(t)∝ t.

Infigure 3we show the typical time evolution of the participation ratio for different coupling strengths and
T=0.1. Thefirst stage is a short transient t 1 ,( ) whereΠ grows quadratically in time. This super-ballistic
evolution is characteristic of the very first stage of the time evolution of an initially localizedwavefunction. This
can be easily proved bywriting down equations (7) for an exciton initially sitting entirely at site n in a chainwith
J J n.n = " In this case it is not difficult to show that, if one defines Q t b t b tn n

2
1

2= - ( ) ∣ ( )∣ ∣ ( )∣ (withQ
(0)=1), then

Q t texp
1

sin 2 d , 12
t

2 0

1⎡
⎣⎢

⎤
⎦⎥òt

f f= - D D ¢-( ) ˙ ( )

where J2t = ( ) andΔf=fn±1−fn is the phase difference between the initially excited site and its
neighbors.Without loss of generality, in the spirit of a Taylor expansion, we can assumeΔf; t/τ in the early
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stages of the propagation. It is then straightforward to show that this immediately leads to a super-ballistic trend,
namelyΠ(t); (t/τ)2. It is apparent from figure 3 that this prediction is in excellent agreementwith the
simulations for low andmoderate couplings. For larger values of the coupling, the physical law does not appear
to change, while the time constant turns out to be renormalized. For example, forχE=χJ=10we getΠ(t);
(t/τ′)2 with τ′=τ/3, whichmeans faster super-ballistic propagation for large coupling strengths. It is intriguing
to observe that this first super-ballistic stage could be physically relevant inmany contexts. For example, in light-
harvesting complexes one typically has J; 100 cm−1, i.e. τ; 170 fs, which is of the same order ofmagnitude as
the observed lifetime of quantumbeats in 2Dphoton echo spectroscopy at room temperature [13].

In the subsequent evolution for times greater than J2 ,t = ( ) we can single out twomain regimes
corresponding to different dynamical situations. At low couplings, we recover the expected almost unperturbed
evolution associatedwith ballistic spreading of the exciton, i.e.Π(t)∝ t. The plateau observed at long times in
figure 3 forχE=χJ=0.01 and 0.1 simply signals that the excitonwavefunction has reached complete
delocalization (the lattice isfinite) and no further spreading is thus possible. For intermediate couplings, it is
clearly possible to observe a transition from a ballistic to a diffusive (Π(t)∝ t1/2) regime.Overall, we conclude
that for intermediate couplings one should always expect a ballistic-to-diffusive crossover, the time scale
associatedwith it decreasing with increasing coupling.

The situation changes rather dramatically for large values of the coupling strengths. In this case, the system
enters a strongly nonlinear regime, where the localized initial condition triggers the spontaneous creation of a
stable self-trapped state of nonlinear origin, which results in a very slow sub-diffusive transport (see also the inset
offigure 3). Increasing the coupling further causes the initial amplitude of the exciton to stay permanently stored
in a localized, time-periodic excitation of the systemwhich is virtually decoupled from the rest of the system
(see[77] for a comprehensive review onDBs in nonlinear lattices). It is important to point out that the
asymptotic stability of the self-trapped state depends both on the strength of the couplingχE=χJ and on the
temperatureT. In particular, for certain critical valuesχc andTc, such localized structures become unstable and
get quickly destroyed by the thermalfluctuations of the lattice [79, 80]. On the other hand, the ballistic and
diffusive regimes shown in figure 3 are not separated by a true dynamical transition. In fact, one can argue that
for sufficiently long chains and times, any arbitrarily small interactionwith the lattice will eventually cause a
diffusion of the excitonic wavepacket.

For the exciton nonequilibrium evolution reported infigure 3we have alsomonitored the lattice kinetic
temperatureTkmeasured after the Langevin heat bath has been disconnected.Tk is defined as

T t
L

p t p t
1

, 13
n

L

n nk
1

2 2⎡⎣ ⎤⎦å= -
=

( ) ( ) ( ) ( )

where the symbol á ñ· refers to a classical average over the set of independent lattice trajectories. Figure 4
illustrates the evolution ofTk for the same setup offigure 3, which corresponds to a temperature of the Langevin
bathT=0.1. Interestingly, in a wide region of coupling values that keep the overall systemout of the strongly
nonlinear regime,Tk remains close to the Langevin temperature during thewhole exciton evolution. Conversely,
the emergence of a stable discrete breather for large coupling strengths,χE=χJ=10 (see blue diamonds of

Figure 3.Evolution ofΠ(t) forT=0.1 and different couplings in a chainwith L=1000 lattice sites. The dashed line is a plot of the
initial super-ballistic propagationΠ(t)=(t/τ)2 with J2 .t = ( ) Dotted and dotted–dashed lines indicate a power-law growth of
the kind tαwithα=1 (ballistic) and 0.5 (diffusive), respectively. The inset shows the final profile of bn

2∣ ∣ for the largest coupling
χE=χJ=10. A self-trapped state is clearly observable around the center of the chain.

7

New J. Phys. 17 (2015) 113030 S Iubini et al



figure 3), produces a clear increase ofTk, which is associatedwith the conversion of a substantial portion of
lattice energy into (negative) exciton-lattice interaction energy. Accordingly, by virtue of the conservation of the
total energy of the system, such energy transfer causes the lattice to heat up.However, this should be regarded as
afinite-size effect. In general, we expect that, upon increasing the lattice length L, the heating effect becomes less
and less important until it should eventually disappear in the thermodynamic limit L , ¥ since the breather
interaction energy is localized over a finite number of lattice sites, whereas the lattice energy scales linearly with
L. Altogether, the above analysis confirms the consistency of the lattice dynamics as awell defined explicit
thermal environment.

3.1. The effective diffusion constant
From the above discussion it is clear that in the intermediate coupling regime the asymptotic dynamics is
diffusive.We now turn to analyzing in detail the properties of the diffusive spreading by a characterization of the
diffusion constantD, defined as

D t tlim . 14
t

1 2= P
¥

- ( ) ( )

Infigure 5we compare the growth ofΠ(t) for increasing temperaturesT andfixed values of the couplings
χE=χJ=1 in the intermediate regime. Interestingly, we find a nonmonotonic behavior for the dependence of
the diffusion constant on the temperatureT.More precisely, we observe aminimum located aroundT=10,
indicating the presence of a slowed-down spreading dynamics at intermediate temperatures.

This phenomenon can be illustratedmore effectively bymeasuring the average time ts it takes for the
participation ratio to reach a certain threshold valueΠs. In this temporal representation aminimum in the
diffusion constantD corresponds to amaximumof the time ts. The value ofΠsneeds to be chosen in such away
as to avoid both the transient dynamics (typical of short times) and the saturation ofΠ(t) due to thefinite size of
the considered lattices (see againfigure 5). Accordingly, we have chosenΠs=100 for a chain of L=1000 sites.

Figure 4.Evolution of the lattice temperatureTk (see equation (13)) during the exciton spreading dynamics shown infigure 3.

Figure 5.Time evolution ofΠ(t) forχE=χJ=1 and different temperatures of the lattice. The inset shows the behavior of the
diffusion constantmeasured by fitting a power law to the asymptotic portion of the spreading. The dashed line is a plot of a power law
with exponent 1/2.
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The dependence of ts on temperature is illustrated in figure 6 for increasing couplings. For the lowest coupling
considered, ts displays an initial growing stage, followed by a decrease at high temperatures after amaximum,
which becomesmore andmore distinguishable upon increasing the coupling (note the logarithmic scale on the y
axis infigure 6). Interestingly, thismaximumappears tomove towards smaller and smaller temperatures at
increasing coupling strengths. This feature should be comparedwith the data displayed in the inset infigure 5,
illustrating aminimumof the transport coefficient associatedwith exciton transport. A stationary point at the
same value of temperatureT≈ 10 is indeed recovered in bothmobility indicators,D and ts.

The sudden growth of ts in the low-temperature region forχ=2.5flags the presence of self-trapped,
breather-like excitations, which pin energy locally and thus slow down the relaxation process. This kind of
localized states, however, are not present at the temperatures characterizing themaximumof ts, since the
strength of thermalfluctuations is too large to sustain coherent localized nonlinear vibrations [79, 80].

The above analysis suggests that the nonmonotonicity displayed by transport coefficients with temperature
is not related directly to nonlinear localization phenomena that pin energy down at high temperatures. It is
therefore highly likely that the observed transport behavior is directly linked to the specific way the lattice
vibrations couple to the parameters entering the excitonHamiltonian. In fact, in the limit case of spatially
uncorrelatedwhite noise, it has been long known that local and nonlocal perturbations of the coherent
Schrödinger dynamics can produce dramatically different behaviors for the spreading of an initially localized
excitation [43]. In particular, it is known that purely local noise (in our picture, dynamicalmodulation of the site
energies only) results in suppression of transport for large dephasing rates (a phenomenon often considered as
an instance of the quantumZeno effect [20, 81]).

With these ideas inmind, we turned to examine the role of the effective noise acting on the free exciton
dynamics as a consequence of the lattice thermalfluctuations. In the same spirit as the analysis performed in
[43], we simplified the coupling between the exciton and the lattice by studying separately diagonal (involving
site energies) and off-diagonal (involving hopping rates) interactions.

Infigure 7we compare the spreading diffusion constant of a system exhibiting only diagonal coupling
(χJ=0)with the one corresponding to a pure off-diagonal coupling (χE=0). Interestingly, the nonmonotonic
behavior ofD is present only in the latter case, while in the formerwe observe amonotonic decrease ofDwith
temperature. This is precisely what happens in amaster equation description à laHaken and Strobl [44]with
nearest-neighbor Coulomb coupling, where

D a
a J

2
3

. 151
2

2 2

2
0 1

g
g g

= +
+( ) ( )

Here γ0 and γ1 are the diagonal (pure dephasing) and off-diagonal noise strengths, J is the Coulombhopping
integral and a is the lattice spacing. The results of our simulations performedwithχJ=0 are in agreementwith
the prediction(15)with γ1=0, that is, a value ofDwhich decreasesmonotonically with temperature (γ0 in the
language of [44] and [20]. In fact, the effect of purely local perturbations of the excitonic energy is to produce a
diffusion of the Schrödinger phases that inhibits quantum transport. Eventually, in the limit of infinite

Figure 6.The average time tsneeded to attain a participation ratioΠs=100 as a function of temperatureT for different values of the
coupling strengths. The chain length is L=1000.
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interaction (i.e. infinite temperature), the quantum system remains frozen in the initial condition (D= 0) as a
consequence of the complete randomization of the phases.

The situation changes whenwe let the hopping rates bemodulated by the lattice dynamics ( 0,Jc ¹ i.e.
01g ¹ ). As can be appreciated from figure 6, the diffusion constant displays aminimum, in agreementwith the

general prediction(15) and the transport becomes faster at increasing temperatures. In fact, since both phase
and amplitude perturbations are now allowed for, the limit of infinite temperature corresponds to an arbitrarily
large diffusion constant. This result can be interpreted as a recovery of classical amplitude diffusion in the
infinite temperature limit. Onmore formal grounds, it can be shown that such classical reduction allows one to
reduce a generalized Lindblad equation [43] for the exciton densitymatrix to a classical Fokker–Planck equation
for the amplitude probability distribution. Although the non-Markovian nature of the effective noise and the
explicit nonlinearitymake the analytical calculation ofD(T,χE,χJ) extremely difficult, the numerical results
reported infigure 7 clearly indicate that classical diffusion is recovered alsowhen one considers the fullmodel
with both local and nonlocal couplings.

Interestingly, we remark that at low temperatures pure-diagonal noise allows for the fastest transport.
However, as non-diagonal noise results in aminimum, the situation reverses beyond a characteristic
temperaturewhenχJ is switched on. In this case, themodel withfluctuating coupling strengths becomes the one
affordingmore rapid spreading at high temperatures.

It is interesting to note that extended vibrationalmodes are required in order to observe a nonmonotonic
behavior of the diffusion constant, signaling a nontrivial coupling between exciton spreading and collective
modes of the underlying lattice. This can be appreciated by comparing our analysis with the results presented in
[45], where the hopping rates in the TB excitonHamiltonian aremodulated by the dynamics of a set of
uncoupled harmonic oscillators. In this case, the authors report values of the diffusion coefficient that decrease
monotonically with temperature. This is possibly a consequence of the absence of coupling between the
oscillators providing the noise. Alternatively, theymight be just exploring the low-temperature regime, as
defined by their parameters.

From figure 7 one can also argue that the effective interaction experienced by the exciton forfinite
temperatures can not bemapped onto a spatially and temporally uncorrelated noise as in [43]. Specifically, we
find that the spreading problem for pure local exciton-lattice interactions is ruled by a nontrivial power-law
decayD(T)∼T −γwith γ≈ 0.3 (data infigure 7), whereas γ=1 forwhite noise [43]. In the absence of
nonlinearity in the latticeHamiltonian (β=0), the characteristic exponent is found to be close to γ; 0.6, as
shown infigure 8.We therefore identify two different sources of slowing down in the transport, that are
characteristic of the explicit lattice dynamics. Thefirst one is due to the presence of spatio-temporal correlations
in the lattice system. The second one is associatedwith explicit nonlinear terms in the lattice pairwise potential
energiesV (un, um).

Overall, the above detailed analysis allows us to conclude that the high-temperature limit of excitonic
systems interacting with noisy environments is crucially determined by the specific properties of the exciton-
lattice coupling and by the nature of the spatio-temporal correlations that characterize the noise-providing
underlying lattice. In particular, the presence of non-diagonal coupling is sufficient to suppress localization at

Figure 7.Temperature dependence of the spreading diffusion constantsD in the presence of purely diagonal interaction (black circles)
and purely off-diagonal interaction (red squares). Blue diamonds refer to the fullmodel, withχE=1 andχJ=1.Other parameters
are L=1000 andβ=1.
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high temperatures, which can be regarded as the semiclassical counterpart of the quantumZeno effect observed
in quantummaster equation approaches [20].

An interesting consequence of the above reasoning is that the standard scenario for noise-assisted quantum
transfer efficiency [19, 20]may display novel structures when passing from local pure dephasing noise tomore
realisticmodels of coupling including amplitude-affecting terms in the non-Hermitian part of theHamiltonian.
We thus turn now to discussing the implications of our explicit-noise approach for the efficiency problem.

4. Exciton energy transport efficiency

Aquantum excitation such an exciton has an intrinsic lifetime, which is dictated by the recombination rate γr
associatedwith the specificities of the environment. For example, in light-harvesting systems γr is estimated to
be about 1 exciton per nanosecond [20]. The quantum excitation is therefore damped as it spreads through the
system following its excitation. It is interesting to provide ameasure of efficiency associatedwith the transport of
an exciton. This can be done by requiring that a sink exists at some specific location in the system (e.g. allowing
the excitation to be transferred to a neighboring equivalent system) and evaluating the probability that the
exciton exits through the sink rather than decaying non-specifically due to recombinationmechanisms.

In amaster equation description, a recombination probability and a sink appear as non-Hermitian terms in
the time-evolution operator for the exciton densitymatrix. Similarly, in our approachwe ought to add damping
terms to the EOM(7).More precisely, we consider a chainwhere the site k is identified as a sink, characterized by
a trapping rate .rgG  Therefore, themodified equations ofmotion read

b

t
b J b b bi

d

d
i . 16n

n n n n n r nk n1 1   g d= - - + - + G+ -( ) ( ) ( )

Along the lines of previous studies, such as [20, 82] and [83], we use equations (16) to investigate the competition
between the twomechanisms of exciton destruction, namely generic recombination (γr) and exit through a
specific channel (Γ). Thewhole idea is that an efficient transport ismaximally effective in channeling the exciton
rapidly through the specified exit site against the generic degradation due to recombination. For example, this
might reflect an exciton leaving a light-harvesting complex through a specific pigment connected to the reaction
center.Moreover, as done in the above-cited studies, we take the unperturbed exciton site energies En

0 in
equation (16) as random,which has thewell-known effect of inducing spatial localization of the exciton at zero
temperature.

The incorporation of non-Hermitian terms implies a loss of norm as time passes, until eventually the norm
of the excitonwave-function reaches zero for infinite times. Accordingly, ameasure of transport efficiency can
be computed in the following fashion

b t t2 d . 17k
0

2

òh =
¥

( ) ( )

One can easily prove that η isfinite and takes values in the interval [0; 1] as a consequence of the conservation of
the total excitonic amplitudewhen γr=Γ=0. The integral in equation (17) can be computed numerically to
any desired accuracy, as controlled by the amount of total exciton norm N t b t

i i
2å=( ) ∣ ( )∣ left in the system at

time t. In our simulationswe integrated equations (16) until the survival probability reached the threshold value
of 10−5.

Figure 8.Temperature dependence of the spreading diffusion coefficientD for an harmonic chain (β=0)with pure diagonal
coupling (χE=1 andχJ=0). The red line is a power lawfit with a functionD∝T− γwith γ=0.58.
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Infigure 9we compare the transfer efficiency of our chainmodel with the one corresponding to a quantum
dynamics in the presence of PDnoise [20, 43]. The lattice is initially thermalized at temperatureTwith the same
procedure described in the introduction of section 3, while the PDdynamics describes the interaction of the
excitonwith a classical incoherent externalfield (no explicit lattice in this case) that induces decoherence on the
quantum system. This is accomplished by specializing equations (4) and (5) to

E T t J J2 , , 18n n n n n
0 0 x= + =( ) ( )

where ξn(t) is aGaussianwhite noise with zeromean and unit variance andT effectively accounts for the
dephasing rate of the process. In both cases the exciton is initially injected at one side of the chain, while a trap is
located at the opposite end. Interestingly, in the low-temperature region the two systems display qualitatively the
same behavior, namely a disruption of disorder-induced localization due to increasing dephasing (PDmodel),
i.e. increasing thermalfluctuations of the underlying lattice in our scheme.However, at higher temperatures the
efficiency of transport in the presence of explicit (i.e. produced by the lattice)noise turns out to depend on the
details of the underlying lattice dynamics. Thefirst remarkable result is that nonlinear correlations in the lattice
dynamics boost the efficiency in the Zeno-effect region (see diamonds versus squares infigure 9). This finding,
although for somewhat different physical reasons, is in linewith recent results where the importance of spatial
correlationswas demonstrated for transport in a PD-likemodel [83]. Furthermore, we note that such a behavior
is consistent with the different scaling exponents of the diffusion constantD discussed in section 3. As afinal
remark, we expect that the degree of improvement with respect to the linear regimemay also depend on the
details of the nonlinear interaction potential for the lattice degrees of freedom.

The second important finding is that non-diagonal noise (i.e. non-zero coupling between the hopping rates
in the excitonHamiltonian and the lattice) suppresses the Zeno drop in the efficiency at high temperatures. This
is in good agreementwith the prediction of equation (15), namely that the diffusion coefficient should be non-
monotonic with temperature (i.e. non-diagonal noise, γ1).We recall that in this regime, themaster equation for
the densitymatrix turns into a classical diffusion equation, which should guarantee diffusive transport [48],
albeit possibly with a diffusion coefficient that decreases with temperature [45].

5. Conclusions

In this paper we have studied amodel describing the dynamics of a quantum excitation that propagates in a
system atfinite temperature. In our scheme, the quantum evolution is dictated by a TBHamiltonian, whose
matrix elements are functions of the classical coordinates of an underlying one-dimensional lattice.We refer to
this setting as an open quantum systemwith an explicit environment, which provides a direct source of noise to
the quantum excitation, endowedwith specific spatio-temporal correlations.While themain ideas behind this
modeling scheme are not new (see for example [67]), our study contains important elements of novelty. Notably,
we explicitly focussed on spotlighting the signatures of non-trivial spatio-temporal correlations of nonlinear
origin expressed by the underlying lattice. Furthermore, we conducted an original investigation of the relative

Figure 9.Exciton transport efficiency versus temperature in different kinds of lattices of length L=200. The recombination constant
and the sink dissipation are, respectively, γr=10−4 andΓ=10−1. The local unperturbed exciton energies En

0 are randomly chosen
from auniformdistribution in the interval [−0.5; 0.5 ]. The efficiency η is obtained by averaging over 20 independent realizations of
the static disorder on the site energies En

0 and of the dynamical lattice noise.
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role of diagonal and non-diagonal exciton–phonon couplings. In both cases, we uncovered a rich
phenomenology, prompting new directions of investigation.

Wefirst examined the spreading of an initially localized excitation. Our results show that the very first stage
of the propagation is faster than ballistic, up to a time of the order of ÿ/(2J), J being themagnitude of the
hopping integrals in the TBHamiltonian. The subsequent time evolution is characterized by a transition to a
ballistic stage followed by a crossover to an asymptotic diffusive regime, which appears at earlier and earlier
times as the exciton–phonon coupling strength is increased. However, for large values of the coupling the
picture changes dramatically, as a self-trapped state of nonlinear character sets in after the first super-ballistic
spreading. The result is that the transport is completely suppressed in this regime as a sheer nonlinear effect.

An analysis of the diffusion coefficientD at intermediate exciton–phonon couplings unveils a striking non-
monotonic behavior ofD as a function of temperature, provided the lattice is activelymodulating the hopping
integrals in the TBHamiltonian. This effect, reported here for thefirst time in the presence of an explicit
environment, agrees with a long-known predictionmade on the basis of a generalizedmaster equation for the
one-particle densitymatrix containing both dephasing and amplitude-affecting operators [43]. Intriguingly, we
find that diffusive transport is faster at low temperatures with pure-diagonal noise (i.e. only on the site energies),
but adding non-diagonal noisemakes spreading faster at high temperatures.

Importantly, our results on the diffusive regime at intermediate couplingflag a nontrivial interconnection
between exciton spreading and collective (hydrodynamic) vibrationalmodes of the underlying lattice.More
precisely, ourfindings strongly suggest that the observed non-monotonic behavior of the diffusion constant
versus temperature is related to the presence of long-wavelength acousticmodes. This conclusion is reinforced
by a comparisonwith the results of Troisi andOrlandi obtained in a similar semi-classicalmodel with purely off-
diagonal dynamical disorder [45]. In fact, they found amonotonic decrease ofDwith temperature in amodel
that lacks collective vibrationalmodes by construction, as their TBHamiltonian ismodulated by the dynamics
of an ensemble of independent, disconnected classical oscillators. In fact, the signatures of long-wavelength
hydrodynamicmodes are clearly recognizable in the equilibriumpower spectra S(k,ω) of the exciton-coupled
lattice, as shown infigure 1. This strongly suggests that coupling to an extended dynamical system, such as the
onewe consider here,might be a necessary condition to obtain non-monotonic transport with temperature, in
agreementwith [43].

Our results on the role of the lattice in the spreading properties of a quantum excitation show that the
presence of non-diagonal coupling is sufficient to suppress Zeno-like localization at high temperature. To shed
further light into this phenomenon, we then computed ameasure of quantum efficiency for different choices of
the chain parameters. Our results clearly confirm that, when the hopping rates in the TBHamiltonian are
explicitlymodulated by the lattice dynamics, the transport efficiency is no longer quenched at high temperature,
as observed by some authors in the absence of an explicit environment [19, 20].Moreover, wefind that
nonlinearity in the lattice dynamics exerts a powerful boosting action on the efficiency at high temperatures,
confirming recent results on the importance of spatial and dynamical correlation patterns within the noise
bath [83].

Overall, the results presented in this paper allow us to conclude that the properties of excitonic systems
interactingwith noisy environments are subtly shaped by the specific properties of the exciton–phonon
coupling and by the nature of the spatio-temporal dynamical correlations that characterize the underlying
lattice. It would be extremely interesting to extend the formalism presented here tomore complex systems, such
as light-harvesting complexes, which arewidely studied in the context of quantumbiology [85, 84].
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