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We offer analytical solutions to classical percolation problems on hypergraphs with arbitrary
vertex degree and hyperedge cardinality distributions. We introduce a generalization of the 2-core for
hypergraph and we show that it can emerge in either a continuous or a hybrid percolation transition.
We also define two different hypergraph cores related to the hyperedge cover and vertex cover
problems on hypergraphs. We validate our analytical results with extensive numerical simulations.

I. INTRODUCTION

A hypergraph is a natural generalization of a graph,
where an edge (often called hyperedges) can simultane-
ously connect any number of vertices [5]. As in graphs,
where the degree of a vertex in a hypergraph is the num-
ber of hyperedges that connect to it. The number of
vertices connected by a hyperedge is called the cardinal-
ity of that hyperedge. If all hyperedges have the same
cardinality K, the hypergraph is said to be uniform or
K-uniform. Note that a graph is just a 2-uniform hyper-
graph. The fact that hyperedges can connect more than
two vertices facilitates a more precise representation of
many real-world networks. For example, collaboration
network can be typically represented by a hypergraph,
where vertices represent individuals and hyperedges con-
nect individuals who were involved in a specific collabo-
ration, e.g., a scientific paper, a patent, a consulting task,
or an art performance [17, 30]. Many cellular networks
can also be represented by hypergraphs [16]. For exam-
ple, given a set of proteins and a set of protein complexes,
the corresponding hypergraph naturally captures the in-
formation on proteins that occurred together in a pro-
tein complex. For a biochemical reaction system, the hy-
pergraph representation will indicate which bimoleculars
participate in a particular reaction [16, 27]. In computer
science, the factorization of complicated global functions
of many variables can often be represented by a factor
graph, a bipartite graph that manifest which variables
are arguments of which local functions [18]. A factor
graph is equivalent to a hypergraph, where the nodes
represent the variables and the hyperedges represent the
local functions.

Despite the ubiquity of hypergraphs in different fields,
fundamental structural properties of hypergraphs have
not been fully understood. Most of the previous works
focus on uniform hypergraphs [7, 12, 29], ignoring the
fact that hyperedges could have a wide range of cardi-
nalities. In this work, we systematically study the perco-
lation transitions on hypergraphs with arbitrary vertex
degree and hyperedge cardinality distributions. We are
particularly interested in the emergence of a giant com-

ponent, the K-core, and the core in hypergraphs (see
Fig. 1). Those special subgraphs have been extensively
studied in the graph case and play very important roles in
many network properties [1, 8]. A giant component of a
graph is a connected component that contains a constant
fraction of the entire graph’s vertices, which is relevant to
structural robustness and resilience of networks [9, 10].
The K-core of a graph is obtained by recursively remov-
ing vertices with degree less than K, as well as edges
incident to them. The K-core has been used to identify
influential spreaders in complex networks [15]. The core
of a graph is the remainder of the greedy leaf removal
(GLR) procedure: leaves (vertices of degree one) and
their neighbors are removed iteratively from the graph.
The emergence of the core in a graph has been related to
the conductor-insulator transition [3], structural control-
lability [22], and many combinatorial optimization prob-
lems [14].

We can naturally extend the definition of giant compo-
nent to the hypergraph case. Yet, to obtain the K-core
in a hypergraph, we have to specify how to remove hy-
peredges containing vertices of degree less than K. To
achieve that, we introduce the (K,S)-core defined as the
largest fraction of the hypergraph where each hyperedge
contains at least S nodes and each vertex belongs to
at least K hyperedges in the subset. The (K,S)-core
is obtained by recursively removing vertices with degree
less than K and hyperedges with cardinality less than S.
We can generalize the GLR procedure to the hypergraph
case in two slightly different ways, rendering two differ-
ent cores. Core1 is the ramainder hypergraph obtained
by recursively removing all the hyperedges(nodes) with
cardinaltiy(degree) less than two; all the hyperedges that
contain those nodes, along side with all the vertices con-
tained in them. Core2 is the ramainder hypergraph ob-
tained by recursively removing all the hyperedges(nodes)
with cardinaltiy(degree) less than two; all the nodes that
contained on those hyperedges, as well as all the hyper-
edges that contain them.

In this work we offer analytical solutions to those
classical percolation problems on hypergraphs with arbi-
trary vertex degree and hyperedge cardinality distribu-
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Original hypergraph(a) Giant connected component(b)

(2, Smax)-Core(c) (2, 2)-Core(d)

(e) (f)Core1 Core2

FIG. 1. (Color online) Example of the diferent percolations
stuided in the work. (a) shows the original hypergraph. (b),
(c) , (d), (e) and (f) shows the (2, Smax)-core, (2, 2)-core, core1
and core2 of the same hypergraph. Here we choose we Smax ≡
max(r, 2) .

tions. We confirm all our results using extensive numeri-
cal simulations (SI Sec.III). Interestingly, we find that the
above-mentioned core1 and core2 are related to the mini-
mum edge cover and vertex cover problems, respectively.
Both problems are classical combinatorial optimization
problems and have a wide range of applications from the
detection of potential data races in multithreaded pro-
grams to drug selection for cancer therapy [26? ]. In the
hyperedge (or vertex) cover problem we aim to find the
minimum set of hyperedges (or vertices) that cover all the
vertices (or hyperedges) in the hypergraph. Note that in
the graph case, the edge cover problem can be solved in
polynomial time [20]. While for general hypergraphs, the
hyperedge cover problem can be NP-complete [19]. The
vertex cover problem is generally NP-complete for both
graphs and hypergraphs [2, 20].

II. GIANT COMPONENT

A giant component of a hypergraph is a connected
component that contains a constant fraction of the en-
tire vertices. In the mean-field picture, we can derive a
set of self-consistent equations to calculate the relative
size of the giant component, using the generating func-
tion formalism [25]. Let µ represent the probability that
a randomly selected vertex from a randomly chosen hy-
peredge is not connected via other hyperedges with the
giant component. Dually, let ψ represent the probability
that a randomly chosen hyperedge connecting to a ran-
domly chosen vertex is not connected via other vertices
with the giant component. Then we have

µ =

∞∑
k=1

Qn(k)ψk−1 (1)

ψ =

∞∑
r=1

Qh(r)µr−1. (2)

Here Qn(k) ≡ kPn(k)/c is the excess degree distribution
of vertices, i.e., the degree distribution for the vertices
in a randomly chosen hyperedge. Pn(k) is the vertex
degree distribution, and c = c1 is the mean degree of
the vertices. In general we define cm ≡

∑∞
k=0 k

mPn(k).
Qh(r) ≡ rPh(r)/d is the excess cardinality distribution of
hyperedges, i.e., the cardinality distribution for the hy-
peredges connected to a randomly chosen vertex. Ph(r)
is the hyperedge cardinality distribution, and d = d1 is
the mean cardinality of the hyperdges. In general we
define dm ≡

∑∞
r=0 r

mPh(r).
The relative size of the giant component is then given

by

sg = 1−
∞∑
k=0

Pn(k)ψk. (3)

Fig. 2 shows the analytical result of sg as a function of the
mean degree c for hypergraphs with Poisson vertex de-
gree distribution and different hyperedge cardinality dis-
tributions. Clearly the giant component in hypergraphs
emerges as a continuous phase transition with scaling be-
havior

sg ∼ (c− c∗)η (4)

for c−c∗ → 0+, where c∗ is the critical value of mean de-
gree (i.e., the percolation threshold) and η is the critical
exponent associated with the critical singularity.

The condition for the percolation transition can be de-
termined by differentiating both sides of Eq. (1) over µ
and then evaluating at µ = 1, yielding

d2 − d
d

c2 − c
c

> 1. (5)

(See SI Sec.I for details.) Note that a similar relation has
been found for uniform hypergraphs [23]. In the graph
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case (d = 2 for all edges) we recover the classical result
c2−c
c > 1 [9, 24].

The critical exponent η can be calculated by expanding
Eq. (3) in powers of (c− c∗) around the critical point c∗

(see SI Sec.II). For hypergraphs with bounded moments
of cardinality distribution and degrees distribution, we
obtain the same exponent η = 1 as in the graph case[4, 9].
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FIG. 2. (Color online) The relative size of the giant compo-
nent sg as a function of the mean degree c for hypergraphs
with Poisson vertex degree distribution. (a) d-uniform hyper-
graphs with d = 2, 3, 4; (b) hypergraphs with Poisson hyper-
edge cardinality distribution and mean cardinality d = 2, 3, 4.

III. (K,S)-CORE

The (K,S)-core of a hypergraph is obtained by recur-
sively removing vertices with degree less than K and hy-
peredges with cardinality less than S. A hyperedges with
cardinality r is removable if at least r−S+1 vertices con-
nected to it are also removable and a vertex with degree
k is removable if at least k−K+1 hyperedges connected
to it are also removable. One can remove a vertex or
a hyperedge from the hypergraph, and see what is the
probability of a neighboring hyperedge or vertex, respec-
tively, being removable. This allows us to derive a set of
self-consistent equations:

α =

∞∑
k=1

Qn(k)

k−1∑
l=k+1−S

(
k − 1
l

)
δl(1− δ)k−1−l, (6)

δ =

∞∑
r=1

Qh(r)

r−1∑
l=r+1−K

(
r − 1
l

)
αl(1− α)r−1−l. (7)

where α and δ are, respectively, the probability that a
vertex or a hyperedge is removable. From now on we will
focus on the case of K = 2. Then Eq. (6) reduces to

α =

∞∑
k=1

Qn(k)δk−1. (8)

A. K = 2 and S = Smax

The (K,S)-core defined with K = 2 and S = Smax ≡
max(r, 2) is obtained by recursively removing all vertices
with degree one as well as the hyperedges containing
them, and all hyperedges with cardinality smaller than
two. Hyperedges with cardinality one or zero do not
connect any nodes, thus have no meaning in what cores
are concerned. In this case the threshold S depends on
the cardinally of the hyperedges. Furthermore, if one of
the vertices of any hyperedge is removed the hyperedge
is also removed. (Note that the (2, Smax)-core has been
defined in literature [7] simply as 2-core, and discontinu-
ous 2-core percolation is found in d-uniform hypergraphs
with d > 2.) In this case, Eq. (7) reduces to

1− δ =

∞∑
r=2

Qh(r)(1− α)r−1. (9)

The relative size of the (2, Smax)-core is given by the
probability that a randomly chosen vertex is connected
to at least two non-removable hyperedges:

s2c =

∞∑
k=2

Ph(k)

k∑
l=2

(
k
l

)
(1− δ)lδk−l. (10)

Fig. 3 shows the analytical result of s2c as a function
of the mean degree c for hypergraphs with Poisson ver-
tex degree distribution and different hyperedge cardinal-
ity distributions. We find that, depending on the mean
hyperedge cardinality d, the (2, Smax)-core emerges as
either a continuous or a hybrid phase transition, with
scaling behavior

s2c − s∗2c ∼ (c− c∗)ζ (11)

for c − c∗ → 0+, where c∗ is the percolation threshold
and ζ is the critical exponent. s∗2c is the (2, Smax)-core
relative size right at the critical point: s∗2c = 0 for con-
tinuous phase transitions and non-zero for hybrid phase
transitions. The percolation threshold c∗ can be calcu-
lated by differentiating both sides of Eq. (8) over α and
then evaluating at the critical point, yielding

1 =

∞∑
k=1

∞∑
r=2

Q∗n(k)Qh(r)(k − 1)(r − 1)δ∗k−2(1− α∗)r−2.

(12)
If the phase transition is continuous, this equation re-
duces to

Qh(2)
c∗2 − c∗

c∗
= 1, (13)

where c∗2 is the second moment at the critical point. The
phase transition is continuous if

2Qh(3)(c∗2 − c∗)−Qh(2)2(c∗3 − 3c∗2 + 2c∗) < 0. (14)

(See SI Sec.I for details.) For d-uniform hypergraphs the
(2, Smax)-core percolation is (i) continuous with critical
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FIG. 3. (Color online) The relative size of (2, S)-core s2c as a
function of the mean degree c for hypergraphs with Poisson
degree distribution. for S = max(r − 1, 2) (a) and (b), and
S = 2, (b) and (d). (a) and (c) d-uniform hypergraphs .
(b) and (d) hypergraphs with Poisson hyperedge cardinality
distribution.

exponent ζ = 2 if d = 2; and (ii) hybrid with critical
exponent ζ = 1/2 if d > 2 (which is consistent with a
previous work [7]). For hypergraphs where both the ver-
tex degeree and hyperedge cardnality distributions are
Poissonian, the (2,max(r, 2))-core percolation is (i) con-
tinuous with critical exponent ζ = 2 if d < d̄ = 1; (ii)
continous with critical exponent ζ = 1 if d = d̄; and (iii)
hybrid with critical exponent ζ = 1/2 if d > d̄. The same
set of critical exponents was found for the heterogeneous-
K-core [6].

B. K = 2 ans S = 2

In this section we study the (2, 2)-core. A similar def-
inition of removable hyperedges was used in [29], where
the core obtained from the GLR procedure is used to
study the vertex cover problem in uniform hypergraphs
(See SI sec.II). In this case, Eq. (7) reduces to

δ =

∞∑
r=1

Qh(r)αr−1. (15)

The relative size of the (2, 2)-core can be calculated by
considering the probability that a randomly chosen ver-
tex is connected to at least two non-removable hyper-
edges and the probability that a degree-one vertex is
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FIG. 4. Phase diagram of (2,max(r, 2))-core percolation on
hypergraphs with Poisson vertex degree distributions. Black
circles and black line represenst the phase boundary of d-
uniform hypergraphs and hypergraphs with Poisson hyper-
edge cardinality distribution, respectivly.

connected to a hyperedge with less than (r − 2) other
degree-one vertices. This results in

s2c =

∞∑
k=2

Pn(k)

k∑
l=2

(
k

l

)
(1− δ)lδk−l. (16)

Eqs. (10) and (15) have the same critical point as
Eqs. (8) and (7). Therefore, for (2, 2)-core we recover
the result found in the graph case that both the (2, 2)-
core and the giant component emerge at the same critical
point [9]. In this case the phase transition is always con-
tinuous (see solid lines in Fig. 3 c and d) and for the
studied hyperedge cardinality and vertex degree distri-
butions we have η = 2. The condition of percolation
transition is still given by Eq. (5).

IV. THE CORE

A. core1

It is well known that the minimum edge cover problem
on graphs can be computed in polynomial time [11]. Yet,
this is not true for general hypergraphs [28]. The com-
putational complexity of the minimum hyperedge cover
problem can be related with the following GLR proce-
dure. First, we remove all hyperedges with cardinaltiy
one and hyperedges that contain vertices with degree one
(called leaves) together with all the vertices contained in
those hyperedges. Note that some of the vertices in those
hyperedges may have degree larger than one. After we
remove those vertices, the cardinality of other hyperedges
that contain those vertices will decrease, and if the hy-
peredge cardinality drops below two, we remove those hy-
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peredges. If eventually there is no core left, the difference
between approximate solution from this GLR procedure
and the exact solution is zero in the thermodynamic limit
(see SI Sec.II for details).

To study the core percolation on hypergraphs, we gen-
eralize the mean-field approach proposed for the graph
case [21]. We define two types of removable vertices: a
vertex is (i) α-removable if it is or can become a vertex
of degree one; (ii) β-removable if its degree is larger than
one and belongs to at least one leaf hyperedge. Dually, we
define two types of removable hyperedges: a hyperedge is
(i) δ-removable if it is or can become an leaf hyperedge;
(ii) ε-removable if it has cardinality r and is removed
because it is connected to (r − 1) β-removable vertices.
Consider a large uncorrelated random hypergraphH with
arbitrary vertex degree and hyperedge cardinality distri-
butions. We can determine the category of a vertex v
in H by the categories of its neighboring hyperedges in
the modified hypergraph H \ v with vertex v and all its
hyperedges removed from H, using the following rules:
(i) α-removable vertex: all neighboring hyperedges are
ε-removable; (ii) β-removable vertex: at least one neigh-
boring hyperedge is δ-removable. Similarly, we can de-
termine the category of a hyperedge e in H by the cate-
gories of its neighboring vertices in the modified hyper-
graph H\e with hyperedge e and all its vertices removed
from H, using the following rules: (iii) δ-removable hy-
peredge: at least one neighboring vertex is α-removable;
(iv) ε-removable hyperedge: at least one neighboring ver-
tex is β-removable. Let α (or β) denote the probability
that a random neighboring vertex of a random hyperedge
e in a hypergraph H is α-removable (or β-removable) in
H \ e. Let δ (or ε) denote the probability that a random
neighbor of a random vertex v in a hypergraph H is α-
removable (or β-removable) in H \ v. Then rules (i)-(iv)
enable us to derive a set of self-consistent equations:

α =

∞∑
k=1

Qn(k)εk−1, (17)

1− β =

∞∑
k=1

Qn(k)(1− δ)k−1, (18)

1− δ =

∞∑
r=1

Qh(r)(1− α)r−1, (19)

ε =

∞∑
r=1

Qh(r)βr−1. (20)

The relative size of core1 is given by

score1 =

∞∑
k=2

Pn(k)

k∑
l=2

(
k

l

)
(1− δ − ε)lεk−l. (21)

For hypergraphs with Poisson vertex degree distribu-
tion and different hyperedge cardinality distributions, we
find that the core emerges as a continuous phase transi-
tion (see Fig. 5),

score1 ∝ (c− c∗)ζ (22)
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FIG. 5. (Color online) The relative core size of score1 and
score1 for hypergraphs with Poisson degree distributions. (a)
sc1 for d-uniform hypergraphs with d = 2, 3.4. sc1, (b) and
sc2,(d), for hypergraphs with Poisson hyperedge cardinality
distribution and d-uniform hypergraphs for different values of
d.

with critical exponent ζ = 1 (see SI Sec.II for details).
The relation between the critical mean degree c∗ (perco-
lation threshold) and the hyperedge mean cardinality d
is represented in Fig. 6.

B. core2

We can define core2 that is associated with the vertex
cover problems by considering the following procedure.
First we remove all the vertices with degree one and all
the vertices connected to hyperedges with cardinality one
together with all the hyperedges connected to it. Note
that some of the hyperedges connected to those vertices
may have cardinality larger than one. After we remove
those hyperedges (defined as leaves), the degree of the
other vertices connected those hyperedges will decrease,
and if the vertex degree drops below two, we remove those
vertices. If the core size is non-zero, the vertex cover
problem is, in general, an NP-hard problem [13].

There are two types of removable vertices: (i) α-
removable vertices are vertices of degree one; (ii) β-
removable vertices are vertices with degree larger than
one that belong to at least one leaf hyperedge. Simi-
larly, there are two types of removable hyperedges: (i)
δ-removable hyperedges are hyperedges that are or can
become leaf hyperedges; (ii) ε-removable hyperedges are
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hyperedges that are removed because they are connected
to at least one β-removable vertex. The vertices obey
the same relations as before, i.e., Eqs. (17) and (18), and
for the hyperedges we derive the following self-consistant
equations:

δ =

∞∑
r=1

Qh(r)αr−1, (23)

1− ε =

∞∑
r=1

Qh(r)(1− β)r−1. (24)

Another way to obtain the same result is to use the fact
that the core2 of a hypergraph is the core1 of the dual
hypergraph (the dual of an hypergraph is a hypergraph
whose vertices and hyperedges are interchanged). Thus,
we can obtain the same results staring as shown in Eqs.
eqs (17) to (20) by the following transformation,

α→ δ,

δ → β,

β → ε,

ε→ α,

Qh(r) � Qn(r).

The relative size of the core sc is given by the number of
vertices connected to at least two non-removable hyper-
edges. Hence, we obtain

score2 =

∞∑
k=2

Pn(k)

k∑
l=2

(
k

l

)
(1− δ − ε)lεk−l, (25)

For hypergraphs with Poisson vertex degree distribu-
tion and different hyperedge cardinality distributions, we
find that the core emerges as a continuous phase transi-
tion (see Fig. 5)

score2 ∼ (c− c∗)ζ2 , (26)

with critical exponent ζ = 1 (see SI Sec.II for details).
Fig. 5 (d) shows that for a Poisson-Poisson hypergraph
the size of core2 starts to decrease at large values of c.
By increasing the number of hyperlinks connected to a
node, but keeping the cardinailty distribution constant,
the probability of a node being connected to a hyperedge
with cardinality one increases, and any node connected
to a hyperedge with cardinality one is automatically re-
moved. This effect is not relevant if the probability that
a node is connect to a hyperedge with cardinality one is
very small, 1 − exp(−c e−d) � 1. For large values of c
and d, this effect is only relevant if c ∼ exp(d).

For d-uniform hypergrath with Poisson vertex degree
distribution there is a simple relation between the crit-
ical mean degree (percolation threshold) and the mean
hyperedge cardinality:

c∗ =
e

d− 1
, (27)
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FIG. 6. Phase diagram of the core percolation on hypergraphs
with Poisson vertex degree distributions. Black circles and
black line represenst the phase boundary of d-uniform hyper-
graphs and hypergraphs with Poisson hyperedge cardinality
distribution, respectivly. (a) core1. (b) core2.

where e = 2.71828 · · · (See Ref. [29] or SI Sec.I for de-
tails). The relation between the critical mean degree c∗

(percolation threshold) and the hyperedge mean cardi-
nality d is represented in Fig. 6. The phase space of core2
is equal to the phase space of core1 if we interchanged the
mean cardinality d with the mean degree c. This is true
of course, because as mentioned before, the core2 of a
hypergraph is the core1 of the dual hypergraph.

V. CONCLUSION

Hypergraphs are natural generalizations of graphs.
The percolation problems on hypergraphs have much
richer phenomena than in graphs. For example, we find
there are two meaningful hypergraph cores related with
two classical combinatorial optimization problems in hy-
pergraphs, i.e., the hyperedge cover and vertex cover
problems, respectively. We show that the emergence of
the (2, S)-core strongly depends on the threshold S, i.e.,
it can emerge as either a continuous or a hybrid phase
transition with different critical exponents. The hetero-
geneity of vertex degree and the hyperedge cardinality
distributions is not fully explored here, which in princi-
ple could offer more interesting phenomena.
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