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We present a detailed path integral derivation of the topological response of gapped

free fermions, in 2 + 1 dimensions, to an external U(1) Gauge field. The well-known

Hall response is obtained by identifying the Chern-Simons term in the effective action

with the correct coefficient. We extend the result to 2d + 1 dimensions in which

the response is associated to a Chern-Simons term with a coefficient related to a

characteristic class coming from topological band theory. We comment on the bulk-

to-boundary principle which arises naturally when one considers the theory on a

manifold with boundary.
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INTRODUCTION

When a slab of a 2-dimensional electron gas at low temperatures is subject to an

external electric field, there exists a current flow in a direction perpendicular to the it in the

plane, linear in the field, with the coefficient being quantized in units of e2/h – the integer

quantum Hall effect (IQHE). The quantization of the Hall conductivity in the IQHE is one
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of the hallmarks of topological phases of matter. Using linear response theory, Thouless et

al.1 derived a formula for the transverse conductivity in terms of a topological invariant of

the occupied bands of the system. The IQHE response can be modelled by an effective field

theory for the associated Gauge field which is of the Chern-Simons type. This coupling is

inherently topological in the sense that it does not depend on any choice of a Riemannian

metric structure in the base space-time manifold. The Chern-Simons action functional de-

scribes an exactly solvable topological quantum field theory, with the correlation functions

being topological invariants, namely, knot invariants of the 3-manifold as discussed in Ed-

ward Witten’s seminal paper2. The Chern-Simons action appears, in addition to the usual

Maxwell term, as an additional term, allowed by Gauge-invariance, for the bulk theory. In

3+1 dimensions this term simply does not exist. The Chern-Simons coupling on a manifold

with boundary is not Gauge invariant – it has an “anomaly”. The anomaly is cancelled by

coupling the U(1) Gauge field to chiral edge modes, rendering the theory consistent. This

is an example of a general phenomenon occurring in topological phases of matter, where

one finds an anomaly inflow from the bulk to the boundary. In fact, symmetry-protected

topological phases (SPT) arising in free fermion systems can be understood from the stand-

point of anomalies and anomaly inflow, as was recently shown by Edward Witten3. This

was first conjectured by Furusaki et al. in4, where several results towards this idea were

obtained. The fact that topological phases are related to quantum anomalies in field theory

incorporates the notion that topological phases of matter are insensitive to the microscopic

details of the theory, including adding interactions consistent with the symmetries as long

as the bulk gap is not closed.

The Chern-Simons coupling appears perturbatively when one considers 2+1 dimensional

QED and considers the one loop effective action (see for example5). More generally, in 2d+1

dimensions, general Chern-Simons terms appear when considering Wilson fermions on an

hypercubic lattice6, the coefficient being proportional to the winding number of a map from

the Brillouin zone to the sphere associated with the fermion propagator. When the Wilson

fermions have a mass coupling to a domain wall, the low energy effective theory can be

described by chiral fermions bound to the 2d dimensional domain wall. The divergence of

the Chern-Simons current exactly reproduces the anomaly of the chiral fermion zeromode

bound to the domain wall. This is precisely the kind of phenomena occurring in topological

phases of matter and described in the previous paragraph. The latter specific case is similar
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to what we will describe in the paper, but in the general case of gapped fermions.

In this paper we provide a detailed path integral derivation of the topological response

of gapped fermions to an external U(1) Gauge field in 2d+ 1 dimensions. The effective field

theory is of the Chern-Simons type with a coefficient being a topological invariant. This

topological invariant can be described by the single particle Green’s function or, by inte-

grating over the frequency, by the Berry curvature associated to the occupied Bloch bundle

described in topological band theory. The formula obtained for the effective topological field

theory describing the response of the system is consistent with that obtained by Xiao-Liang

Qi et al. in7. The method used in the present manuscript to approach the path integral

uses a phase-space Wigner representation where position and momenta are treated in equal

footing. This method was used by G. E. Volovik and V. M. Yakovenko in8, when deriving the

Chern-Simons term for the superfluid 3He-A thin film, where the coefficient of the coupling

is also given by a momentum space topological invariant expressed in terms of the Green’s

function for the problem.

The present paper provides a detailed pedagogical review of topological band theory, the

Berry connection and the relation to the classification of complex vector bundles, which can

be of general interest for both physicists and mathematicians working in the field of topo-

logical phases of matter. The main point of this paper is to provide a detailed path integral

derivation of the bulk-to-boundary principle for gapped free fermions (with a U(1) charge

symmetry), which is fundamental to topological phases of matter, naturally associated, in

this framework, to anomalies in quantum field theory.

The paper is organized as follows: in section I we describe the considerations regard-

ing the free Hamiltonian used, review notions from topological band theory applied to a

translation invariant representative; in section II we review the concept of Berry connec-

tion on the Bloch bundle, provide the relevant formulae for the curvature in a coordinate

independent way and relate the Berry connection to a universal connection on the tauto-

logical vector bundle over the Grassmannian; in section III we briefly discuss the Wigner

representation that will be used to compute the path integrals later on; in section IV we

compute coefficient of the Chern-Simons term in 2 + 1 dimensions; in section V, the result

of the previous section is generalized to 2d + 1 dimensions; in VI we briefly comment on

the bulk-to-boundary principle arising from the previous derivations; finally, we present the

conclusions. Supplementary material is provided in the appendices: in Appendix A, one can
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find a self-contained discussion of characteristic classes and Chern-Simons forms in the con-

text of the present manuscript; on Appendix B a brief discussion of anomalies, namely gauge

anomalies, is presented with focus on the descent relations relevant for the bulk-to-boundary

principle appearing in topological phases of matter.

I. GAPPED FREE FERMIONS AND TOPOLOGICAL BAND THEORY

We consider the problem of determining the topological part of the response of gapped

free fermions minimally coupled to an external U(1) Gauge field in 2 + 1 dimensions and

later to generalize the result to D+1 ≡ 2d+1 dimensions (D = 2d spatial dimensions and 1

time dimension). For the discussion in this section and the two following ones (i.e. Sections

I, II and II) we take arbitrary d. In the absence of the Gauge field, the system is described,

in second quantization, by a quadratic Hamiltonian in fermion creation and annihilation

operators regularized on a lattice,

H =
∑
i,j

ψ∗i hijψj, (1)

where the sum goes over all the associated degrees of freedom, including the lattice sites.

There is a trivially conserved U(1) charge associated to H, namely the particle number

Q =
∑

i ψ
∗
iψi, generating transformations ψj → eiαψj and ψ∗j → ψ∗j e

−iα with real α. This

charge will be minimally coupled to a U(1) Gauge field.

Since we are interested in the topological part of the response, we can consider, without

loss of generality, that the free Hamiltonian is translation invariant, namely, it has the form,

H =

∫
TD

dDk

(2π)D
ψ∗(k) ·H(k) · ψ(k). (2)

In the above formula, the summation is over the first Brillouin zone which topologically is

a torus TD. The quantity ψ(k) := [ψ1(k), ..., ψn(k)]t (ψ∗(k) := [ψ∗1(k), ..., ψ∗n(k)]) is an array

of fermion annihilation (creation) operators with k ∈ TD. The assignment H : TD 3 k 7→

H(k) ∈ Herm(Cn) (where Herm(Cn) is the set of Hermitian matrices in Cn) is assumed to

be smooth. The integer n is the number of bands. We assume that the Fermi level is at

zero, and the gap condition is simply detH(k) 6= 0 for every k ∈ TD. One can also choose a

representative such that the Hamiltonian has a flat spectrum. Indeed, the matrix H(k) can
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be locally diagonalized by a matrix S(k) ∈ U(n), i.e.,

H(k) = S(k) · diag(ε1(k), ..., εn(k)) · S∗(k), (3)

where εi(k), 1 ≤ i ≤ n, are the eigenvalues of H(k), which are smooth functions. Then, by

taking εi(t, k) = (1 − t)εi(k) + tεi(k)/|εi(k)|, t ∈ [0, 1], due to the assumption of the gap,

provides a smooth deformation between any (translation invariant) representative and flat

spectrum representative:

Ht(k) = S(k) · diag(ε1(t, k), ..., εn(t, k)) · S∗(k), t ∈ [0, 1], (4)

with H0(k) ≡ H(k) and

H1(k) = S(k) ·

 −Ir 0

0 In−r

 · S∗(k), (5)

where r is the number of bands below the Fermi level.

The unitary matrix S is only defined locally and up to right multiplication by a matrix

in U(r)×U(n− r) which preserves the diagonal matrix diag(−Ir, In−r). Locally it assumes

the form

S(k) = [v1(k), ..., vr(k), vr+1(k), ..., vn(k)], (6)

where {vi(k)}1≤i≤r is an orthonormal basis for the fibre at k ∈ TD of the “occupied Bloch

bundle” (with total space E = {(k, v) ∈ TD×Cn : H(k)·v = −v} and the obvious projection

onto the first factor TD) and similarly {vi(k)}r+1≤i≤n is an orthonormal basis for the fibre

at k ∈ TD of the “unoccupied bundle” (the orthogonal complement bundle). The collection

{vi(k)}1≤i≤n yields an orthonormal basis for Cn. We can also write,

H(k) = −
r∑
i=1

vi(k)v∗i (k) +
n∑

i=r+1

vi(k)v∗i (k) (7)

= −P (k) + (In − P (k)) = In − 2P (k),

where ∗ denotes the Hermitian conjugate. In fact, the function H : k 7→ H(k) defines a map

φ : TD → Grk(Cn) = U(n)/U(r)× U(n− r). Since we are studying Hamiltonians up to an

equivalence that is given by smooth deformation without closing the gap, we are interested

in the homotopy class of φ. The homotopy class of φ does not depend on the translation
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invariant representative that we choose for H. The space Grk(Cn) is the set of k-planes over

Cn and it can be identified with the space of rank k orthogonal projections in Cn. Therefore,

the map φ : k 7→ P (k) defines, uniquely, a map to Grk(Cn). In the absence of any additional

generic symmetry, such as time reversal or particle hole symmetry, the homotopy class of

the map φ, for n large enough, completely classifies the system or equivalently completely

determines the isomorphism class of the occupied bundle9. The occupied bundle is simply

the pullback bundle E = φ∗E0, where E0 = {(V, v) ∈ Grk(Cn) × Cn : v ∈ V } is the

tautological vector bundle over the Grassmannian of k-planes on Cn.

II. THE BERRY CONNECTION ON THE BLOCH BUNDLE, THE

CURVATURE ENDOMORPHISM AND RELATION TO THE UNIVERSAL

CONNECTION

In this section we will review the concept of the Berry connection on the occupied

bundle E and understand it from the point of view of the classifying map φ : TD → Grk(Cn).

First, we endow the trivial bundle TD × Cn with the flat connection d (d acts trivially on

the global trivialization induced by the canonical basis of Cn) and the Hermitian structure

induced from the standard Hermitian inner product in Cn. Then, the occupied sub-bundle

E ⊂ TD ×Cn has a connection in a canonical way from the orthogonal projection ∇ = Pd.

This is the so-called Berry connection. In terms of a local frame field S = [v1, ..., vr],

∇(S) = P · d(S) = (S · S∗) · dS = S · (S∗ · dS), (8)

where S∗ is the Hermitian conjugate of S. Hence, in terms of S, the connection coefficients

read S∗ · dS. For simplicity of notation, we will now drop the matrix multiplication symbol

which will be implicitly understood. For instance, we will write S∗dS instead of S∗ ·dS. Now

let s be a section of E, i.e., s ∈ Γ(E). In terms of the canonical global frame on the trivial

bundle, I (represented by the n × n identity matrix), if s = Ia ≡ a ∈ Γ(E) ⊂ Γ(T 2 × Cn)

with a = [a1, ..., an] the array of the coordinate functions of s in the global frame I,

∇(s) = ∇(Ia) ≡ Pda, (9)
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where we identify P with the matrix in the global trivialization (i.e. P · I ≡ I · P ≡ P ).

Since s ∈ Γ(E), we have Pa = a, and hence

d(Pa) = dPa+ Pda = da⇒ Pda = da− dPa (10)

= da− (dPP )a.

Therefore, in terms of this global frame in the trivial bundle, the connection coefficients can

be interpreted as −dPP .

The curvature of the occupied bundle is locally given by

∇2(S) := (∇∧∇)(S) = S · (dS∗ ∧ dS + S∗dS ∧ S∗dS) = S · (dS∗(Ik − SS∗) ∧ dS), (11)

thus, locally, the curvature coefficients are given by dS∗(Ik − SS∗) ∧ dS ≡ dS∗P⊥ ∧ dS.

The curvature can also be seen as an endomorphism of the trivial bundle TD×Cn. Take

s = a ∈ Γ(E) ⊂ Γ(TD × Cn) and notice that

∇2(s) = ∇∧ (I(da− dPa)) = I(PdP ∧ da) = I(PdP ∧ (Pda+ dPa)) (12)

= I(PdP ∧ dPP )a,

where we noticed that PdPP ≡ 0 for any projector. Hence, the curvature endomorphism

(extended to act on the whole trivial bundle by considering its action on the projection onto

E) is given by

Ω = PdP ∧ dPP. (13)

We can also write, because P 2 = P ,

Ω = PdP ∧ dPP = (−dPP + dP ) ∧ dPP = dP ∧ dP ∧ P (14)

= dP ∧ (dP − PdP ) = dP (I − P ) ∧ dP

= dPP⊥ ∧ dP.

In terms of a local coordinate basis (x1, x2, .., xD) on the base manifold,

Ωij := Ω(
∂

∂xi
,
∂

∂xj
) =

∂P

∂xi
P⊥

∂P

∂xj
− ∂P

∂xj
P⊥

∂P

∂xi
. (15)

We will now show that the Berry connection is the pullback connection from a“universal”

connection on E0 equipped with a natural Hermitian structure coming from equipping Cn
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with the standard Hermitian structure. A local orthonormal frame field on E0 corresponds

to a local section of the bundle Vk(Cn) → Grk(Cn), namely s : U ⊂ Grk(Cn) → Vk(Cn),

with Vk(Cn) = {f ∈ Cn×k : f ∗f = Ik} being the set of orthonormal k-frames (also known

as the Stiefel manifold) with the projection π : f 7→ ff ∗ ∈ Grk(Cn). The tangent space

TfVk(Cn) at an arbitrary frame f has a vertical subspace which corresponds to the tangent

space at f to the fibre π−1(ff ∗) = {f · U : U ∈ U(k)},

Vf = {v ∈ Cn×k : v = f ·X, for some X ∈ u(k)}. (16)

The space Cn×k ⊃ Vk(Cn) has a natural Hermitian structure (〈u, v〉 = tr(u∗v)), and, there-

fore, we can introduce, from the real part of this Hermitian inner product, a Riemannian

metric in Vk(Cn). We then have a unique way to identify the horizontal subspace at f , take

Hf = V ⊥f , so that dfπ : Hf ⊂ TfVk(Cn)
∼=→ Tff∗Grk(Cn) is an isomorphism – this defines a

connection in the Ehresmann sense, the universal connection. Explicitly,

Hf = {v ∈ Cn×k : Re tr(v∗fX) = 0, for all X ∈ u(k)} (17)

= {v ∈ Cn×k : v∗f − f ∗v = 0}.

Parallel transport of a frame f along a curve γ : [0, 1]→ Grk(Cn) of k-planes of Cn is then

defined to be a lift γ̃ : [0, 1]→ Grk(Cn) such that,

dγ̃

dt
(t) ∈ Hγ̃(t), for all t ∈ [0, 1]. (18)

Equivalently,

dγ̃∗

dt
(t)γ̃(t)− γ̃∗(t)dγ̃

dt
(t) = 0, for all t ∈ [0, 1]. (19)

If we have a local frame field s : U ⊂ Grk(Cn) → Vk(Cn) such that s(γ(0)) = s(ff ∗) = f

and, for the sake of simplicity, assuming γ([0, 1]) ⊂ U , we can write,

γ̃(t) = s(γ(t)) · U(t), for all t ∈ [0, 1]. (20)

for some function U : [0, 1] → U(k) with U(0) = Ik. Write γ∗s(t) ≡ s for simplicity of

notation. We can then write the horizontality condition as,

dU∗

dt
s∗sU + U∗

ds∗

dt
sU − H.c. = 0, for all t ∈ [0, 1]. (21)
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or equivalently, using s∗s = Ik and the derivative ds∗

dt
s+ s∗ ds

dt
= 0,

U
dU∗

dt
+
ds∗

dt
s = 0, for all t ∈ [0, 1]. (22)

The group element U(1) ∈ U(k) provides parallel transport of elements of E0 also – hence

a universal connection on E0. If f is a unitary frame at ff ∗ = γ(0), then s(γ(1)) · U(1)

is a frame at γ(1). Hence, if we write v ∈ (E0)γ(0) as v = f · a (with a = [a1, ..., ak] being

the coordinates of v with respect to the frame f), then the image under parallel transport,

τγ(v) ∈ (E0)γ(1), is

τγ(v) = s(γ(1)) · U(1) · a. (23)

The local connection form, is immediately read off, in terms of the local frame field s

ω(
dγ

dt
) = −dU

dt
U∗ = U

dU∗

dt
= −ds

∗

dt
s = s∗

ds

dt
, (24)

hence,

ω = s∗ds. (25)

So we have a connection ∇ : Γ(E0) → Ω1(Grk(Cn), E0), which for local sections t ∈

Γ(E0|U) ⊂ Γ(U ×Cn) , U ⊂ Grk(Cn), written is terms of a local frame field s, t = s · a, acts

as

∇t = s · (da+ ωa) = s · (da+ s∗dsa) = ss∗d(s · a) = Pdt. (26)

Now if we have a map φ : TD → Grk(Cn), we can define, uniquely, a pullback connection

φ∗∇ : Γ(φ∗E0)→ Ω1(TD, φ∗E0), by

(φ∗∇)(φ∗s) = φ∗(∇s), for all s ∈ Γ(E0). (27)

The connection form in terms of a local frame field s for E0, reads ω = s∗ds. This, in turn,

induces a connection form in φ∗E0, explicitly,

φ∗ω = φ∗(s∗ds). (28)

This connection is precisely the Berry connection as one can immediately see. Take the

smooth map φ : TD → Grk(Cn) and an open cover of Grk(Cn), {Ui}i∈I , with associated
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local trivializations of Vk(Cn), {si : Ui → Vk(Cn)}i∈I . Then, {φ−1(Ui)}i∈I is an open cover

of T 2d and {φ∗si} is an atlas of orthonormal trivializations of E = φ∗E0 (or the associated

orthonormal frame bundle). Clearly, writing Si = φ∗si, i ∈ I,

∇(Si) = PdSi = Si · (S∗i dSi) = φ∗(si · (s∗i dsi)), for any i ∈ I. (29)

Hence, the Berry connection on the Bloch bundle is the pullback connection of the universal

connection defined on E0. Notice that although the isomorphism class of E depends only

on the homotopy class of φ, the specific form of the Berry connection depends explicitly on

φ. Characteristic classes (see Appendix A), though, such as the Chern classes, depend only

on the homotopy class of φ, or, equivalently, the isomorphism class of E = φ∗E0, therefore

do not depend on the connection chosen.

III. WIGNER TRANSFORM OF THE GREEN’S FUNCTION

Because we are interested in coupling our theory minimally to an external Gauge

field we will spoil the translation invariance of the original Green’s function G0(x1, x2) =

G0(x1 + a, x2 + a), with a = (a1, ..., aD+1). In the presence of an external U(1) Gauge field

the kinetic momentum of the electrons gets shifted,

pµ → pµ − eAµ(x), (30)

where e is the electric charge. It would then be useful to have a phase space representation for

the Green’s function in which xµ and pµ are present and we can formally write the minimal

coupling prescription and perform a Taylor expansion in the vector potential Aµ(x):

G−1
0 (p)→ G−1

A (p, x) = G−1
0 (p− eA(x)) ≈ G−1

0 (p)− eAµ(x)
∂G−1

0

∂pµ
(p). (31)

This is achieved through the Wigner transform. One considers a two point function (or,

more generally, a distribution) A(x1, x2) and performs a Fourier transform on the difference

of variables, i.e. the relative coordinate,

xµ := xµ1 − x
µ
2 . (32)

The remaining variable is the center of mass variable,

Xµ := (xµ1 + xµ2)/2. (33)
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The center of mass variable is a macroscopic variable that should be the scale at which the

Gauge field varies. The relative coordinate should be of the order of λF ≈ 1/pF , the Fermi

length. With respect to this variable, there should be no variation of the Gauge field.

Explicitly,

A(p,X) =

∫
dD+1x e−ip·xA(X +

x

2
, X − x

2
). (34)

If the original function A(x1, x2) was translation invariant, then the Wigner transform coin-

cides with the Fourier transform. The Wigner transform of the product (convolution in real

space) of two operators is given by the Moyal product expansion,∫
dD+1x A(x1, x)B(x, x2)→ A(p,X)B(p,X) +

i

2
{A,B}PB(p,X) + ..., (35)

where {., .}PB denotes the Poisson bracket in phase space.

To show the power of the Wigner representation, consider the Hamiltonian, in first quan-

tized form, given by,

H = p2/2 + V (x), (36)

where V is a potential. The differential operator associated with the Green’s function of the

problem is then

G−1 := D = i
∂

∂t
− p2

2
− V (x). (37)

More precisely,

G−1(x1, x2) =

(
i
∂

∂t1
− p2

1

2
− V (x1)

)
δ3(x1 − x2), (38)

In the Wigner representation,

G−1(p,X) = p0 − (pi)
2/2− V (X) = p0 −H(pi, X

i). (39)

Hence, G−1 became a phase space function in which the classical Hamiltonian appears

explicitly. Now, when we perform the minimal coupling to a Gauge field,

D → DA = i
∂

∂t
− eA0(x)− 1

2
(pi − eAi(x))2 − V (x) (40)

In the approximation A(x1) = A(X + x/2) ≈ A(X) the vector potential factors out of the

integral in the Wigner transform and we can write,

G−1
A (p,X) ≈ (p0 − eA0(X))− (pi − eAi(X))2/2− V (X). (41)

12



We can proceed even further by Taylor expanding with respect to A and write,

G−1
A (p,X) ≈ G−1(p− eA(x), X) = G−1(p,X)− eAµ(X)

∂

∂pµ
G−1(p,X). (42)

In our case, since we are considering fermions on a lattice, we will consider the Green’s

function G0(p,X) ≡ G0(p) = (p0In − H(pi))
−1, where pi is only defined modulo 2π (to

be more precise, only defined modulo translation by elements of the reciprocal lattice). In

the presence of a magnetic field pµ → pµ − eAµ(x). Notice that this replacement has a

catch since now the D-momentum variables are periodic. The justification for this was

done by Peierls10 and the resulting representation for the Green’s function is an analogue of

the Wigner representation in which the product of two operators is also given by a Moyal

product expansion. The details of the justification of this argument do not concern us here

and we will take this as an assumption. In analogy with the Wigner representation, we

perform the expansion,

G−1
A (p, x) ≈ G−1

0 (p− eA(x)) ≈ G−1
0 (p)− eAµ(x)

∂

∂pµ
G−1

0 (p). (43)

Notice how the Gauge field Aµ(x) couples minimally to the current density Jµ = ∂G−1
0 /∂pµ,

whose charge is naturally identified with the U(1) electric charge identified in the Introduc-

tion.

IV. DETERMINING THE TOPOLOGICAL RESPONSE BY PATH

INTEGRAL IN 2 + 1 DIMENSIONS

In this section D = 2, i.e, 2d + 1 = 3. We wish to determine the response of the

system with respect to an external U(1) Gauge field, on a flat space-time without boundary.

We consider the free partition function of the system

Z0 =

∫
[Dψ][Dψ∗] exp(iS(ψ, ψ∗)), (44)

with

S =

∫
d3x ψ∗(x)(i∂/∂t−H)ψ(x) =

∫
d3p

(2π)3
ψ∗(p)(p0In −H(pi))ψ(p). (45)

Up to constant factors, Z0 is formally given by the functional determinant

Det(G−1
0 ). (46)
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When we couple to a U(1) external Gauge field A,

Z0 → Z(A) =

∫
[Dψ][Dψ∗] exp(iS(ψ, ψ∗, A)) ∝ Det(G−1

A ). (47)

We want to perform an expansion in the Gauge field and its derivatives. Notice that Z(A)

must be Gauge invariant, therefore, we are only interested in terms which satisfy this con-

dition. In particular, in 2 + 1 dimensions, in lowest order in the field and its derivatives

there is a possible Gauge invariant term other than the usual Maxwell term, namely, the

Chern-Simons term: (1/4π)
∫
A∧dA. To be consistent with Gauge invariance this term has

to have an integer coefficent. We will show that this coefficient is precisely the first Chern

number of the Bloch occupied bundle.

Let us consider an expansion of Det(G−1
A ), given the approximation regarding the minimal

coupling we have written in the previous section,

Det(G−1
A ) ≈ Det(G−1

0 + Σ), (48)

with Σ(p, x) = −eAµ(x)∂G−1
0 /∂pµ(p). Formally, we can write,

Det(G−1
0 + Σ) = Det(G−1

0 ) ·Det(I +G0Σ) = Z0 ·Det(I +G0Σ), (49)

So, the effective action is given by expanding,

log Det(I +G0Σ) = Tr log(I +G0Σ) ≈ Tr(G0Σ)− 1

2
Tr(G0ΣG0Σ) + ... (50)

Now the products in the functional traces are convolutions, so we must use the Moyal

product expansion in the Wigner representation. We only care about the quadratic term

and, in particular, we are interested in the one being a function of Aµ(x) and ∂µAν(x). This

term is of the form

− 1

2

i

2
× 2×

∫
d3x

d3p

(2π)3
tr (G0(p)Σ(p, x){G0,Σ}PB(p, x)) = (51)

= −ie
2

2
×
∫
d3x

d3p

(2π)3
tr

(
G0(p)Aµ(x)

∂G−1
0

∂pµ
(p){G0, Aν

∂G−1
0

∂pν
}PB(p, x)

)
= i

e2

2

∫
d3xAµ(x)

∂Aν
∂xλ

(x)

∫
d3p

(2π)3
tr

(
G0(p)

∂G−1
0

∂pµ
(p)

∂G0

∂pν
(p)

∂G−1
0

∂pλ
(p)

)
.

Next, we will focus on the coefficients,

cµνλ :=

∫
d3p

(2π)3
tr

(
G0(p)

∂G−1
0

∂pµ
(p)

∂G0

∂pν
(p)

∂G−1
0

∂pλ
(p)

)
. (52)
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From G0G
−1
0 = In ⇒ dG0 = −G0dG

−1
0 G0, we can write,

cµνλ = −
∫

d3p

(2π)3
tr

(
G0(p)

∂G−1
0

∂pµ
(p)G0(p)

∂G−1
0

∂pν
(p)G0(p)

∂G−1
0

∂pλ
(p)

)
(53)

If we define a 1-form with values in the Lie algebra gl(Cn),

ω = G0dG
−1
0 :=

∑
µ

ωµ(p)dpµ, (54)

then,

cµνλ = −
∫

d3p

(2π)3
tr
[
ωµ(p)ων(p)ωλ(p)

]
. (55)

Clearly, cµνλ is invariant under cyclic permutation of (µ, ν, λ). Furthermore, since we only

care about Gauge invariant contributions to the action, we only care about the fully skew

contribution (1/3!)
∑

σ∈S3 sgn(σ)cσ(µνλ). Hence, we only care about the integral

− 1

3!

1

(2π)3

∫
tr (ω ∧ ω ∧ ω) . (56)

To compute the integral, it is useful to perform a Wick rotation, so that we can perform the

frequency integral in a standard way by complex contour integration. In this case G0 gets

replaced by

G0(p) = (−ip0In +H(pi))
−1 =

1

(−ip0 − 1)
P (pi) +

1

(−ip0 + 1)
P⊥(pi) (57)

and

G−1
0 (p) = −ip0In +H(pi) = −ip0In + (P⊥(pi)− P (pi)) = −ip0In + In − 2P (pi). (58)

We then have,

ω = G0dG−1
0 = G0

(
−idp0 −

∑
i

2
∂P

∂pi
dpi

)
= G0 (−idp0 − 2dP ) . (59)

Using the cyclic property of the trace (and being careful with the signs in the wedge prod-

ucts), we can write,

tr (ω ∧ ω ∧ ω) = (−i)12dp0 ∧ tr
(
G2

0dP ∧ G0dP
)

(60)

Simplifying,

(−i)12× tr[

(
1

(−ip0 − 1)2
P (pi) +

1

(−ip0 + 1)2
P⊥(pi)

)
dP (61)

∧
(

1

(−ip0 − 1)
P (pi) +

1

(−ip0 + 1)
P⊥(pi)

)
dP ].
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Using the identity PdPP = 0 and P⊥dPP⊥ = −P⊥dP⊥P⊥ = 0, we get,

(−i)12× [
1

(−ip0 + 1)2(−ip0 − 1)
tr
(
PdPP⊥ ∧ dP

)
(62)

+
1

(−ip0 + 1)(−ip0 − 1)2
tr
(
P⊥dPP ∧ dP

)
].

Now using the same identities, for the first term,

tr
(
PdPP⊥ ∧ dP

)
= tr

(
(P + P⊥)dPP⊥ ∧ dP

)
= tr(Ω). (63)

For the second term, using the cyclic property of the trace (taking care of the signs in the

wedge product),

tr
(
P⊥dPP ∧ dP

)
= −tr

(
dPP⊥ ∧ dPP

)
(64)

= −tr
(
dPP⊥dP (P + P⊥)

)
= −tr(Ω).

Hence, we get,

− 1

3!

∫
tr (ω ∧ ω ∧ ω) = −2(−i)

∫
dp0f(p0)

∫
T 2

tr(Ω) (65)

= 4π

∫
dp0f(p0)

∫
T 2

tr

(
iΩ

2π

)
=
(
c1(E) · [T 2]

)
×
(

4π

∫
f(p0)dp0

)
,

where

f(p0) ≡ 1

(−ip0 + 1)2(−ip0 − 1)
− 1

(−ip0 + 1)(−ip0 − 1)2
, (66)

and c1(E) · [T 2] denotes the pairing of the first Chern class of E, c1(E) = [tr(iΩ/2π)], on

the fundamental homology class [T 2]. The integral over p0 can be solved by considering

a complex contour which is a half circle based on the real line. The integral on the arc

vanishes (since f goes sufficiently fast to zero when |p| → ∞) and, hence, the integral over

the complex contour reproduces the integral over the real line. Using the Residue theorem,∫
f(p0)dp0 = 2πi× Resi(f) = −π. (67)

Hence,

− 1

3!

∫
tr (ω ∧ ω ∧ ω) =

(
c1(E) · [T 2]

)
× (−4π2). (68)
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Thus,

cµνλ|Gauge Inv. = − 1

3!

1

(2π)2
εµνλ

∫
tr(ω ∧ ω ∧ ω) = εµνλ

1

(2π)3

(
c1(E) · [T 2]

)
× (−4π2) (69)

= −εµνλ 1

2π

(
c1(E) · [T 2]

)
Hence, modulo non-universal terms,

Det(I +G0Σ) ≈ exp

(
ie2

2
cµνλ

∫
d3xAµ(x)

∂Aν
∂xλ

(x)

)
(70)

= exp

[(
ie2

4π
×
(
c1(E) · [T 2]

))
×
∫
A ∧ dA

]
≡ exp(iW (A)),

Hence, the effective action for the Gauge field is

W (A) = 2πσHall × CS(A), (71)

with σHall = (e2/2π)× (c1(E) · [T 2]) and CS(A) = (1/4π)
∫
A∧ dA being the Chern-Simons

coupling in 2 + 1 dimensions. The response is therefore a IQHE type response, namely,

δCS =

∫ (
1

2π
δA ∧ F

)
=

∫
d3x εµνλ

1

2

1

2π
δAµ(x)Fνλ(x). (72)

Hence, we get a current density

〈jµ(x)〉 ≡ δW

δAµ(x)
=

1

2
σHallε

µνλFνλ(x). (73)

In components, the previous equation yields the charge density

〈j0(x)〉 ≡ 〈ρ(x)〉 =
1

2
σHallε

0ijFij(x) = σHallF12(x) = σHallB(x), (74)

and the vector current density

〈ji(x)〉 =
1

2
σHall

(
εi0jF0j(x) + εij0Fj0(x)

)
= σHallε

ijEj(x), i ∈ {1, 2}, (75)

where B(x) and (E1(x), E2(x)) are the magnetic and electric fields, respectively. A few

comments are in order. We have implicitly assumed space-time was R1,2 and that the

external U(1) Gauge field came from a trivial bundle over this space-time. The derivation

for the general case of arbitrary space-time manifold M has to be done with more care. In

the next section we generalize this result for arbitrary d, i.e., in 2d+ 1 dimensions.
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V. CHERN-SIMONS RESPONSE IN 2d+ 1 DIMENSIONS

Here we take d arbitrary, i.e. we look for the generalization in D + 1 = 2d + 1

dimensions. For an Abelian Gauge field A, the Chern-Simons form Q2d+1 is given by (see

Appendix A for details)

Q2d+1(A,F ) =
id+1

(d+ 1)!(2π)d+1
A ∧ F d. (76)

Notice that the physical Gauge field and curvature are really −ieA and −ieF , respectively,

but we will take care of the constants in the end. Effectively, we wish to find a term in the

action which contains Aµ0(x)∂µ1Aµ2(x)...∂µ2d−1
Aµ2d(x). This means that we are interested

in the contribution

1

d+ 1
(−1)dTr

(
(G0Σ)d+1

)
(77)

And, regarding the Moyal expansion of the above expression, we collect the terms,

2d

d+ 1
×
(
i

2

)d
(−1)d

∫
d2d+1p

(2π)2d+1
d2d+1x tr

[
(G0(p)Σ(p, x)) ({G0,Σ}PB(p, x))d

]
. (78)

The factor of 2d is combinatorial (it has to do with all possible permutations of the Poisson

bracket inside the trace). We obtain,

cµ0...µd
∫
d2d+1x Aµ0(x)∂µ1Aµ2(x)...∂µ2d−1

Aµ2d(x), (79)

with

cµ0...µd =
2d

d+ 1
× ed+1

(
i

2

)d
(−1)d+1 (80)

×
∫

d2d+1p

(2π)2d+1
tr

(
G0(p)

∂G−1
0

∂pµ0
(p)

∂G0

∂pµ1
(p)

∂G−1
0

∂pµ2
(p)...

∂G0

∂pµ2d−1

(p)
∂G−1

0

∂pµ2d
(p)

)
= − 2d

d+ 1
× ed+1

(
i

2

)d ∫
d2d+1p

(2π)2d+1
tr

(
G0(p)

∂G−1
0

∂pµ0
(p)G0(p)

∂G−1
0

∂pµ1
(p)...G0(p)

∂G−1
0

∂pµ2d
(p)

)
,

where we have used, iteratively, {G0,Σ}PB = e∂µAν(∂G0/∂pµ)(∂G0/∂pν) and dG0 =

−G0dG
−1
0 G0. Since we are interested in the Gauge invariant contribution, we consider

only the contribution (1/(2d+ 1)!)
∑

σ∈S2d+1
cσ(µ0...µ2d), obtaining,

2d

d+ 1
× 1

(2d+ 1)!(2π)2d+1
ed+1

(
i

2

)d
(−1)

∫
tr(ω∧(2d+1)), (81)
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with ω = G0dG
−1
0 . Again, we perform a Wick rotation, in which G−1

0 (p) → G−1
0 (p) =

−ip0In +H(pi). Recall that,

G0dG−1
0 = G0(−idp0In − 2dP ). (82)

We are then interested in computing the p0 integral of

tr [G0(−idp0In − 2dP )...G0(−idp0In − 2dP )] . (83)

Using the cyclic property of the trace, this reduces to,

(2)2d(2d+ 1)(−idp0) ∧ tr
[
G0(G0dP )∧(2d)

]
(84)

Because of the identities PdPP = 0 and P⊥dPP⊥ = 0, only two contributions arise in the

trace,

tr
[
G0(G0dP )∧(2d)

]
=

1

(−ip0 − 1)d+1(−ip0 + 1)d
tr
(
P 2dPP⊥ ∧ dPP ∧ ... ∧ P⊥dPP

)
(85)

+
1

(−ip0 − 1)d(−ip0 + 1)d+1
tr
(
P⊥2dPP ∧ dPP⊥ ∧ ... ∧ PdPP⊥

)
=

1

(−ip0 − 1)d+1(−ip0 + 1)d
tr
(
PdPP⊥ ∧ dPP ∧ ... ∧ P⊥dPP

)
+

1

(−ip0 − 1)d(−ip0 + 1)d+1
tr
(
P⊥dPP ∧ dPP⊥ ∧ ... ∧ PdPP⊥

)
Now, the first trace,

tr
(
PdPP⊥ ∧ dPP ∧ ... ∧ P⊥dPP

)
= tr

(
Ω∧d

)
, (86)

while the second,

tr
(
P⊥dPP ∧ dPP⊥ ∧ ... ∧ PdPP⊥

)
= −tr

(
dP⊥P ∧ dPP⊥ ∧ ... ∧ PdPP⊥

)
(87)

= tr
(
dPP ∧ dPP⊥ ∧ ... ∧ PdPP⊥

)
= −tr

(
PdPP⊥ ∧ dP... ∧ PdPP⊥ ∧ dPP

)
= −tr

(
Ω∧d

)
Hence we get,

2d

d+ 1
× ed+1id

(−1)(2)d

(2d)!(2π)2d+1
tr
(
Ω∧d

)
× I(d), (88)
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where

I(d) ≡
∫ ∞
−∞

(−idp0)

(
1

(−ip0 − 1)d+1(−ip0 + 1)d
− 1

(−ip0 + 1)d(−ip0 + 1)d+1

)
. (89)

To determine I(d), we use the Residue theorem, which is valid since the denominators decay

sufficiently fast for d > 1. First, we re-write

I(d) = (−1)d
∫ ∞
−∞

dp0

(
1

(p0 − i)d+1(p0 + i)d
− 1

(p0 − i)d(p0 + i)d+1

)
(90)

= (−1)d(2πi)

[
1

d!

dd

dpd0

(
1

(p0 + i)d

) ∣∣∣∣
p0=i

− 1

(d− 1)!

dd−1

dpd−1
0

(
1

(p0 + i)d+1

) ∣∣∣∣
p0=i

]

= (−1)d(2πi)

[
(−1)dd(d+ 1)...(2d− 1)

d!

1

(2i)2d
− (−1)d−1(d+ 1)...(2d− 1)

(d− 1)!

1

(2i)2d

]
= (−1)d

(2πi)(2d− 1)!

(d− 1)!d!

1

22d−1
,

hence,

2d

d+ 1
× ed+1id

(−1)(2)d

(2d)!(2π)2d+1
tr
(
Ω∧d

)
× (−1)d

(2πi)(2d− 1)!

(d− 1)!d!

1

22d−1
= (91)

=
1

d+ 1
×
(

(−1)d+1ied+1

(2π)d(d)!

)
×

[
1

d!
tr

(
iΩ

2π

)∧d]
which for d = 1 reduces to

ie2

4π
× tr

(
iΩ

2π

)
, (92)

as evaluated previously. Evaluating the momentum integral, yields,

1

d+ 1
×
(

(−1)d+1ied+1

(2π)d(d)!

)
×
(
ch(E) · [T 2d]

)
, (93)

where ch(E) = [tr
(
eiΩ/2π

)
] is the Chern character of the occupied bundle E → T 2d. The

result is that we get a response described by the effective action W (A), with

exp(iW (A)) = exp

[
i

(
(−1)d+1 e

d+1

d+ 1

)
×
(
ch(E) · [T d]

)
×
∫
A ∧ 1

d!

F d

(2π)d

]
. (94)

Notice that the Chern-Simons form was given explicitly by (notice that the connection 1-

form is −ieA)

Q2d+1(−ieA,−ieF ) =
id+1ed+1

(d+ 1)!(2π)d+1
(−i)d+1A ∧ F ∧ ... ∧ F =

ed+1

(d+ 1)d!(2π)d+1
A ∧ F d

(95)
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Thus,

exp(iW (A)) = exp

[
2πi(−1)d+1 ×

(
ch(E) · [T 2d]

)
×
∫
Q2d+1(−ieA,−ieF )

]
(96)

= exp

[
2πi
(
ch(E) · [T 2d]

)
×
∫
Q2d+1(ieA, ieF )

]
.

We write the general result obtained in a compact way as,

W (A) = 2π
(
ch(E) · [T 2d]

)
×
∫
M2d+1

Q2d+1(ieA, ieF ). (97)

VI. BULK-TO-BOUNDARY PRINCIPLE

The reasoning behind detecting topological phases through anomalies goes as fol-

lows. We have seen that the effective action for the response of gapped free fermions to

an external U(1) gauge field A is of the Chern-Simons type Q2d+1(A,F ), namely W (A) =

2πk
∫
X
Q2d+1(A,F ) where X is the 2d + 1 space-time manifold and k = ch(E) · [T 2d]. The

gauge variation of this action is, by the descent relation (see Appendix B),

sQ2d+1(A,F ) ≡ sQ0
2d+1(A,F ) = −dQ1

2m(A,F ), (98)

meaning that if X is a manifold with boundary ∂X = Y ,

sW (A) = 2πk

∫
X

sQ2d+1(A,F ) = −2πk

∫
X

dQ1
2m(A,F ) = −2πk

∫
∂X=Y

Q1
2m(A,F ), (99)

where we have used Stokes’ theorem in the last step. This anomalous variation can only be

cancelled by degrees of freedom living on the boundary Y whose coupling to the gauge field

A also has an anomalous variation matching the previous. In 2d + 1 = 3 dimensions, the

topological invariant k reduces to the integer c1(E) · [T 2], and the anomaly in the variation

of the effective action is consistent with |k|-Weyl fermions living in the boundary coupled to

A (the handedness depending on the sign of k). These degrees of freedom are gapless and

express the bulk-to-boundary principle of topological phases of matter.

VII. CONCLUSIONS

We have presented a detailed path integral derivation of the topological response of

gapped free fermions to an external U(1) gauge field in 2+1 dimensions and later generalized
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to 2d + 1 dimensions. The method relies on choosing a translation invariant representative

for the Hamiltonian regularized on a lattice. This representative, in turn, allows us to

use the results of topological band theory expressing invariants of the gapped topological

phase in terms of the Berry curvature which appear later when performing the path integral

using a Wigner representation in which momentum and position are treated on an equal

footing. The price to pay for the latter, is that convolutions, which on momentum space

are simply products, are replaced by Moyal product expansions – an expansion on Poisson

brackets. The latter is exactly what allows us to obtain the relevant derivatives on the

Gauge field to arrive at the Chern-Simons couplings allowed, in 2d + 1 dimensions, by

Gauge invariance with a coefficient written in terms of the Berry curvature. The fact that

the coefficient of the Chern-Simons coupling, a topological invariant, can also be written

in terms of the single particle Green’s function for the problem, roughly
∫
R×T 2d tr(ω∧(2d+1))

with ω = GdG−1, depending only on the homotopy class of G−1 or, as denoted in Appendix

A, K(H) : R× T 2d → GL(Cn), also confirms the stability with respect to interactions [We

remark that in Appendix A we write the expression in more geometrical terms by writing

the integrand as a pullback by K(H) of a winding class of the group GL(Cn)]. In fact, this

expression in terms of the Green’s functions allows for the determination of this topological

invariant whenever an effective free fermion Hamiltonian (even if not static) description is

available coming, for example, from a self-energy correction to the inverse of the Green’s

function. We commented on the bulk-to-boundary principle which follows naturally as a

consequence of the result obtained. On reviewing concepts of topological band theory we

have also remarked the relation of the Berry connection and the universal connection built

on the tautological vector bundle over the Grassmannian manifold.
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APPENDIX A: CHARACTERISTIC CLASSES AND CHERN-SIMONS

FORMS

For the purpose of this paper, characteristic classes are de Rham co-cycles (i.e. closed

differential forms modulo exact forms) describing the twisting of an isomorphism class of a

(complex) vector bundle π : E →M . If one introduces a connection ∇ on E, then these de

Rham co-cyles are represented by invariant polynomials on the curvature of the connection,

hence they are even degree in cohomology. It is a classical result that these classes do not

depend on the choice of connection. The discussion presented here follows Luis Alvarez

Gaumé11 and Shigeyuki Morita12 in parallel. Let ω = [ωij]1≤i,j≤k=dimE and Ω = [Ωij]1≤i,j≤k

be, respectively, a matrix of 1-forms and 2-forms representing locally, with respect to some

local frame field on E defined over an open set U ⊂ M , the connection and the associated

curvature. Recall that Ω = dω+ω∧ω. For the discussion of characteristic classes, it suffices

to consider the polynomials

Pm(Ω) =
1

m!

(
i

2π

)m
tr Ωm, (100)

since all other invariant polynomials can be obtained as sums and wedge products of these. It

is clear that the above formula, by conjugation invariance, defines an even degree differential

form over M . The closure of Pm follows from the cyclic property of the trace and the Bianchi

identity dΩ + [ω,Ω] = dΩ + ω ∧ Ω− Ω ∧ ω = 0,

dPm(Ω) =
1

(m− 1)!

(
i

2π

)m
tr
(
dΩ ∧ Ωm−1

)
(101)

=
1

(m− 1)!

(
i

2π

)m
tr
(
ω ∧ Ωm − Ω ∧ ω ∧ Ωm−1

)
= 0

To show that these polynomials to not depend on the connection, it is standard to introduce

an homotopy operator. The construction goes as follows. There is a natural map π × id :

E × R→ M × R yielding a vector bundle over M × R with the R factor in the base space

parameterized by a coordinate t. The fibre of E ×R over an arbitrary point (p, t) ∈M ×R

is (π × id)−1{(p, t)} = {(v, t) ∈ E × R : π(v) = p} = Ep × {t} ∼= Ep, i.e. a copy of

Ep: the fibre over p ∈ M of E. A section of E can be seen as a section of E × R (i.e.

Γ(E) ⊂ Γ(E × R)), by associating Γ(E) 3 s ↔ s × id ∈ Γ(E × R) (notice that s × id :

M × R 3 (p, t) 7→ (s(p), t) ∈ E × R). There is a global vector field ∂/∂t ∈ Γ(T (M × R))

trivializing the R component of the fibre of the tangent bundle of M × R. Finally, a vector
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field X ∈ Γ(TM) can be seen as a vector field in Γ(T (M × R)) = Γ(pr∗1TM ⊕ pr∗2TR) by

Γ(TM) 3 X ↔ (pr∗1X, 0) ∈ Γ(T (M × R)), where pri, i = 1, 2, are the natural projections

onto M and R, respectively . Then, if we have two connections ∇0 and ∇1 on E, we can

introduce an associated connection ∇ on E × R with the following prescription:

(i) ∇ ∂
∂t
s ≡ 0 if s ∈ Γ(E) ⊂ Γ(E × R);

(ii) (∇Xs)(p, t) = (1 − t)(∇0
Xs)(p, t) + t(∇1

Xs)(p, t) for s ∈ Γ(E) ⊂ Γ(E × R) and X ∈

Γ(TM) ⊂ Γ(T (M × R)), and any (p, t) ∈ M × R (notice that, on the RHS, we have

used again Γ(E) ⊂ Γ(E × R) namely by taking ∇i
Xs ∈ Γ(E) ⊂ Γ(E × R), i = 0, 1).

It is easy to check that the above conditions completely determine the connection ∇. In fact,

if s = [s1, ..., sk] is a frame field for E|U , where U is an open set on M , then, s = [s1, ..., sk]

is a frame field for (E × R)|U×R, with the si’s now seen as sections of E × R, and,

∇s = s · ω, with ω = (1− t)pr∗1ω
0 + tpr∗1ω

1,

in which ω0 and ω1 are the local connection forms with respect to s for the connections ∇0

and ∇1, respectively, i.e., ∇is = s · ωi, i = 0, 1. The local form of the curvature is readily

determined by the equation Ω = dω + ω ∧ ω.

In fact, the continuous interpolation between two connections,

∇t = (1− t)∇0 + t∇1, t ∈ R, (102)

is, as one can easily prove, a connection on E for each t ∈ R. The differential forms

ωt = (1 − t)ω0 + tω1 and Ωt, t ∈ R, are the local forms of the associated connection forms

and curvature forms, respectively. The natural inclusion map it : M 3 p 7→ (p, t) ∈M × R,

of course, gives

i∗tω = ωt and i∗tΩ = Ωt, t ∈ R. (103)

Hence, we understand,

i∗tPm(Ω) = Pm(Ωt), t ∈ R. (104)

Since i0 and i1 are clearly homotopic, by homotopy invariance of cohomology, it is now

clear that Pm(Ω0) and Pm(Ω1) represent the same de Rham cocycle. It is useful to see their

specific relation as differential forms by means of the homotopy operator

Φ : Ω•(M × R) 3 η 7→
∫ 1

0

dt ι(
∂

∂t
)η ∈ Ω•−1(M),
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which one can easily show to satisfy,

i∗1η − i∗0η = (dΦ + Φd)η, for any η ∈ Ω•(M × R). (105)

Notice that after performing the interior product ι(∂/∂t), one identifies the differential form

appearing under the sign of integral with the pullback by it : M ↪→ M × R to have a

differential form on M .

Taking η ≡ S(ω,Ω), an arbitary polynomial of the connection and curvature, we get,

S(ω1,Ω1)− S(ω0,Ω0) = (dΦ + Φd)S(ω,Ω). (106)

In particular, taking, η = S(ω,Ω) ≡ Pm(Ωt), we get,

Pm(Ω1)− Pm(Ω0) = dΦ(Pm(Ω)), (107)

with Φ(Pm(Ω)) =
1

(m− 1)!

(
i

2π

)m ∫ 1

0

dt tr
(
(ω1 − ω0) ∧ Ωm−1

t

)
hence, the de Rham co-cycle associated to Pm(Ω) does not depend on the connection, as

claimed previously. On a single patch U , one can consider the trivial connection (with respect

to the local trivialization considered) and a reference connection ∇ with local connection

form ω. Then, the path of connections over this patch is ωt = tω. The previous homotopy

formula gives,

Pm(Ω) = dQ2m−1(ω,Ω), (108)

with

Q2m−1(ω,Ω) ≡ Φ(Pm(Ω)) =
1

(m− 1)!

(
i

2π

)m ∫ 1

0

dt tr
(
ω ∧ Ωm−1

t

)
. (109)

This renders Pm(Ω) as a locally exact form, as it should by Poincaré’s Lemma, and the

associated local differential form Q2m−1(ω,Ω) is called a Chern-Simons form. Notice that,

while the polynomials Pm(Ω) represent characteristic classes in the even degree cohomology

of the manifold M , the associated Chern-Simons forms are odd degree in the cohomology

of M . For the discussion in the present paper, the most relevant characteristic classes

are the Chern class c(E) = [det(I + iΩ/2π)] = 1 + c1(E) + c2(E) + ... (the ci(E)′s are

degree 2i cohomology classes and are called the Chern classes) and the Chern character

ch(E) =
[
tr
(
eiΩ/2π

)]
= dimE + ch1(E) + ch2(E) + ..., with chi(E) ≡ [Pi(Ω)]. In fact, the
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Chern class yields integer values when paired with the fundamental class of the manifold,

and this is why the coefficient of the Quantum Hall response is quantized. We remark that

the characteristic classes are natural with respect to pullbacks, meaning if φ : N → M is a

smooth map, we have ch(φ∗E) = φ∗ch(E) and similarly for all characteristic classes. This

property, in turn, shows that if we determine representatives of the characteristic classes for

the bundle E0 over Grk(Cn), then all the characteristic classes for E = φ∗E0 are determined

by pullback by the classifying map φ : M → Grk(Cn).

Variation of the Chern-Simons forms under a gauge transformation – relation

to the Winding Classes and the Odd Chern character

Suppose we want to see how the Chern-Simons local differential form Q2m−1(ω,Ω)

changes under a Gauge transformation. Namely, over the open set U where the bundle is

trivial, we have a local gauge transformation g : U → G, where G is the “Gauge group”,

giving rise rise to a local transformation pr∗1g over U × R which, by abuse of notation, we

will also denote by g. Then, we would like to evaluate the difference,

Q2m−1(ωg,Ωg)−Q2m−1(ω,Ω), (110)

where ωg, Ωg are the Gauge-transformed connection and curvature forms, i.e.,

ωg = g−1(d+ ω)g and Ωg = g−1Ωg. (111)

For this purpose, we consider the Gauge-transformed path of connections

ωgt = g−1dg + tg−1ωg = (1− t)g−1dg + tg−1(d+ ω)g, (112)

which is equivalent to a path between the Gauge-transformed trivial connection, g−1dg, and

the Gauge-transformed connection ωg. The homotopy formula for Q2m−1(ω,Ω) along this

path then yields

Q2m−1(ωg,Ωg)−Q2m−1(g−1dg, 0) = (dΦ + Φd)Q2m−1(ωg,Ω
g
). (113)

Because, by definition and by conjugation invariance, dQ2m−1(ωg,Ω
g
) = P2m(Ω

g
) ≡ P2m(Ω),

we have

Φ(dQ2m−1(ω,Ω)) = Φ(P2m(Ω)) ≡ Q2m−1(ω,Ω), (114)
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where we used the definition of the Chern-Simons form again. Hence, we find,

Q2m−1(ωg,Ωg)−Q2m−1(ω,Ω) = Q2m−1(g−1dg, 0) + exact form. (115)

Thus, up to exact terms, the Gauge variation of the Chern-Simons action is given by, re-

placing the path of connections tg−1dg and curvatures (t2 − t)(g−1dg)2 in the definition,

Q2m−1(g−1dg, 0) =
1

(m− 1)!

(
i

2π

)m ∫ 1

0

dt (t2 − t)m−1tr
[(
g−1dg

)2m−1
]
. (116)

The t integral can be done exactly since∫ 1

0

(t2 − t)m−1 = (−1)m−1

∫ 1

0

dt tm−1(1− t)m−1 ≡ (−1)m−1B(m− 1,m− 1) (117)

≡ (−1)m−1 (m− 1)!(m− 1)!

(2m− 1)!
,

where B(x, y) is the Beta function which equals the RHS for the specific integer values.

Hence, we obtain,

Q2m−1(g−1dg, 0) = (−1)m−1

(
i

2π

)m
(m− 1)!

(2m− 1)!
tr
[(
g−1dg

)2m−1
]
. (118)

This brings us to the relation of the Chern characters to the winding classes of the auto-

morphism group of a vector space. The de Rham cohomology of the automorphism group

of Ck is the same as that of a maximal compact subgroup which can be taken to be the

unitary group U(k). Because the unitary group is compact, it has a bi-invariant volume

form which allows us to represent cohomology classes by left and right invariant differential

forms. In fact, the cohomology group of the unitary group U(k), or equivalently, of GL(Ck),

is an exterior algebra generated by the bi-invariant forms of odd degree

ω2l−1 = (−1)l−1

(
i

2π

)l
(l − 1)!

(2l − 1)!
tr
[(
g−1dg

)2l−1
]
, l ∈ {0, ...,m}, (119)

namely, H∗{GL(Ck)} ∼= H∗{U(k)} = Λ(ω1, ..., ω2k−1). Clearly g∗ω2l−1 = Q2l−1(g−1dg, 0).

The reason to call the classes associated to the Gauge variation of the Chern-Simons terms

winding classes is then due to the following argument. The homotopy group π2n−1{GL(Ck)}

is isomorphic to Z provided k ≥ n, and the isomorphism is obtained by taking a map

f : S2n−1 → GL(Ck) to the integer ∫
S2n−1

f ∗ω2n−1. (120)
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The polynomial associated to the total Chern character can, locally, be written as the

differential of a Chern-Simons form, namely,

tr

[
exp

(
iΩ

2π

)]
=

∞∑
m=0

Pm(Ω) =
∞∑
m=1

dQ2m−1(ω,Ω) ≡ dQ(ω,Ω), (121)

with

Q(ω,Ω) ≡
∞∑
m=1

Q2m−1(ω,Ω) =
∞∑
m=0

Q2m+1 (122)

By the previous arguments, we get,

Q(ωg,Ωg)−Q(ω,Ω) = Q(g−1dg, 0) =
∞∑
m=0

Q2m+1(g−1dg, 0) (123)

=
∞∑
m=0

(−1)m
(
i

2π

)m+1
m!

(2m+ 1)!
tr
[(
g−1dg

)2m+1
]
.

Notice that the differential form on the RHS is closed and it is written in terms of the pull-

back by g of generators of H∗{GL(Cn)}. Thus, we have a way to associate to a map g : M →

GL(Ck) a cohomology class, namely [Q(g−1dg, 0)], which only depends on the homotopy class

of g. This cohomology class is called the odd Chern character13 and it is denoted by Ch(g).

Clearly, for maps f : S2n−1 → GL(Ck), we have
∫
S2n−1 Ch(f) =

∫
S2n−1 f

∗ω2n−1 thus the odd

Chern character provides the isomorphism mentioned previously π2n−1{GL(Ck)} ∼= Z.

There is a natural construction which gives an explicit relation between the Chern char-

acters and the odd Chern characters associated to the winding classes (mentioned in14),

which can also be taken as a definition. One begins by making the observation that there is

a fundamental map in the homotopy theory of unitary groups that induces an isomorphism

of homotopy groups πn{U(k)} ∼= πn+1{Grk(Ck ⊗ C2)}, for k ≥ n. To understand this map,

recall that if X is a topological space, the suspension of X, denoted Σ(X), is the space

obtained from X× [0, 1] by collapsing X×{0} to a point and collapsing X×{1} to another

point. Clearly Σ(Sn) = Sn+1. Also, if we have a continuous map f : X → Y , there exists

an associated map between suspensions Σ(f) : Σ(X) → Σ(Y ) (explicitly represented by

f × id : X × [0, 1]→ Y × [0, 1], then Σ(f) : [(x, t)]→ [(f(x), t)]). The suspension Σ(X) can

also be seen as two cones C+(X) and C−(X), each of them homeomorphic to X× [0, 1] with

X×{1} collapsed to a point, glued by the homeomorphic bases (X×{0} ⊂ C+(X), C−(X)).

The aforementioned map is a map σ : Σ {U(k)} → Grk(Ck ⊗ C2), then, for each map
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f : Sn → U(k) the composition σ ◦ Σ(f) : Sn+1 → Grk(Ck ⊗ C2) provides an isomorphism

of homotopy groups. The map σ is built as follows. First, in the suspension construction

we take instead of [0, 1] the interval [0,∞]. Then σ can be obtained by the assignment

U(k)× [0,∞] 3 (U, t) 7→ graph(tU) = {(w1, w2) ∈ Ck × Ck : w2 = U · w1}. (124)

We define e1 ≡ (1, 0) and e2 ≡ (0, 1) and identify Ck×Ck ∼= Ck⊗C2 with C2 = spanC{e1, e2}.

Then, clearly, we can write the following representations of graph(tU)

graph(tU) = {w ⊗ e1 + tU · w ⊗ e2 : w ∈ Ck} (125)

= {(1/t)U−1 · w ⊗ e1 + w · e2 : w ∈ Ck}.

any of these explicitly rendering graph(tU) ∈ Grk(Ck ⊗C2). The first representation allows

us to see that, when t = 0, graph(tU) = Ck ⊗ spanC{e1}, independently of U ∈ U(k), hence

U(k) × {0} gets collapsed into a point. The second representation allows us to see that,

when t =∞, graph(tU) = Ck ⊗ spanC{e2}, independently of U ∈ U(k), hence U(k)× {∞}

gets collapsed into a point. This shows that the previous assignment really does define a

map from Σ {U(k)} to Grk(Ck ⊗ C2). Now, the map σ : Σ {U(k)} → Grk(Ck ⊗ C2) allows

us to defined a vector bundle over Σ {U(k)}, namely σ∗(E0), where E0 is the tautological

k-plane bundle over Grk(Ck ⊗ C2). Over each cone C+{U(k)} and C−{U(k)}, the bundle

will be trivial because these spaces are contractible. We can identify the cone C+{U(k)} =

{[(U, t)] ∈ Σ{U(k)} : t ≤ 1} and C−{U(k)} = {[(U, t)] ∈ Σ{U(k)} : t ≥ 1}. Clearly, the

overlap is U(k)×{1}. Let f = [v1, ..., vk] be the standard frame of Ck, i.e., vi = (0, ..., 1, ...0),

i ∈ {1, ..., k}. Then, we can build a local frame field over C+{U(k)}, given by the local

sections,

v+
i ([(U, t)]) ≡ vi ⊗ e1 + tU · vi ⊗ e2, i ∈ {1, ..., k}, [(U, t)] ∈ C+{U(k)}. (126)

Similarly, over C−{U(k)}, we can use the local sections

v−i ([(U, t)]) ≡ (1/t)U−1 · vi ⊗ e1 + vi ⊗ e2, i ∈ {1, ..., k}, [(U, t)] ∈ C−{U(k)}. (127)

Clearly if [uij]1≤i,j≤k is the matrix representing U in the standard basis, we have, over

C+{U(k)} ∩ C−{U(k)} = U(k)× {1}

v+
i ([(U, 1)]) = U · (U−1 · vi ⊗ e1 + vi ⊗ e2) =

k∑
j=1

ujiv
−
j ([(U, 1)]), (128)
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FIG. 1. Visualization of the pullback bundle σ∗(E0) → Σ{U(k)}: the transition map in the

intersection of the cones is the identity map id : U(k)→ U(k).

This means exactly that the transition map is given by the identity map in U(k). The

bundle can be visualized in the following figure. Now, introduce a connection on σ∗(E0) and

denote by ω± and Ω± the local connections and curvatures, then, over C±{U(k)} , because

these neighbourhoods are contractible, the differential forms representing ch{σ∗(E0)} are

exact and given explicitly by dQ(ω±,Ω±), but Q(ω+,Ω+) − Q(ω−,Ω−) restricted to the

overlap C+{U(k)} ∩ C−{U(k)} is precisely Ch {id : U(k)→ U(k)}. If δ : H•(U(k)) →

H•+1(Σ{U(k)}) denotes the boundary map (the suspension) in the Mayer-Vietoris sequence

in cohomology, the previous statement can be compactly written as

ch {σ∗(E0)} = δCh {id : U(k)→ U(k)} . (129)

In the case of maps f : S2n−1 → U(k) we get an important relation. If we take the suspension

Σ(f) : S2n → Σ{U(k)}, then we get an associated bundle (σ ◦ Σ(f))∗E0 → S2n, with the

transition map now on the equator S2n−1 given by f : S2n−1 → U(k). Then, by the previous

formula,

ch {(σ ◦ Σ(f))∗E0} = Σ(f)∗δCh(id) = δCh(f), (130)

i.e., the top Chern-class is the suspension of the winding class f ∗ω2n−1 and its evaluation

gives the homotopy class of f . This result is in agreement with the fact that vector bundles

over spheres of a fixed rank are in one-to-one correspondence with homotopy classes of maps

from a sphere in one lower dimension to the general linear group of the given rank.

Finally an important remark is in order. In this paper, another relation between the

standard Chern characters and the odd Chern characters is yet identified. Suppose we are

30



given a smooth map H : X → Grk(Cn), for large n, where X is a 2d dimensional manifold

and where Grk(Cn) is identified as the set of unitary matrices:

Grk(Cn) ∼= {u ∈ U(n) : u2 = 1 and u has k negative eigenvalues}. (131)

In particular, in our case X = T 2d and H is the Hamiltonian in momentum space. Associated

with H, we can build a smooth map K(H) : R×X → GL(Cn), given explicitly by,

K(H) : (t, x) 7→ itIn +H(x) (132)

We use a different convention for the sign of the “energy” t variable, in order to simplify the

formulae. This map can also be understood as a composition. First we introduce the map

Kk : R×Grk(Cn)→ GL(Cn) given by

Kr : (t, u) 7→ itIn + u. (133)

Clearly, he have K(H) ≡ Kr ◦ (idR × H). Then (K(H))∗ω2d+1 is a closed differential

form decaying rapidly at infinity. What we have proven in the main text, is that through

integration over the fibre, i.e.,
∫
R : Ω•(X × R)→ Ω•−1(X), we have the relation,∫

R
{K(H)}∗ ω2d+1 = ch2d {H∗(E0)} = H∗ch2d(E0), for any d ≥ 1, (134)

or, ∫
R
(idR ×H)∗K∗kω2d+1 = H∗

∫
R
K∗kω2d+1 = H∗ch2d(E0), for any d ≥ 1. (135)

The above equation is true for every smooth map H : X → Grk(Cn) ⊂ U(n) and for every

X of dimension 2d, d ≥ 1. This means that for d ≥ 1, we can remove the H in the formula,

and simply write, ∫
R
K∗kω2d+1 = ch2d(E0), for any d ≥ 1. (136)

One is then tempted to guess an equality∫
R

Ch {Kk : Grk(Cn)× R→ GL(Cn)} = ch(E0) (137)

However, for d = 0, we find a different result. It is natural to expect that one can introduce

a “prescription” in the d = 0 expression such that Eq.(137) holds. In d = 0, we have,

explicitly, ∫
R
(idR ×H)∗K∗kω1 =

i

2π

∫
R

{
dt

t− i
(n− k) +

dt

t+ i
k

}
. (138)
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We can evaluate each of the integrals in the RHS by standard complex contour integral

techniques. Take for instance the first,
∫∞
−∞ dt/(t− i). If we take as a contour in the complex

plane the usual semi-circle based on the real line with radius R (on the upper plane for

instance, containing the pole), with the radius going to infinity, we find that, applying the

Residues theorem, ∫ ∞
−∞

dt

t− i
= πi (139)

Similarly, ∫ ∞
−∞

dt

t+ i
= −πi (140)

Hence, we would find, ∫
R
(idR ×H)∗K∗kω1 = k − n

2
(141)

Since we want to obtain the previous formula, we regularize the integration over the fibre in

the form

lim
δ→0+

i

2π

∫
R

{
dt

t− i
(n− k) +

dt

t+ i
k

}
eitδ,

in this case we see that only the first integral survives (taking the contour to be the semicircle

on the lower half plane based on the real line, there is now a damping term), and we get the

interesting result:∫
R

Ch {Kk : Grk(Cn)× R→ GL(Cn)} = −(n− ch(E0)) = −ch(E⊥0 ), (142)

where E⊥0 is the orthogonal complement bundle to the tautological k-plane bundle E0 ⊂

Grk(Cn) × Cn (of course, in the LHS,
∫
R should be understood with the regularization

discussed). This is still different from what we guessed. If we regularize it as

lim
δ→0+

i

2π

∫
R

{
dt

t− i
(n− k) +

dt

t+ i
k

}
e−itδ,

we get the desired result∫
R

Ch {Kk : Grk(Cn)× R→ GL(Cn)} = ch(E0).

Notice that this regularizations do not affect the higher dimensional (d ≥ 1) cases, so it is a

matter of convenience. We could also just adopt the symmetric formula,∫
R

Ch {Kk : Grk(Cn)× R→ GL(Cn)} = ch(E0)− n

2
.
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We argue that the topological response should not depend on n, since one can add an

arbitrary number of trivial flat bands and the response should be the same. Therefore,

we adopt the second regularization. Ultimately, the reason why this choice is physical can

probably be traced back to the time ordering of the fields, but we have decided not to pursue

this direction.

Chern-Simons forms for Abelian Gauge fields

For the particular case of an Abelian Gauge field, we set ω ≡ A and Ω ≡ F and

solving the integral defining Q2m−1, we get the simplified expression appearing in the main

text:

Q2m−1(A,F ) =
im

(m− 1)!(2π)m

∫ 1

0

dt tm−1A ∧ Fm−1 (143)

=
im

m!(2π)m
A ∧ Fm−1.

APPENDIX B: ANOMALIES AND DESCENT RELATIONS

When we have a symmetry at the level of the classical action of a theory, it may

happen that this symmetry does not hold at the quantum level. Namely, the measure in the

path integral may have an anomalous variation and this leads to an anomalous current flow.

One such example is the case of a gauge symmetry. Suppose we have a theory for fermions in

some representation r of a Gauge group G. They by integrating over the fermions we obtain

an effective action for the Gauge field W (A). An anomaly occurs if when we perform an

infinitesimal Gauge transformation the divergence of the current is non-vanishing. Namely,

if the Gauge transformation is parameterized by an infinitesimal group element g = 1 + v

then

A→ Ag = g−1(d+ A)g = A+ δvA ≡ A+Dv, (144)

with Dv = dv + [A, v] being the Gauge covariant derivative, and we have,

δvW (A) = G(v,A), (145)

for some non-vanishing functional G(v,A), so the effective action is not invariant. The Gauge

anomalies satisfy consistency conditions, called the Wess-Zumino consistency conditions15,

33



namely,

δv1δv2W (A)− δv2δv1W (A)− δ[v1,v2]W (A) = 0, (146)

for any two infinitesimal Gauge parameters v1, v2. This consistency conditions is analogous

to the relation d2 = 0 for the exterior derivative d. The Becci-Rouet-Stora (BRS) operator

s is an exterior derivative-like operator on the space of connections which commutes with

d (ds + sd ≡ 0). The previous equation reads s2W (A) ≡ 0. It is useful to introduce the

Fadeev-Popov ghost v ≡ g−1sg, where g is the Gauge transformation parameterizing the

Gauge field Ag = g−1(d+ A)g. Then, we can write,

sW (A) = G(v,A). (147)

By starting from the Gauge invariance of the Chern character associated to the Chiral or

Abelian anomaly and the index of a Dirac operator in flat space-times, it is possible to find

the so-called descent relations for the coefficients of the expansion of the Chern-Simons form

Q2m+1(A+ v, F ) = Q0
2m+1(A,F ) +Q1

2m(v, A, F ) + ...+Q2m+1
0 (v, A, F ), (148)

namely,

sQ0
2m+1(A,F ) + dQ1

2m(v, A, F ) = 0, (149)

sQ1
2m(v,A, F ) + dQ2

2m−1(v, A, F ) = 0,

...

sQ2m
1 (v, A, F ) + dQ2m+1

0 (v,A, F ) = 0,

sQ2m+1
0 (v,A, F ) = 0.

Now let M2m be a closed 2m dimensional manifold over which we have a gauge field A.

Taking G(v, A) ≡
∫
M2m Q

1
2m(v, A, F ), we have,

sG(v, A) = s

∫
M2m

Q1
2m(v,A, F ) =

∫
M2m

sQ1
2m(v2, A, F ) (150)

= −
∫
M2m

dQ2
2m−1(v,A, F ) = 0,

since ∂M2m = ∅. Hence G(v,A) is consistent with an anomaly for an effective action W (A).
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