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The coupling of a quantum system to an external environment has been known to improve energy
transport efficiency to a reaction center in certain light harvesting systems. The corresponding
dynamics is often modeled by a continuous time quantum walk on a disordered structure. Thus it is
natural to ask whether such environment-assisted effects can be observed for a quantum algorithm
based on quantum walks. In this work, we consider the problem of quantum search of a marked node
on a complete graph of n nodes in the presence of static disorder, and show that coupling this system
to an external environment can significantly improve the success probability of the algorithm. In
particular, we demonstrate that for strong disorder, characterized by a standard deviation σ for each
site energy, the presence of a thermal bath increases the success probability from 1/(nσ2) to at least
1/2 as the system relaxes to a steady, thermal state. Remarkably for a fixed σ, the system relaxation
time decreases for higher temperatures, within a large temperature regime, but is lower bounded
by the corresponding running time of quantum search in the absence of any bath. Furthermore, we
discuss for what regimes of disorder and bath parameters quantum speedup is possible. This work
suggests that naturally occurring open quantum system dynamics can be advantageous for analog
algorithms affected by static errors.

A major obstacle to the development of a scalable quan-
tum computer is its interaction with an environment, re-
sulting in decoherence and loss of quantum advantage
[1, 2]. Even if a quantum system is well isolated from
the environment, there are always experimental imper-
fections in the setting of the system’s parameters which
can lead to a unitary dynamics different from the desired
one and thus to errors in the quantum computation. In
the circuit model, these sources of error can be countered
using various error correction techniques [3]. However,
these have proven to be rather expensive as they require
a huge overhead in terms of the number of qubits [4].
Furthermore, for alternative models of quantum compu-
tation such as adiabatic [5, 6] or quantum walks [7, 8],
the theory of error correction is much less developed or
nonexistent [9–11].

On the other hand, there are quantum processes that
are enhanced by the interaction with an external envi-
ronment. It has been shown that quantum transport in
certain disordered structures like protein complexes in
biological systems [12–15] and others [16–18] can be en-
hanced for certain ranges of environment parameters. A
simplified explanation for this mechanism is that in a
disordered quantum system there are destructive inter-
ferences suppressing quantum transport [19] and since
decoherence processes suppresses these destructive inter-
ferences, transport efficiency is enhanced. Also, relax-
ation dynamics coming from the interaction with a ther-
mal bath can significantly improve quantum transport
provided that the bath spectral density is in a regime
which enhances certain desired transitions [20].

Since quantum transport is described as a continuous-
time quantum walk (CTQW) [12] it is natural to ask

whether an analogous environment-assisted phenomenon
could happen in a quantum walk based algorithm sub-
jected to static errors. In this work, we address this
question by considering the analog version of Grover’s
algorithm [21] which can be seen as an instance of search
by CTQW on the complete graph of n nodes [22]. This
algorithm finds a node in the graph, which is marked by
an oracular Hamiltonian, starting from an equal super-
position of all the nodes of the graph, in O(

√
n) time.

This running time is quadratically faster than the best
known classical algorithm, and is optimal [21].
We consider the effect of a static diagonal disorder term
of strength at most σ in the search Hamiltonian which
can be interpreted as a faulty oracle. We show that for
σ > O(1/

√
n) the algorithm loses its optimality. Above

this threshold, we find that the maximum probability of
success decreases with the size of the system and several
repetitions are needed to find the marked node.

By coupling the system to a thermal environment [23–25],
the transition from the initial state to the marked node,
which was suppressed in the unitary case due to disorder,
is now enhanced because of thermal relaxation. This is
because the dynamics occurs mostly in a two-dimensional
subspace spanned by the ground and first excited states
of the system, where the ground state has a large over-
lap with the marked node. So, the system relaxes to
a thermal state which has a constant overlap with the
solution and hence the algorithm exhibits a fixed-point
property. Thus only a constant number of repetitions
are needed to find the marked node and a measurement
can be made at any time after the system relaxes. In-
terestingly, the relaxation time and thus the algorithmic
running time improves with temperature as long as the
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two-level approximation is valid. For the maximum al-
lowed temperature and for a fixed disorder strength σ,
the scaling of this relaxation time matches the running
time of the corresponding closed system with the same
disorder strength, up to logarithmic factors.
Our work contrasts with the idea of engineering the dissi-
pation of a quantum system in order to drive a quantum
computation [26]. Instead, we study how a naturally oc-
curing coupling to a thermal bath can help when static
errors are present in the system Hamiltonian. This way,
our results also differ from those concerning thermal ef-
fects in adiabatic quantum computation [27–32].
Before proceeding with a careful analysis of the scaling
of the running time with the different bath parameters,
let us look at the closed system behavior in the pres-
ence of static disorder and analyze the algorithm in that
scenario.
Analog quantum search with diagonal disorder.— Let G
be a graph with n vertices V = {1, 2, .., n}. We con-
sider the Hilbert space spanned by the localized quantum
states at the vertices of the graph H = span{|1〉 , ... |n〉}
and the search Hamiltonian given by

Hsearch = − |w〉 〈w| − γAG, (1)

where |w〉 corresponds to the solution of the search prob-
lem, γ is a real number and AG is the adjacency matrix
of graph G [22]. The algorithm is said to be optimal
on graph G if starting from the equal superposition of
all states, i.e. |s〉 =

∑n
i=1 |i〉 /

√
n, there is a value of γ

such that the probability of finding the solution node
|w〉 upon a measurement in the vertex basis after a time
T = O(

√
n) is constant, irrespective of w. Here we con-

sider quantum walk on a complete graph which is equiva-
lent to the analog quantum search algorithm introduced
in [21]. The search Hamiltonian in that case is given
by

Hsearch = − |w〉 〈w| − |s〉 〈s| , (2)

where we have chosen γ = 1/n. The gap between the
ground state and the first excited state, up to an error of
O(1/n) is ∆ = 2/

√
n. The dynamics of the algorithm is

a rotation in a two-dimensional subspace containing the
initial state |s〉 and |w〉. The success probability Pw(t) =
sin2(t/

√
n) is close to one after a time T = π

√
n/2.

The analog search algorithm requires an oracle that
marks the solution node to an energy that is different
from the rest of the nodes. In order for the problem
to have a fair comparison to the standard Grover’s algo-
rithm in the circuit model, the energy at the marked node
is chosen to be −1 [33]. However, an imperfect implemen-
tation of the oracle might severely affect the algorithmic
performance. We define an imperfect oracle as one which
“marks” each node of the graph erroneously: each non-
solution node j is marked with an energy εj , while the
solution node, w is marked with an energy −1+εw (where

each εw is a random variable). The resultant effect can
be perceived as static disorder on the nodes of the com-
plete graph. Furthermore we assume that these errors
occurring due to imperfect implementations are fixed in
nature, i.e. each εi remains fixed across multiple itera-
tions of the algorithm. The case where the instance of
oracular defect varies over iterations has been discussed
in Ref. [34]. In our case, we have the following search
Hamiltonian

Hdis
search = − |w〉 〈w| − |s〉 〈s|+

n∑
i=1

εi |i〉 〈i| , (3)

where εi-s are the value of static disorder at vertex i and
are i.i.d random variables from some probability distri-
bution of mean 0 and standard deviation σ � 1. In fact,
the form of the probability distribution is not very im-
portant for the results we derive, as long as there is a
high probability that |εi| < σ, and also that in a typical
instance we have εi to be of the same order as σ.

The approximate eigenstates and eigenvalues of Hdis
search

are calculated in Sec. I of the Supplemental Material,
whereas here we summarize the results. Let |sw̄〉 be the
equal superposition of all nodes other than the solution
node |w〉. Then by using degenerate perturbation theory,
we find that the approximate ground and first excited
states of the system are obtained by diagonalizing the
search Hamiltonian projected onto the subspace spanned
by {|w〉 , |sw̄〉}. The Hamiltonian of the effective two level
system is

Hred =

[
−1 + εw −1/

√
n

−1/
√
n −1

]
, (4)

which interestingly only depends on the error at the or-
acle εw. The gap between the ground state and the first
excited state of the perturbed Hamiltonian is

∆ ≈
√
ε2w + 4/n (5)

and the success probability of the algorithm is given
by

Pw(t) = | 〈w|e−iHredt|s〉 |2 ≈ 1

1 + nε2w/4
sin2(

∆t

2
), (6)

which is plotted in blue in Fig. 1. The maximum success
probability is achieved at a time T = π/∆ and since it is
lower than 1, we need to repeat the algorithm 1/Pw(T )
times on average to find the marked node. Hence, Eq. (6)
shows that there are two distinct regimes for the average
running time

•Weak disorder (σ ≤ O (1/
√
n)): The maximum success

probability is constant and the frequency ∆ = O(1/
√
n).

Thus, the algorithm remains optimal.
• Strong disorder (σ > O (1/

√
n)): The maximum success

probability scales as O(1/(nσ2)) and ∆ = O(σ). Thus,
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one needs to repeat the algorithm ∼ nσ2 times on aver-
age, to obtain an expected running time of O(nσ).
This implies that a high degree of control in the system is
necessary to maintain quantum speed-up. In fact, unless
it is possible to decrease the disorder strength σ with the
system size, only a constant speed-up is possible with
respect to the classical case where search takesO(n) time.

FIG. 1: Comparison of the population at the solution
node with time for a complete graph of 1000000 nodes
where each node of the graph is affected by diagonal dis-
order of maximum strength σ = 0.007. Blue curve indi-
cates the closed system dynamics. The disordered system
is coupled to a thermal bath having an ohmic spectral
density with a cut-off frequency ωc = 2 while the system-
bath coupling g = 0.02. We numerically solve the Bloch-
Redfield master equation. The red curve corresponds to
the population at the solution when the thermal bath is
at an inverse temperature β = 40 while the green curve
corresponds to β = 15. We find that the amplitude at
the solution is always low in the unitary regime implying
that the algorithm needs to be repeated several times.
On the other hand, interaction with the thermal bath
results in amplifying the population at the solution with
time without compromising much in the algorithmic run-
ning time. Moreover, increasing the temperature of the
bath ensures faster relaxation and improves the running

time of the algorithm.

Analog quantum search with diagonal disorder in the
presence of a thermal bath.— We shall now see how the
coupling of the system to a thermal bath can increase the
success probability of the algorithm due to thermal relax-
ation. We will focus our analysis on the strong disorder
regime, since it is more realistic to assume that we would
not have sufficient control on the system to ensure that
the disorder strength σ is less than 1/

√
n, given that the

dimension of the Hilbert space n increases exponentially
with the number of qubits.
By looking at the approximate two level description of
Hdis
search given in Eq. 4 one can see that the transitions

from |sw̄〉 to |w〉 are suppressed due to the energy mis-
match εw. On coupling the system to a thermal bath, we
expect it to evolve to a thermal state which enhances the
aforementioned transition due to thermal relaxation. In
fact, in the zero temperature regime, we expect the sys-
tem to relax to the ground state and thus, if the ground
state has a large overlap with |w〉, we obtain a maxi-
mum probability of success close to 1, in spite of disor-
der.
In the strong disorder regime, we obtain that the ground
state of Hred is approximately |w〉 only if the random
variable εw � −1/

√
n, which happens with probability of

approximately 1/2 assuming the probability distribution
is symmetric around 0. In order to ensure that almost
always |w〉 has a large overlap with the ground state we
choose the parameter γ = (1−σ)/n, instead of the value
1/n mentioned before and chosen in Ref. [21]. This choice
does not change the scaling of the average running time
of the search algorithm with disorder, which is stillO(nσ)
on average and requires ∼ nσ2 repetitions. The gap be-
tween the ground state and the first excited state, as re-
sult of this choice of γ becomes ∆ = σ− εw +O(1/(nσ))
and the approximate eigenstates to first order in pertur-
bation theory are

|λ1〉 ≈ |w〉+
1√

n(σ − εw)
|sw̄〉 , (7)

|λ2〉 ≈
1√

n(σ − εw)
|w〉 − |sw̄〉 , (8)

which are obtained in an analogous way as shown in Sec. I
of the Supplemental Material. With this new choice of
γ, the overlap of the ground state with the marked node
is close to 1 with high probability, as desired.
We consider the following Hamiltonian which describes
the interaction of the system with a thermal bath of har-
monic oscillators

HI =

n∑
i=1

∑
α

giα(aiα + a†iα) |i〉 〈i| , (9)

where a†iα and aiα are the bath creation and annihilation

operators obeying [aiα, a
†
jβ ] = δi,jδα,β , i.e. we consider

that each node |i〉 of the complete graph is coupled to
a bosonic bath, which we assume to be at an inverse
temperature β (throughout the article we are working in
units where Boltzmann constant kB = 1). Furthermore
we assume that the bath temperature is low enough so
that the transitions to states higher than the first excited
state are negligible. To ensure that this happens we need
β � β∗ = O (log(n)).
To describe the evolution of the system’s density matrix
we first assume that the coupling between each site of
the system and the bath is considered to be identical
(giα = g, for all i, α) and that g is sufficiently weak so
that the system and the bath remain uncorrelated at all
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times. Secondly, we consider that the time scale of decay
of the bath correlation functions δt is much faster than
the relevant time-scales of the system, i.e. the Markov
approximation is valid. The condition g � 1/δt en-
sures that this is indeed the case. These assumptions
lead us to the well known Bloch-Redfield master equation
[24, 25, 35]. This equation allows us to resolve system
time-scales which, for the weak disorder regime, are of
O(
√
n) and thus are important to understand the regimes

where the algorithm remains optimal. This analysis is
done in Sec. II-IV of the Supplemental material. In the
strong disorder regime, as the system time-scales are of
O(1/σ)�

√
n we are not interested in resolving this time

scale and so we can take the secular approximation [25].
The condition g �

√
σ/δt ensures that both the secular

and Markov approximations are valid (see Sec. V of the
Supplemental Material).
Let ρij = 〈λi| ρ |λj〉 be the density matrix elements of the
system, expressed in its eigenbasis. The master equation
that describes the time-evolution of the population of
ground and first excited states of the system after taking
the secular approximation is

ρ̇kk =
∑
l 6=k

Wklρll −
∑
l 6=k

Wlkρkk, (10)

where k ∈ {1, 2} and l ∈ {1, 2}. The transition rates are
given by

Wkl =

{
2πJ(ωkl)ΛklN (ωkl), ωkl < 0

2πJ(ωlk)Λkl

(
N (ωlk) + 1

)
, ωkl ≥ 0

(11)

with N (ω) = 1/(eβω − 1) and Λkl =
∑
i |cikcil|2.

The coefficients cik are obtained from the basis change
|i〉 =

∑
k cik |λk〉. We consider the spectral density of

the bath to be ohmic with an exponential cut-off, i.e.
J(ω) = ηg2ωe−ω/ωc , and that the cut-off frequency ωc
to be a constant larger than the system energy scale, i.e.
ωc > 1. Also, η is a constant normalization factor.
From Eq. (7), we see that the population at the solution is
approximately the population of the ground state. Using
this and Eq. (10), we obtain

Pw(t) ≈ρ11(t) +O
(

1

σ
√
n

)
(12)

≈1− e−t/Trel

1 + e−β∆
+O

(
1

σ
√
n

)
. (13)

The relaxation time is

Trel ∼
1

Λ12J(∆)
tanh

(
β∆

2

)
, (14)

where Λ12 can be calculated from Eqs. (7) and (8) which
yield Λ12 = O

(
1/(nσ2)

)
. We obtain thus a quantum

algorithm that is run simply by thermal relaxation and

whose running time is given by Trel. The probability of
success is given by the ground state population of the
Gibbs state

Psuc = (1 + exp(−β∆))−1 (15)

which is always larger than 1/2. This is an important ad-
vantage with respect to the unitary, disordered algorithm
since the population at the solution node only increases
with time and avoids the need to repeat the algorithm
several times.
However, a careful analysis of the relaxation time is
needed to ensure that any quantum advantage re-
mains.
Zero temperature (β → ∞): When the thermal bath is
at zero temperature, i.e. when β → ∞, the relaxation
time of the system is Trel(∞) = O

(
nσ/ηg2

)
.

High temperature (β∗ � β � 1/σ): In this regime of
temperature, tanh(βσ/2) ≈ βσ/2. This gives us that
the relaxation time, Trel(β) = O

(
nσ2β/ηg2

)
. Thus the

ratio,

τ =
Trel(β)

Trel(∞)
= βσ � 1. (16)

This shows that increasing the temperature actually en-
sures faster relaxation to the thermal state thereby im-
proving the algorithmic running time. This has been
plotted in Fig. 1 where we find that relaxation is faster
for the thermal bath at β = 15 (green) as compared to
β = 40 (red). Also observe the distinct difference in
the dynamics of the population at solution of these two
curves as compared to the unitary scenario (blue). The
probability at the solution is considerably higher in the
presence of a thermal bath.
In order to analyse the fastest relaxation time we can ob-
tain in this framework, it is crucial note that the vailidity
of the secular and Markov approximations implies that
we have to restrict the system-bath coupling to a value
g �

√
σ/δt. The larger the g the fastest the relaxation,

and so the relaxtion time is minimized for g = χ
√
σ/δt,

where χ is some small constant.
We prove in Secs. VI and VII of Supplemental Material
that the bath-correlation timescale δt is δt ∼ ωc at zero
temperature and is given by δt ∼ β at finite temperature.
This implies, for zero temperature the lower bound for
the relaxation time is Trel(∞) = Ω (n) which is no better
than classical search. For finite temperatures however,
we have that Trel(β) = Ω

(
nσβ2

)
. The relaxation time

decreases for higher temperatures but it is necessary to
keep β > O (log(n)) for the two-level approximation to
be valid. Hence, the fastest relaxation possible in this
framework is

Trel = O
(
nσ(log n)2

)
, (17)

which matches the running time of the unitary disordered
case up to a logarithmic factor.



5

From our observation it is perhaps tempting to conjec-
ture whether a stronger value of g can improve the relax-
ation time further and whether one can obtain a running
time that is better than O(

√
n), albeit violating the as-

sumption that the bath is Markovian. To the contrary in
Sec. VIII of the Supplemental Material, we use the proof
of Ref. [21] to show that the lower bound for any open
quantum search algorithm is in fact O(

√
n). We show

in Sec. III of the Supplemental Material, that this lower
bound can be obtained in the absence of static disorder,
for certain ranges of bath parameters.
Discussion— We have analyzed the robustness of quan-
tum analog search algorithm in the presence of diagonal
static disorder and showed that the algorithm loses op-
timality for a disorder strength σ > O(1/

√
n). In this

regime, the success probability decreases with the system
size and the algorithm needs to be repeated nσ2 times on
average, to have a running time of O(nσ).
We have shown that, if this system is coupled to a ther-
mal bath, it is possible to significantly increase the suc-
cess probability of the algorithm, from 1/(nσ2) to a fixed
value larger than 1/2, due to thermal relaxation. More-
over, the algorithmic running time improves with tem-
perature due to faster relaxation. For an appropriate
choice of bath parameters, we obtain an algorithm in the
open regime whose running time is close to that of the
disordered unitary case, with the added advantage that
only a constant number of repetitions are needed.
It would be interesting to explore whether a similar effect
holds when there is an unkown number of solutions to the
search problem. In such a case, the dissipative dynamics

could lead to a new quantum algorithm for fixed-point
search assisted by the environment, requiring no addi-
tional resources [36, 37].
Our results can also be extended to the spatial search
algorithm on other graphs [38–40] provided that there is
a large gap between the two highest eigenvalues of the
adjacency matrix of the graph, as the two level approx-
imation remains valid. Furthermore, it would be worth
exploring whether a non-Markovian bath could lead to
faster thermal relaxation and whether it is possible to
get close to the proven lower bound of O(

√
n) even in

the presence of strong disorder [20, 41].
Finally, our work opens up possibilities to study whether
non-engineered open quantum system dynamics can be
beneficial for other analog quantum algorithms affected
by static errors.
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Supplemental Material

I. ANALOG QUANTUM SEARCH WITH STATIC ERRORS

The analog search algorithm requires an oracle that marks the solution node to an energy that is different from the
rest of the nodes. In order for the problem to have a fair comparison to the standard Grover’s algorithm in the circuit
model, the energy at the marked node is chosen to be −1 [22]. However an imperfect implementation of the oracle
might severely affect the algorithmic performance. We define an imperfect oracle as one which “marks” each node
of the graph erroneously: each node non-solution node j is marked with an energy εj , while the solution node, w
is marked with an energy −1 + εw (where each εw is a random variable). The resultant effect can be perceived as
an introduction of static disorder to the nodes of the complete graph. We consider that these errors are systematic
i.e. we assume that the value of each εj does not change over different iterations of the algorithm. We have thus the
following search Hamiltonian

Hdis
search = − |w〉 〈w| − |s〉 〈s|+

n∑
i=1

εi |i〉 〈i| , (S1)

where εi is the value of static disorder at vertex i and are i.i.d random variables from some probability distribution
of mean 0 and width 2σ. In fact, the form of the probability distribution is not very important for the results we
derive, as long as there is a high probability that −σ ≤ εi ≤ σ, and also that in a typical instance we have εi to be of
the same order as σ. We assume that σ � 1 and that one can estimate the value of σ without having access to the
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individual εis. Using perturbation theory we calculate the approximate system eigenstates. To do so, let us rewrite
the Hamiltonian in the following form

Hdis
search = − |w〉 〈w| − |sw̄〉 〈sw̄|︸ ︷︷ ︸

H0

− 1√
n

(|w〉 〈sw̄|+ |sw̄〉 〈w|) +

n∑
i=1

εi |i〉 〈i|︸ ︷︷ ︸
V

, (S2)

where we have neglected terms of order O(1/n). It is expected that the strength of the perturbation V should be
dominated by the disorder when σ � 1/

√
n, whereas if σ � 1/

√
n we expect the algorithm to be unaffected by

disorder. In fact we will see that this threshold is very important for the running time of the algorithm.
Since H0 has two degenerate eigenstates |w〉 and |sw̄〉, we apply degenerate perturbation theory to obtain the approx-
imate ground and first excited states of the system. At first order, these are calculated by the diagonalization of the
Hamiltonian projected onto this degenerate subspace, which is given by

Hred =

[
−1 + εw −1/

√
n

−1/
√
n −1 + ε̄

]
, (S3)

where, εw is the strength of disorder at the solution node |w〉 and ε̄ =
∑
i6=w εi/(n− 1) is the mean of the disorder at

all sites other than the solution. We will neglect the random variable ε̄ because it has 0 mean and its fluctuations are
of O(σ/

√
n)� O(1/

√
n).

From Eq. (S3) it is clear that the dynamics is dominated by the value of disorder at the marked vertex. The
diagonalization of Hred yields the following eigenvectors

|λ(1)
1 〉 =

1

K

(
1√
n
|w〉+

(
∆− εw

2

)
|sw̄〉

)
(S4)

|λ(1)
2 〉 =

1

K

((εw
2
−∆

)
|w〉+

1√
n
|sw̄〉

)
, (S5)

where K =
√

( εw2 −∆)2 + 1/n is the normalization factor. The corresponding eigenvalues are

λ
(1)
1 = −1 + εw/2−∆ (S6)

λ
(1)
2 = −1 + εw/2 + ∆ (S7)

where the gap ∆ is given by ∆ = λ2 − λ1 =
√
ε2w + 4/n. The success probability of the algorithm, also calculated at

first order in perturbation theory, is given by

P (1)
w (t) = | 〈w| exp−iHGt |s〉 |2 ≈ 1

1 + nε2w/4
sin2(

∆t

2
). (S8)

The probability P
(1)
w (t) is maximum at T ′ = π/∆, P

(1)
w (T ′) = 1/(1 + nε2w/4) and hence the algorithm needs to be

repeated 1/P
(1)
w (T ′) times on average in order to find the marked vertex. This gives the average running time as

Tdis =
π
√
n

2

√
1 +

nε2w
4
, (S9)

where we assumed that εw takes the same value if one repeats the algorithm using the same system (it is a systematic
error). We have thus two regimes of disorder:

Weak diagonal disorder regime: As long as σ ≤ O(1/
√
n), we have that nε2w < 1. Thus, in this regime

the algorithm keeps an optimal running time of O(
√
n) as after this time the probability of observing the solution

state is a constant.

Strong diagonal disorder regime: However beyond this threshold of σ, i.e. when nσ2 � 1, we expect
that with high probability nε2w � 1 and thus the gap between the ground state and the first excited state is
∆ ≈ |εw|/2 ≤ σ/2. Also from Eq. (S8) we find that after a time of T1 = π/εw = O(π/σ), the probability of observing
the solution is O(1/nσ2). Thus the algorithm needs to be repeated O(nσ2) times to obtain an average running time



7

of T = O(nσ). If we assume that σ depends on n as σ = n−α, the algorithm is sub-optimal for α < 1/2. The ground
state of the Hamiltonian (not normalized) is given by

|λ(1)
1 〉 ≈

{
− |w〉+ 1

|εw|
√
n
|sw̄〉+O( 1

nε2w
), if εw < 0

− 1
|εw|
√
n
|w〉+ |sw̄〉+O( 1

nε2w
), if εw > 0

(S10)

and thus it has a large overlap either with |w〉 or with |sw〉 depending on the sign of the random variable εw. As
explained in the main text we can ensure that the ground state has always a larger overlap with the solution by
shifting the parameter γ.

At this point, it is also important to understand the order of magnitude of the terms we have neglected in perturbation
theory. The magnitude of the second order corrections to the eigenvalues λ1 and λ2 is of O(|V |2). This means that
we expect that Eq. (S8) is valid for a timescale t� 1/|V |2, which is sufficient for the discussion of the running time
that we have done previously. Furthermore, it is possible to show that the terms we have neglected in the probability
due to second order corrections to the eigenstates are of O(1/n).

II. BLOCH-REDFIELD MASTER EQUATION FOR A TWO LEVEL SYSTEM

The interaction of a quantum system with a thermal bath induces relaxation dynamics which eventually leads the
system to a thermal state. We want to calculate the population at the solution state |w〉 with time. The analog
search Hamiltonian can be approximated by a two level system as long as the temperature of the bath is less than
the gap between the first excited state and the rest of the energy levels. As seen previously, this is also true when the
algorithm is affected by static disorder at the nodes of the graph. Throughout our analysis we shall assume that the
bath temperature is such that the system can be well approximated by a two level system.
Consider a system Hamiltonian which can be approximated as a two-level system with ∆ being the gap between
the ground state and the first excited state. We assume that the system interacts with a thermal bath that whose
Hamiltonian is given by

HR =

n∑
i=1

∑
α

ωαa
†
iαaiα, (S11)

with [aiα, a
†
jβ ] = δi,jδα,β . Furthermore, we will consider the interaction Hamiltonian given by

HI =

n∑
i=1

∑
α

giα(aiα + a†iα) |i〉 〈i| , (S12)

i.e. each node of the graph is coupled to an independent bosonic bath, which we assume to be in a thermal state at
temperature 1/β (throughout the article we are working in units where the Boltzmann constant kB = 1). Each site
|i〉, rewritten in the eigenbasis of the system is expressed as |i〉 =

∑
k cik |λk〉. Let ρij = 〈λi| ρ |λj〉, where ρ denotes

the density matrix of the system. We are interested in calculating the population of the solution with time which is
given by

Pw(t) = ρ11(t)| 〈w|λ1〉 |2 + ρ22(t)| 〈w|λ2〉 |2 + ρ12(t) 〈w|λ1〉 〈λ2|w〉+ ρ21(t) 〈w|λ2〉 〈λ1|w〉 , (S13)

where each ρij(t) is given by solution to the Bloch-Redfield Master equation . That is

˙ρab = −iωabρab +
∑
abcd

Rabcdρcd(t), (S14)

where ωij = λi − λj . For a two level system, {a, b, c, d} ∈ {1, 2} and

Rabcd = −1

2

∑
j

{
δbd
∑
x

AjaxA
j
xcSj(ωcx)−AjacA

j
dbSj(ωca) + δac

∑
x

AjdxA
j
xbSj(ωdx)−AjacA

j
dbSj(ωdb)

}
, (S15)

such that Ajxy = cjxc
∗
jy. Also,

Si(ωkl) =

{
J(ωkl)N (ωkl), ωkl < 0

J(ωlk)
(
N (ωlk) + 1

)
, ωkl ≥ 0

, (S16)
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with N (ω) = 1/(eβω − 1) and J(ω) being the spectral density of the bath given by

J(ω) = g2
∑
α

δ(ω − ωα), (S17)

where it is assumed that the coupling between each site of the system and the bath is identical (giα = g, for all i, α)
and sufficiently weak so that the Markov approximation is valid. More precisely, the Markov approximation implies
that the time scale of decay of the bath correlation functions, δt is much faster than the relevant time-scales of the
system. We show in Sec. V that choosing g � 1/δt ensures that the Markov approximation is valid. So in our
analysis, we fix a value of g so that the Markov approximation is valid. As the nodes the graph are coupled to a set
of independent harmonic oscillators, each having the same spectral density and so Sj(ωxy) is the same for all j. We
drop this subscript henceforth.

By expressing the two state system density matrix as

ρ =
1

2
(I + ~n.~σ) , (S18)

where ~n = (ρx, ρy, ρz) is a vector with real entries and σj ’s are the Pauli matrices with j ∈ {x, y, z}. In the Pauli
basis, the Bloch-Redfield master equation simplifies to the following set of differential equations:

ρ̇x = −ω12ρy + S(ω12)O2ρz −
S(0)

2
O3ρx (S19)

ρ̇y = ω12ρx −
{

1

2
S(0)O3 +O1 (S(ω12) + S(ω21))

}
ρy (S20)

ρ̇z = S(0)O2ρx −O1 (S(ω12) + S(ω21)) ρz +O1 (S(ω21)− S(ω12)) , (S21)

where we have that

O1 =
∑
i

(Ai12)2 (S22)

O2 =
∑
i

Ai12(Ai11 −Ai22) (S23)

O3 =
∑
i

(Ai11 −Ai22)2. (S24)

Throughout the article, we assume that the spectral density of the bath is ohmic with an exponential cut-off, i.e.

J(ω) = ηg2ωe−ω/ωc , (S25)

where ωc is the cut-off frequency of the bath and η is a constant normalization factor. We fix the cut-off frequency
ωc to be a constant greater than one. For an ohmic bath, S(0) = limω→0− S(ω) = limω→0+ S(ω) = ηg2/β. We shall
use this general form of Bloch-Redfield master equation for analyzing how thermal relaxation can assist the analog
search algorithm, even when static errors affect the algorithm.

III. ANALOG QUANTUM SEARCH IN THE PRESENCE OF A THERMAL BATH

For the analog search algorithm, we have that the gap between the ground state and the first excited state, ω21 =
∆ = 2/

√
n and we have that 〈w|λ1〉 = 〈w|λ2〉 = 1/

√
2 and hence

Pw(t) =
1

2
(1 + ρx(t)) , (S26)

where we used the fact that ρ11(t) + ρ22(t) = 1 and that 2Re[ρ12(t)] = ρx(t).

To obtain the master equation corresponding to ρx(t) observe that Aj11 = Aj22. This implies that O2 and O3 in
Eq. (S23) and Eq. (S24) are 0. Furthermore, Ai21 = Ai12 = Ai. This simplifies the Bloch-Redfield Master equation
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considerably as ρz is decoupled from ρx and ρy. Thus to obtain the population of the solution state with time we
have to solve the following differential equations:

ρ̇x = ∆ρy (S27)

ρ̇y = −∆ρx − 2Γρy, (S28)

where,

Γ =
1

2

∑
i

A2
i (S(∆) + S(−∆)) (S29)

=
(
∑
iA

2
i )J(∆)

2 tanh(β∆/2)
(S30)

=
J(∆)

8 tanh(β∆/2)
[
∑
i

A2
i = 1/4 +O(1/n) ]. (S31)

The solution to the Bloch-Redfield Master Equation is

ρx(t) = e−Γt
[ Γ√

Γ2 −∆2

{e−(
√

Γ2−∆2)t − e(
√

Γ2−∆2)t

2

}
−
{e−(

√
Γ2−∆2)t + e(

√
Γ2−∆2)t

2

}]
. (S32)

From Eq. (S32) we find that there arises two distinct cases that determine the nature of relaxation dynamics:

(i) Underdamped relaxation to the steady state (Γ < ∆): When
√

Γ2 −∆2 is imaginary, we have that

Pw(t) =
1

2

(
1− e−Γt

{
Γ

∆
sin
[(√

∆2 − Γ2
)
t
]

+ cos
[(√

∆2 − Γ2
)
t
]

+O(Γ2/∆2)

})
, (S33)

where ,

Γ = O
(

ηg2∆

tanh(β∆/2)

)
, (S34)

We find that after a time of Trel(β) = O(∆−1), there is constant population at the solution. Note that the steady
state is reached after a time O(1/Γ) and Pw(∞) = 1/2. Note that larger the temperature, faster is the relaxation
rate Γ but the running time of the algorithm is still O(1/∆).

(ii) Over-damped relaxation to the steady state (Γ > ∆): In this case
√

Γ2 −∆2 is real. Hence

Pw(t) =
1

2
(1− e−t∆

2/Γ) +O(∆2/Γ2). (S35)

Thus after a time T = O(Γ/∆2) = O(nΓ), the system reaches a steady state and the population of the solution is
constant. Unlike the underdamped case, increasing the temperature makes the relaxation slower.
For a given system-environment coupling strength g, the parameter that determines whether we are in case (i) or (ii)
is the temperature of the bath. In particular, we consider two regimes of temperature:

Zero temperature (β → ∞): When the thermal bath is at near zero temperature, the bath correlation
function decays at a time scale δt = O (1/ωc). In this case we have that

Γ = O
(
ηg2∆

)
(S36)

= O
(
ηg2

√
n

)
. (S37)

Since g � 1, we are always in the underdamped regime when the thermal bath is at zero temperature and the
population of the solution state is given by Eq. (S33). So after a time Trel(∞) = O(

√
n), the probability of being

at the solution is a constant which gives the optimal scaling of the running time of the analog search algorithm.
Moreover, the population of the solution can only increase for times t > T and hence the algorithm exhibits a fixed
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point behavior. This implies that, unlike in the unitary case, one need not measure at the optimal time in order to
obtain the solution state with high probability as the steady state of dissipative analog quantum search has a high
overlap with the solution state.

High temperature regime (O(log(n)) � β � 1/∆): In this regime, we consider the scenario where the
temperature of the bath is greater than ∆, but sufficiently low (β >> log(n)) so to ensure that the two level
approximation is valid. Note that in this scenario, tanh(β∆/2) ≈ β∆/2. Also the thermal time-scale is less than
the time-scale (t/β >> 1). As discussed previously and shown in Sec. VII, the correlation time of the thermal bath,
δt = O(β). The rate Γ is

Γ =
ηg2∆e−∆/ωc

8 tanh(β∆/2)
(S38)

= O
(
ηg2

β

)
. (S39)

In this case, increasing the temperature, gradually pushes the dynamics to the overdamped regime as soon as Γ >
1/
√
n. In the overdamped regime, the relaxation time

Trel(β) = O
(
ηg2n

β

)
, (S40)

is slower with increase in temperature.

Note that whenever, g2/β ≤ O(1/
√
n), we are in the underdamped regime and the algorithmic running time is

optimal. Otherwise, running time worsens with increase in temperature. In fact this is clearly exhibited in the ratio
between the relaxation times at zero and non-zero temperature. That is,

τ =
Trel (β)

Trel (∞)
= O

(√
ng2

β

)
, (S41)

increases with increase in temperature.

IV. ANALOG QUANTUM SEARCH WITH DIAGONAL DISORDER IN THE PRESENCE OF A
THERMAL BATH

The presence of static disorder changes the ground state and the first excited state of the algorithm. In fact now
| 〈λ1|w〉 | 6= | 〈λ2|w〉 |. In the presence of a thermal bath, we require that the ground state of the system Hamiltonian
has a higher overlap with the solution state. This is because the relaxation dynamics due to the thermal bath would
increase the population at the solution. In order to ensure that the ground state of the search Hamiltonian has a higher
overlap with the solution state |w〉 we need 〈w|Hred|w〉 < 〈sw̄|Hred|sw̄〉, which can be achieved by an appropriate
choice of the parameter γ. A possible choice is γ = (1−σ)/n. The gap between the ground state and the first excited
state, as result of this choice of γ is

∆ = σ − εw +O(1/
√
n). (S42)

As explained in Sec. I, there are two regimes of static disorder and for each of which the analysis for the relaxation
of the system is going to differ.

Weak diagonal disorder

In this regime, i.e. when the strength of disorder, σ < O(1/
√
n), the analog search algorithm remains robust to this

error and the optimal running time is maintained. Note that the ground state and the first excited state have a
constant overlap with the solution state. As mentioned previously, the new choice of γ ensures that the ground state
has a higher overlap with the solution state as compared to the first excited state. Also the gap between the ground
state and the first excited state ∆ ∼ O(1/

√
n).
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In the presence of the thermal bath, the behavior of the analog search algorithm is similar to the scenario where there
was no disorder. However, in this regime Ai11 6= Ai22 and so O2 and O3 are non-zero. The Bloch-Refield equations in
Eq. (S19)-(S21) are written asρ̇xρ̇y

ρ̇z

 =

− 1
2S(0)O3 −ω12 S(ω12)O2

ω12 − 1
2S(0)O3 − 2Γ 0

S(0)O2 0 −2Γ


︸ ︷︷ ︸

M

ρxρy
ρz

+

 0
0

O1(S(ω21)− S(ω12))

 , (S43)

where ω21 = ∆ and Γ = O1J(∆) coth(β∆/2)/2. The quantities O1, O2 and O3 are O(1).

Zero temperature (β → ∞): At zero temperature, S(0) = g2/β = 0 which simplifies the master equation.
We find that Γ = O

(
ηg2/
√
n
)

and the relaxation time is O(
√
n) which has the same scaling as the case where no

static error is present (See Eq. (S37)).

High temperature (O(log(n)) � β � 1/∆): In this regime, no simplification to the master equation is
possible and we resort to numerical simulations. Intuitively, one would expect that the behavior of the algorithm is
similar to the scenario where there was no disorder. We numerically verify that this is indeed the case and plot the
population at the solution with time at high temperature in Fig. S1. We find that the system relaxes to the steady
state which is expected to be a statistical mixture between the solution state |w〉 and the equal superposition of the
rest of the nodes (|sw̄〉).

FIG. S1: Comparison of population at the solution node with time for a complete graph of 100000 nodes where each node of
the graph is affected by weak diagonal disorder of standard deviation σ = 0.006 in the unitary regime and in the presence of a
thermal bath having a cut-off frequency of ωc = 2 and system-bath coupling g = 0.04. Blue curve indicates the population in
the unitary scenario, i.e. in the absence of a thermal bath. The red curve shows the population at the solution in the presence
of a thermal bath at inverse temperature, β = 15. The steady state of the thermal bath has an overlap of close to 1/2 with the

solution state.

Strong diagonal disorder

When the strength of disorder, σ > 1/
√
n, the analog search algorithm loses its optimality. One observes that one

needs to measure after a time T = O(π/σ), to find the solution with probability O(1/(nσ2)). Further this probability
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is amplified by repeating the algorithm O(1/(nσ2)) times, thereby obtaining an expected running time of T = O(nσ).
We show that the introduction of a thermal bath can amplify the amplitude of the solution node with at most a
constant overhead in running time even at constant temperatures. In fact, increasing the temperature ensures faster
relaxation to the steady state which has a high overlap with the solution state. Moreover, the resultant dissipative
dynamics ensures that the population at the solution node only increases with time thereby circumventing the need
to repeat the algorithm several times as in the unitary case.

Choosing γ = (1− σ)/n yields the approximate eigenstates (not normalized) as

|λ1〉 ≈ |w〉+
1√

n(σ − εw)
|sw̄〉 , (S44)

|λ2〉 ≈
1√

n(σ − εw)
|w〉 − |sw̄〉 , (S45)

by neglecting terms higher order terms that will remain small as long as σ � 1, where the gap λ2 − λ1 is

∆ ≈ σ − εw = O(σ). (S46)

Thus there is a gap of 1 − ∆ = 1 − O(σ) between the first excited state and the rest of the spectrum which is a
constant as long as σ � 1. This enables us to approximate our system as a two level system for low temperatures,
i.e. β � O(log(n)).

The transition from the weak disorder regime to the strong disorder regime is interesting. Observe that as the strength
of disorder increases, the component of ρz(t) increases in the population of the solution Pw(t). Also note that from
Eq. (S21), as temperature of the thermal bath increases, S(0) decreases and so ρx(t) is nearly decoupled from ρz(t).
Thus the population at the solution depends approximately only on ρz(t), i.e. on the population of the ground state
and the first excited state. In fact observe that the population at the solution, given by Eq. (S13) is now

Pw(t) ≈ ρ11(t) +O
(

1

σ
√
n

)
, (S47)

which implies that the population of the solution is determined by the population of the ground state for 1/
√
n < σ < 1.

The general Bloch-Redfield equation could be simplified in the case of the analog search algorithm in the absence
of disorder because of the fact that Ai11 = Ai22. This is no longer the case in the scenario where the algorithm is
affected by disorder. However, in this regime of static disorder, we can coarse grain the time-scale of the relaxation of
the system which simplifies the Bloch-Redifield equation considerably. Note that the Bloch-Redfield equation already
assumes a coarse graining in the time-scale of the system owing to the Markov approximation. Furthermore the time-
scales that we are interested in (∼

√
n) is significantly greater than the gap ∆ = 1/σ, we can take the so-called secular

approximation which implies an additional course graining in the relaxation dynamics of the system. In general, if
g is the strength of coupling between the system and the bath and δt is the width of the correlation function of the
bath, the typical relaxation time-scale of the system is ∼ 1/(g2δt) and for the secular approximation to hold this has
to be greater than 1/∆. Thus, we fix a g that respects both the secular and the Markov approximation. Whenever
βσ � 1, the choice of g that respects the secular approximation, also respects the Markov approximation. For further
details refer to the Sec. VII.

Henceforth, in this section we shall assume that g is such that in addition to the Markov approximation, the secular
approximation also holds. Taking the secular approximation ensures that in the Bloch-Redfield equation, the diagonal
terms of the density matrix never couples with the off-diagonal terms (Lindblad form). Since from Eq. (S47), we find
that the population of the ground state determines the population of the solution, we have the master equation of
the dynamics of the population of the ground state and the first excited state.

ρ̇kk =
∑
l 6=k

Wklρll −
∑
l 6=k

Wlkρkk, (S48)

where k ∈ {1, 2} and l ∈ {1, 2, . . . , n}. The transition rates are given by

Wkl =

{
2πJ(ωkl)ΛklN (ωkl), ωkl < 0

2πJ(ωlk)Λkl

(
N (ωlk) + 1

)
, ωkl ≥ 0

(S49)
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FIG. S2: Plot of the population at the solution node with time for the quantum spatial search algorithm on a complete
graph with n = 100000 nodes affected by string diagonal disorder of strength σ = 0.02 in the presence of a thermal
bath having an ohmic spectral density with cut off frequency ωc = 2. The bath is at an inverse temperature β = 20
and the system bath coupling strength g = 0.01. The red curve corresponds to the result obtained by numerically
solving the Bloch-Redfield master equation without taking the secular approximation while the blue curve corresponds

to our theoretical prediction which takes a secular approximation to Bloch-Redfield master equation.

such that Λkl =
∑
i |cikcil|2. Solving the differential equation (S48) we obtain,

ρ11 =
W12

W12 +W21

(
1− e−(W12+W21)t

)
, (S50)

=
1

1 + e−β∆

(
1− e−t/Trel

)
+
e−t/Trel

n
(S51)

with the relaxation time given by

Trel =
1

W12 +W21
. (S52)

On substituting the appropriate terms we obtain

Trel ∼
1

Λ12J(∆)
tanh

(
β∆

2

)
. (S53)

In Fig. S2 we plot the population of the solution node with time in the presence of a thermal bath at non-zero
temperature in the scenario where secular approximation is not considered (red curve) as compared to the theoretical
prediction in Eq. (S47) (blue curve) where secular approximation has been considered. The plot confirms that the
secular approximation is a reasonable approximation to consider.

V. VALIDITY OF THE MARKOV AND SECULAR APPROXIMATIONS

Let HS represent the Hamiltonian of the system while HE be the Hamiltonian of the environment. Consider the
following interaction Hamiltonian

VI = g
∑
i

QiFi, (S54)
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where Qi are the system operators and Fi are the bath operators. So in the interaction picture let

VI = g
∑
i

Q(t)iF (t)i, (S55)

where Q(t)i and F (t)i are the previously defined system and bath operators represented in the interaction picture.
Thus we obtain that after tracing out the environment degrees of freedom, the evolution reduced density matrix of
the system is given by the Bloch-Redfield master equation which is of the following form:

dρS
dt

= (Lunitary + Ldiss) ρS(t), (S56)

where Lunitary is the super-operator corresponding to purely unitary dynamics while Ldiss corresponds to the super-
operator corresponding to purely dissipative dynamics.

The Born approximation is respected as long as we are in the weak coupling regime, i.e. ||Lrelax|| << ||Lunitary|| = 1.
Note that in the interaction picture, the dynamics of the reduced density matrix of the system (upto O(g2)) is given
by

dρSI
dt

= g2
∑
ij

∫ ∞
0

dt′ Q(t′)iρ(t′)SIQ(t′)jFij(t
′) + other similar terms (S57)

where Fij(t) is the bath correlation function. The bath correlation function decays after bath correlation time-
scale defined in the article as δt. Thus the term inside the integral, i.e. ||Ldiss|| = O(g2δt). Now for the Markov
approximation to be valid we require that the bath correlation decays faster than the typical time scale of relaxation
of the system. This implies that

δt <<
1

g2δt
(S58)

=⇒ g <<
1

δt
. (S59)

Also in the main text we find that there arise scenarios (analog search affected by strong diagonal disorder) where
secular approximation is to be respected. This means that the typical time scale of the system should be greater than
the relevant gaps. In this scenario the gap between the ground and first excited state ∼ O(∆). Thus

1

∆
<<

1

g2δt
(S60)

=⇒ g <<

√
∆

δt
. (S61)

Then the value of the coupling strength g < min{1/δt,
√

∆/δt}.

VI. CORRELATION FUNCTION OF AN OHMIC BATH WITH AN EXPONENTIAL CUTOFF AT ZERO
TEMPERATURE

The spectral density of this bath is given by

J(ω) = ηg2ωe−ω/ωc , (S62)

where ωc is the bath cut off frequency and if 0 < d < 1, the bath is sub-ohmic, for d = 1, the bath is ohmic while for
d > 1, the bath is super-ohmic. On the other hand, the bath correlation function is given by

Fii(t) =

∫ ∞
0

J(ω)
(

coth(βω/2) cos(ωt)− i sin(ωt)
)
dω. (S63)

For the Markovian approximation to be valid, the width of the correlation function should decay much faster than
the relevant timescales of the system.
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At zero temperature,

Fii(t) = ηg2

∫ ∞
0

ωe−ω/ωce−iωtdω (S64)

= ηg2

∫ ∞
0

ωe−ω( 1
ωc

+it)dω (S65)

=
ηg2ω2

c

(1 + itωc)2

∫ ∞
0

qe−qdq (S66)[
Considering q = ω

( 1

ωc
+ it

)]
(S67)

=
ηg2ω2

c

(1 + itωc)2
. (S68)

So the width of Fii(t) is δt = O(1/ωc).

VII. CORRELATION FUNCTION OF AN OHMIC BATH WITH AN EXPONENTIAL CUTOFF AT
NON-ZERO TEMPERATURES

We consider baths with an ohmic spectral density as in Eq. (S62). Considering the bath correlation function defined
in Eq. (S63) we have that

Fii(t) =

∫ ∞
0

J(ω)
{[1 + e−βω

1− e−βω
](eiωt + e−iωt

2

)
−
(eiωt − e−iωt

2

)}
dω (S69)

=

∫ ∞
0

J(ω)

2(1− e−βω)

(
e−iωt + eiωt−βω

)
dω (S70)

= ω1−d
c

[ ∫ ∞
0

ωd

1− e−βω
e−ω(it+1/ωc)dω︸ ︷︷ ︸
I1

+

∫ ∞
0

ωd

1− e−βω
e−ω(−it+β+1/ωc)dω︸ ︷︷ ︸
I2

]
. (S71)

First we consider the integral I1. We have

I1 =

∫ ∞
0

ωd

1− e−βω
e−ω(it+1/ωc)dω (S72)

=
1

βd+1

∫ ∞
0

qde−qz

1− e−q
dq [q = βω and z =

it

β
+

1

βωc
] (S73)

=
(−1)d+1

βd+1
ψ(d)(z), (S74)

where ψ(d)(z) is the polygamma function defined as ψn(z) =
dm+1

dzm+1
ln Γ(z), where Γ(z) =

∫∞
0
e−xxz−1dx is the

Gamma function. So ψn(z) =
∫∞

0
qne−qz

1−e−q dq.

Following similar arguments we have that

I2 =
(−1)d+1

βd+1
ψ(d)(1 +

1

βωc
− it

β
). (S75)

Thus the bath correlation function is

Fii(t) =
(−1)d+1ηg2ω1−d

c

βd+1

[
ψ(d)(

1

βωc
+
it

β
) + ψ(d)(1 +

1

βωc
− it

β
)
]
. (S76)

We shall assume that the quantity βωc >> 1 and expand the polygamma functions in Eq. (S76) according to Taylor
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series. Firstly, observe that dm

dzmψ
n(z) = ψm+n(z). Then,

ψ(d)

(
1

βωc
+
it

β

)
= ψ(d)

(
it

β

)
+

∞∑
n=1

ψ(n+d)
(
it
β

)
(βωc)nn!

and, (S77)

ψ(d)

(
1 +

1

βωc
− it

β

)
= ψ(d)

(
1− it

β

)
+

∞∑
n=1

ψ(n+d)
(

1− it
β

)
(βωc)nn!

. (S78)

For simplicity, henceforth we shall concern ourselves with the case where the bath is ohmic (d = 1) and make
statements for d in general at the end. Thus combining Eqs. (S76), (S77) and (S78) we have that the bath correlation
function is

Fii(t) =
ηg2

β2

ψ(1)

(
it

β

)
+ ψ(1)

(
1− it

β

)
+

∞∑
n=1

ψ(n+1)
(
it
β

)
+ ψ(n+1)

(
1− it

β

)
(βωc)nn!

 . (S79)

Now we shall simplify Eq. (S79) using a couple of properties of polygamma functions. Let us state these two properties
first.

ψ(n)(1− z) + (−1)(n−1)ψn(z) = (−1)nπ
dn

dzn
cot(πz) (S80)

ψ(n)(z + 1) = ψn(z) +
(−1)nn!

zn+1
. (S81)

Using Eq. (S80) for n = 1 and z = it/β we have that

ψ(1)

(
it

β

)
+ ψ(1)

(
1− it

β

)
= −π2 csch2(πt/β). (S82)

Also using Eq. (S81), we have that

ψ(n+1)

(
1− it

β

)
= ψ(n+1)

(
−it
β

)
+

(−1)nn!

(−it/β)
n+2 . (S83)

Substituting the results of Eq. (S82) and Eq. (S83) into Eq. (S79) we obtain

Fii(t) =
ηg2

β2

−π2 csch2(πt/β) +

∞∑
n=1

(−1)n+1(n+ 1)!

(−it/β)
n+2

(βωc)nn!
+

∞∑
n=1

ψ(n+1)
(
it
β

)
+ ψ(n+1)

(
− itβ

)
(βωc)nn!

 (S84)

= ηg2

−π2

β2
csch2(πt/β) +

∞∑
n=1

(−1)n+1(n+ 1)

(−it)n+2
(ωc)n

+

∞∑
n=1

ψ(n+1)
(
it
β

)
+ ψ(n+1)

(
− itβ

)
(βωc)nn!

 . (S85)

From Eq. (S85), we find that the bath correlation time depends on both β and ωc. Assume that ωc > 1 and that we
are interested in time-scales that are larger than the thermal time-scale (i.e. t >> β) implying that csch2(πt/β) ≈
e−2πt/β +O(e−4πt/β). In this regime the bath correlation time-scales are δt ∼ O(β/2π).

VIII. LOWER BOUND ON THE OPTIMALITY OF ANALOG QUANTUM SEARCH IN THE
PRESENCE OF AN ENVIRONMENT

We prove that the running time of the analog quantum search algorithm is lower bounded by O(
√
n) in the presence

of an environment of arbitrary dimension. Our derivation also shows that the running time of this algorithm cannot
be improved any further by appending an ancillary space to the original search space. We follow an argument that is
similar to Ref. [21].
We are given an oracular Hamiltonian, Hw that marks the search node and add to it a time dependent drive Hamil-
tonian, HD(t) that takes the system to the state that was marked by Hw. Let us assume that an ancillary space of
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dimension M is appended to the search space (in this case of dimension n). In such a case, the oracle Hamiltonian
is

Hw = |w〉 〈w| ⊗ IM , (S86)

where IM is the Identity matrix of dimension M . This implies that the oracle marks a node in the search space alone.
If the basis states of the environment are {|j〉} for 1 ≤ j ≤M , then

Hw = |w〉 〈w| ⊗
( M∑
j=1

|j〉 〈j|
)

(S87)

=

M∑
j=1

|w〉 〈w| ⊗ |j〉 〈j| . (S88)

Notice that the oracle is in fact marking M elements in the Hilbert space spanned by the system and the environment
of dimension nM . Also ∑

w

Hw = InM (S89)

is the sum of (nM)/M = n number of disjoint possible marked states in the total nM -dimensional Hilbert space.
The driver Hamiltonian HD(t) acts on the total Hilbert space. Thus the total search Hamiltonian is given by

Hsearch = Hw +HD(t). (S90)

This formalism is enough to capture the scenarios where the system under consideration (the underlying graph)
undergoes interactions with the environment. The driver Hamiltonian encompasses both the Hamiltonian of the
environment and the interaction Hamiltonian. Assume that the initial state of the algorithm is in some pure state
|ψ0〉 ∈ CnM . If the state |w〉 is marked, let us assume that after a time t we obtain the algorithm is in state |ψw(t)〉.
Now if a different state was marked, say |w′〉 and the algorithm commenced from the same initial state |ψ0〉, then in
order to ensure sufficient distinguishability between |w〉 and |w′〉, the states |ψw(t)〉 and |ψw′(t)〉 should be sufficiently
distinguishable. In fact for this to happen |ψw(t)〉 should be sufficiently different from any |w〉-independent state
|ψ(t)〉. Since HD(t) is a |w〉-independent Hamiltonian and |ψ0〉 is a |w〉-independent state, we can use HD(t) to drive
|ψ0〉 to |ψ(t)〉. In fact we want to ensure that after some large enough time T ,

|| |ψw(T )〉 − |ψ(T )〉 ||2 ≥ ε. (S91)

Thus, ∑
w

|| |ψw(T )〉 − |ψ(T )〉 ||2 ≥ nε. (S92)

Now we intend to obtain an upper bound for the rate of change in the norm squared of the separation between the
aforementioned states, i.e.

d

dt
|| |ψw(t)〉 − |ψ(t)〉 ||2 = −2 Re

d

dt
〈ψw(t)|ψ(t)〉 (S93)

= 2 Im 〈ψw(t)|Hw|ψ(t)〉 (S94)

≤ 2||Hw |ψ(t)〉 ||. (S95)

Thus

d

dt

∑
w

|| |ψw(t)〉 − |ψ(t)〉 ||2 ≤
∑
w

||Hw |ψ(t)〉 ||. (S96)

Now let

|ψ(t)〉 =

n∑
i=1

M∑
j=1

aij |i〉 |j〉 , (S97)
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where
∑n
i=1

∑M
j=1 |aij |2 = 1. Thus

Hw |ψ(t)〉 =

M∑
j=1

awj |w〉 |j〉 , (S98)

where ajw = 〈w|i〉 and
∑M
j=1 |ajw|2 ≤ 1. Thus we have that

d

dt

∑
w

|| |ψw(t)〉 − |ψ(t)〉 ||2 ≤
∑
w

||Hw |ψ(t)〉 || ≤
√
n. (S99)

This gives the following upper bound: ∑
w

|| |ψw(T )〉 − |ψ(T )〉 ||2 ≤ 2
√
nT. (S100)

Combining Eq. (S92) and Eq. (S100), we obtain that

T ≥
√
nε

2
. (S101)

[1] David P. DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik, 48, 2000.
[2] G. Massimo Palma, Kalle-Antti Suominen, and Artur K. Ekert. Quantum computers and dissipation. Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences, 452, 1996.
[3] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press,

2010.
[4] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: Towards practical

large-scale quantum computation. Phys. Rev. A, 86:032324, Sep 2012.
[5] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel Preda. A quantum

adiabatic evolution algorithm applied to random instances of an np-complete problem. Science, 292, 2001.
[6] Dorit Aharonov, Wim Van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev. Adiabatic quantum compu-

tation is equivalent to standard quantum computation. SIAM review, 50, 2008.
[7] Andrew M. Childs. Universal computation by quantum walk. Physical Review Letters, 102:180501, 2009.
[8] Andrew M Childs, David Gosset, and Zak Webb. Universal computation by multiparticle quantum walk. Science, 339,

2013.
[9] Stephen P Jordan, Edward Farhi, and Peter W Shor. Error-correcting codes for adiabatic quantum computation. Physical

Review A, 74(5):052322, 2006.
[10] Kevin C Young, Mohan Sarovar, and Robin Blume-Kohout. Error suppression and error correction in adiabatic quantum

computation: Techniques and challenges. Physical Review X, 3(4):041013, 2013.
[11] Mohan Sarovar and Kevin C Young. Error suppression and error correction in adiabatic quantum computation: non-

equilibrium dynamics. New Journal of Physics, 15(12):125032, 2013.
[12] Masoud Mohseni, Patrick Rebentrost, Seth Lloyd, and Alan Aspuru-Guzik. Environment-assisted quantum walks in

photosynthetic energy transfer. The Journal of chemical physics, 129(17):174106, 2008.
[13] Martin B Plenio and Susana F Huelga. Dephasing-assisted transport: quantum networks and biomolecules. New Journal

of Physics, 10(11):113019, 2008.
[14] Patrick Rebentrost, Masoud Mohseni, Ivan Kassal, Seth Lloyd, and Alán Aspuru-Guzik. Environment-assisted quantum

transport. New Journal of Physics, 11(3):033003, 2009.
[15] Masoud Mohseni, Yasser Omar, Gregory S Engel, and Martin B Plenio. Quantum effects in biology. Cambridge University

Press, 2014.
[16] Filippo Caruso, Alex W Chin, Animesh Datta, Susana F Huelga, and Martin B Plenio. Highly efficient energy excitation

transfer in light-harvesting complexes: The fundamental role of noise-assisted transport. The Journal of Chemical Physics,
131(10):105106, 2009.

[17] Jianlan Wu, Robert J Silbey, and Jianshu Cao. Generic mechanism of optimal energy transfer efficiency: A scaling theory
of the mean first-passage time in exciton systems. Physical review letters, 110(20):200402, 2013.

[18] Leonardo Novo, Masoud Mohseni, and Yasser Omar. Disorder-assisted quantum transport in suboptimal decoherence
regimes. Scientific reports, 6:18142, 2016.

[19] Philip W Anderson. Absence of diffusion in certain random lattices. Physical review, 109(5):1492, 1958.
[20] Marco del Rey, Alex W Chin, Susana F Huelga, and Martin B Plenio. Exploiting structured environments for efficient

energy transfer: the phonon antenna mechanism. The journal of physical chemistry letters, 4(6):903–907, 2013.



19

[21] Edward Farhi and Sam Gutmann. Analog analogue of a digital quantum computation. Physical Review A, 57:2403, 1998.
[22] Andrew M. Childs and Jeffrey Goldstone. Spatial search by quantum walk. Physical Review A, 70:022314, 2004.
[23] Anthony J Leggett, S Chakravarty, AT Dorsey, Matthew PA Fisher, Anupam Garg, and W Zwerger. Dynamics of the

dissipative two-state system. Reviews of Modern Physics, 59(1):1, 1987.
[24] Crispin Gardiner and Peter Zoller. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic

methods with applications to quantum optics, volume 56. Springer Science & Business Media, 2004.
[25] Heinz-Peter Breuer and Francesco Petruccione. The theory of open quantum systems. Oxford University Press on Demand,

2002.
[26] Frank Verstraete, Michael M Wolf, and J Ignacio Cirac. Quantum computation and quantum-state engineering driven by

dissipation. Nature Physics, 5(9):633–636, 2009.
[27] Andrew M Childs, Edward Farhi, and John Preskill. Robustness of adiabatic quantum computation. Physical Review A,

65(1):012322, 2001.
[28] Mohammad Amin, Peter J Love, and Colin JS Truncik. Thermally assisted adiabatic quantum computation. Physical

review letters, 100(6):060503, 2008.
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