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We study finite-temperature Dynamical Quantum Phase Transitions (DQPTSs) by means of the
fidelity and the interferometric Loschmidt Echo (LE) induced metrics. We analyse the associated
dynamical susceptibilities (Riemannian metrics), and derive analytic expressions for the case of
two-band Hamiltonians. At zero temperature the two quantities are identical, nevertheless, at finite
temperatures they behave very differently. Using the fidelity LE, the zero temperature DQPTs
are gradually washed away with temperature, while the interferometric counterpart exhibits finite-
temperature PTs. We analyse the physical differences between the two finite-temperature LE gener-
alisations, and argue that, while the interferometric one is more sensitive and can therefore provide
more information when applied to genuine quantum (microscopic) systems, when analysing many-
body macroscopic systems, the fidelity-based counterpart is more suitable quantity to study. Finally,
we apply the previous results to two representative models of topological insulators in 1D and 2D.

PACS numbers: 05.30.Rt, 05.30.-d, 03.67.-a, 03.65.V{

I. INTRODUCTION

Equilibrium phase transitions (PTs) are characterised
by non-analyticities in some thermodynamic quantities
that describe a system as its temperature is varied.
Quantum phase transitions (QPTs) [1]], traditionally de-
scribed by Landau theory [2], occur when we adiabati-
cally change a physical parameter of the system at zero
temperature, i.e., the transition is driven by purely quan-
tum fluctuations. A particularly interesting case arises
when one studies QPTs in the context of topological
phases of matter [BH7]. They are quite different from
the standard QPTs, since they do not involve symme-
try breaking and are characterised by global order pa-
rameters [§]. These novel phases of matter, which in-
clude topological insulators and superconductors [9HIT],
have potentially many applications in emerging fields
such as spintronics, photonics or quantum computing.
Although many of their remarkable properties have tra-
ditionally been studied at zero temperature, there has
been a great effort to generalise these phases from pure
to mixed states, and finite temperatures [I2H23].

The real time evolution of closed quantum systems out
of equilibrium has some surprising similarities with ther-
mal phase transitions, as noticed by Heyl, Polkovnikov
and Kehrein [24]. They coined the term DQPTs to de-
scribe the non-analytic behaviour of certain dynamical
observables after a sudden quench in one of the parame-
ters of the Hamiltonian. Since then, the study of DQPTs
became an active field of research and a lot of progress
has been achieved in comparing and connecting them to

the equilibrium PTs [25] 26]. Along those lines, there ex-
ist several studies of DQPTs for systems featuring non-
trivial topological properties [27H30]. The figure of merit
in the study of DQPTs is the LE and its derivatives,
which have been extensively used in the analysis of quan-
tum criticality [31H35] and quantum quenches [36]. At fi-
nite temperature, generalisations of the zero temperature
LE were proposed, based on the mixed-state Uhlmann
fidelity [35] B7], and the interferometric mixed-state geo-
metric phase [38] [39]. Fidelity is a measure of state dis-
tinguishability, which has been employed numerous times
in the study of PTs [32] [40H43], while the interferometric
mixed-state geometric phase was introduced in [44].

In this paper, we analyse the finite temperature be-
haviour of quenched systems in terms of both the fidelity
and the interferometric LEs. In particular, we discuss the
existence of finite temperature DPTs in two-band Hamil-
tonians for the 1D Su—Schrieffer—Heeger (SSH) model
and the 2D Massive Dirac Hamiltonian (MD), known to
exhibit zero temperature topological QPTs. The two ap-
proaches give opposite predictions: the fidelity LE shows
a gradual disappearance of DPTs as the temperature
increases, while the interferometric LE indicates their
persistence at finite temperature (consistent with recent
studies on interferometric LE [38, [39]). We analyse the
reasons for such different behaviours, in terms of the met-
rics (susceptibilities) induced by the fidelity and the in-
terferometric LEs. The former quantifies state distin-
guishability in terms of measurements of physical prop-
erties, while the latter quantifies the effects of quantum
channels acting upon a state. In addition, interferometric



experiments that are suitable for genuine (microscopic)
quantum systems involve coherent superpositions of two
states, which could be, in the case of many-body macro-
scopic systems, experimentally infeasible with the current
technology.

The paper is organised as follows: In Section II, after
introducing some preliminaries about the general features
of DQPTs, we perform a detailed analysis of the two LE
generalisations, and compare them with respect to the
study of DQPTs. To confirm this analysis, in Section
IIT we present quantitative results for the fidelity-induced
first time derivative of the rate function in the case of the
SSH topological insulator and MD model, which captures
the physics of a 2D Chern insulator [45]. Section IV is
devoted to conclusions.

II. DYNAMICAL (QUANTUM) PHASE
TRANSITIONS AND ASSOCIATED
SUSCEPTIBILITIES

As mentioned in Introduction, the authors in [24] intro-
duce the concept of DQPTs and illustrate their proper-
ties on the case of the transverse-field Ising model. They
observe a similarity between the partition function of a
quantum system in equilibrium, Z(3) = Tr(e #H), and
the overlap amplitude of some time-evolved initial quan-
tum state |1;) with itself, G(t) = (y;|e”*Ht1p;). During
a temperature-driven PT, the abrupt change of the prop-
erties of a system are indicated by the non-analyticity of
the free energy density f(f8) = —limy_oo % InZ(B) at
the critical temperature (N being the number of degrees
of freedom). It is then possible to establish an analogy
with the case of the real time evolution of a quantum sys-
tem out of equilibrium, by considering the rate function

(1) =~ log | GO, (1)

where |G(t)|? is a mixed-state LE, as we detail below.
The rate function g(t) may exhibit non-analyticities at
some critical times t., after a quantum quench. This
phenomenon is termed DPT.

We study DPTs for mixed states using the fidelity and
the interferometric LEs. We first investigate the relation
between the two approaches for DQPTs at zero tempera-
ture. More concretely, we perform analytical derivations
of the corresponding susceptibilities in the general case
of a family of static Hamiltonians, parametrised by some
smooth manifold M, {H(\) : A € M}.

DQPTs for pure states

At zero temperature, the LE G(¢) from between
the ground state for A = A\; € M and the evolved state

with respect to the Hamiltonian for A = Ay € M is given
by the fidelity between the two states

FtAp,x) = [0 [e ™ ODp)). (2)

For A\; = Ay, the fidelity is trivial, since the system re-
mains in the same state. Fixing A\; = A and Ay = A 40,
with A << 1, in the ¢t — oo limit Eq. is nothing
but the familiar S-matrix with an unperturbed Hamilto-
nian H(A) and an interaction Hamiltonian V(\), which
is approximated by

0H
ore

After applying standard perturbation theory techniques
(see Appendix), we obtain

Ft;Ap, N) 21— xap(t; A)SAN, (4)

VA = H(\p) — HA) = ——(\)oA™ (3)

where the dynamical susceptibility xqs(¢; A) is given by
Xab(t; A) =

/Ot /Oi dtadty (%<{Va(t2),%(t1)}> - <Va(t2)><vb(t1)>> . (5)

with V,(t,\) = e TNGH/ON*(N)e TN and (x) =
(W(N)] * |¥(N)).  The family of symmetric tensors
{ds?(t) = Xab(t, \)dA*dN\’}icr defines a family of met-
rics in the manifold M, which can be seen as pull-
back metrics of the Bures metric (Fubini-Study met-
ric) in the manifold of pure states [46]. Specifically, at
time ¢, the pullback is given by the map ®; : Ay —
e HHOD (A (V)| e HO) | evaluated at Ap = .

Generalisations at finite temperatures

The generalisation of DQPTs to mixed states is not
unique. There are several ways to construct a LE for a
general density matrix. In what follows, we derive two
finite temperature generalisations, such that they have
the same zero temperature limit 7'=1/8 — 0.

A) Fidelity Loschmidt Echo

First, we introduce the fidelity LE between the state
p(B;N;) = e PHO) /Tr{e=BH(A)Y and the one evolved
by the unitary operator e ~**# (A1) as

F(t 5 M, ) =F(p(B; M), e~ A p(B; Xi)e ), (6)
where F(p,0) = Tr{y/\/po+/p} is the quantum fidelity

between arbitrary mixed states p and o. For Ay close to
Ai = A, we can write

F(t, B Ap, N) = 1 — xap(t, B; \)SAUSAY, (7)

with xap(t, B, A) being the Dynamical Fidelity Suscepti-
bility (DFS). Notice that limg_,co Xab(t, 55 X) = Xab(t; A),



where Xqp(¢; ) is given by Eq. . At time ¢ and in-
verse temperature (3, we have a map ® 5 : Ay —
e HO) p(B; N)et (A1) | The 2-parameter family of met-
rics defined by ds?(8,t) = xas(t, B; A)dA*dA? is the pull-
back by ®(; 5y of the Bures metric on the manifold of
full-rank density operators, evaluated at Ay = A.

The fidelity LE is closely related to the Uhlmann con-
nection: F(py1,p2) equals the overlap between purifi-
cations Wy and Wy, (Wi, Ws) = ’I‘I‘{W]TWQ}, satis-

fying discrete parallel transport condition (see, for in-
stance, [47]).

B) Interferometric Loschmidt Echo

Here, we consider an alternative definition of the LE
for mixed states [G(t) from Eq. (I)]. In particular, we
define the interferometric LE as
Ty {e=BHOD it HO) g =itH () )

L(t,B; Ap, Ni) = Tc {e AHOD ]

-(8)

The e factor does not appear at zero temperature,
since it just gives a phase which is canceled by taking the
absolute value. This differs from previous treatments in
the literature [29] (see Section 5.5.4 of [46], where the
variation of the interferometric phase, Tr{pge "}, ex-
poses this structure). However, it is convenient to intro-
duce it in order to have the usual form of the perturbation
expansion, as will become clear later.
For Ay close to A; = A, we get

Tr {e*ﬁH(A)Tefi S dt'Va (£, 2)80* }
Tr {e PHOV) £9)

L(t, B;Ap, A) =

so that the perturbation expansion goes as in Eq. ,
yielding

L(t, B2, N) & 1 — Xap(t, B; \)IAGNE, (10)
with the dynamical susceptibility given by
Xab BN =

//dtzdtl( {Va(t2), Vb(tl)}>*(Va(tz)><Vb(t1)>), (11)

where (¥) = Tr{e #HMNx}/Tr{e #HN}. Notice that
Egs and are formally the same with the average
over the ground state replaced by the thermal average.
This justifies the extra e?#(X:) factor. Since this suscep-
tibility comes from the interferometric LE, we call it Dy-
namical Interferometric Susceptibility (DIS). The quan-
tity ds?(B,t) = Xab(t, ; \)dA\?dA\’ defines a 2-parameter
family of metrics over the manifold M, except that they
cannot be seen as pullbacks of metrics on the manifold of
density operators with full rank. However, it can be in-
terpreted as the pullback by a map from M to the unitary

group associated with the Hilbert space of a particular
Riemannian metric. For a detailed analysis, see the last
subsection of the Appendix. Additionally, we point out
that this version of LE is related to the interferometric
geometric phase introduced by Sjoqvist et. al [44] [48].

Two-band systems

Many representative examples of topological insulators
and superconductors can be described by effective two-
band Hamiltonians. Therefore, we derive close expres-
sions of the previously introduced dynamical susceptibil-
ities for topological systems within this class. For sim-
plicity, we consider two-level systems. Generalization to
many-body two-band systems is then straightforward.

The general form of such Hamiltonians is {H(\) =
Z(X)- & : A € M}, where & is the Pauli vector. The in-
teraction Hamiltonian V'()), introduced in Eq. (2)), casts

the form
or u
V() = (3)\“ 'O’) A%,

It is convenient to decompose OZ/OA* into one compo-
nent perpendicular to Z and one parallel to it:

o0r _ (0" (0F H—F+*
ox ~ \oxa oxe ) el

The first term is tangent, in R®, at #(\), to a sphere
of constant radius r» = |Z()\)|. Hence, this kind of per-
turbations do not change the spectrum of H, only its
eigenbasis. The second term is a variation of the length
of # and hence, it changes the spectrum of H, while keep-
ing the eigenbasis fixed. The DFS and the DIS are given
by (for details of the derivation, see Appendix)

oo = tanb (gl ) 2 G077, (12)

Loty +1° (1—tanh®(B|Z(N)|))fafip. (13)

While the DIS depends on the variation of both
the spectrum and the eigenbasis of the Hamiltonian, the
DFS depends only on the variations which preserve
the spectrum, i.e., changes in the eigenbasis. This is very
remarkable, in general the fidelity between two quantum
states, being their distinguishability measure, does de-
pend on both the variations of the spectrum and the
eigenbasis. In our particular case of a quenched system,
the eigenvalues are preserved (see Eq. (]ED)7 as the system
is subject to a unitary evolution. The tangential compo-
nents of both susceptibilities are modulated by the func-
tion sin?(Et)/E?, where E is the gap. This captures the
Fisher zeros, i.e., the zeroes of the (dynamical) partition
function which here is given by the Fidelity F from @,
see [49H5T]. Observe that whenever t = (2n + 1)7/2F,



n € 7Z, this factor is maximal and hence, both LEs de-
crease abruptly. The difference between the two suscep-
tibilities is given by

)N(ab — Xab

= (1 — tanh®(BIZ(\)])) (SW

The quantity (1 — tanh?(8E)) is nothing but the static
susceptibility, see [52]. Therefore, the difference between
DIS and DFS is modulated by the static susceptibility at
finite temperature. For small times, sin?(Et)/E? ~ 2,
and we have

or 0%

oNa O\’

Xab — Xab ¥ (1 - tanhQ(ﬂ‘f(A)th
while for larger times, sin®(Et)/E? ~ 7td(E),

)Zab — Xab
~ wtd(|Z(N))Es - B + t2(1 — tanh?(B|Z(N)])) s - To.

To illustrate the relationship between the two suscep-
tibilities, in FIG 1 we plotted the modulating function
for the tangential components of both. We observe that
at zero temperature they coincide. As the temperature
increases, in the case of the fidelity LE, the gap vanish-
ing points become less important. On the contrary, for
the interferometric LE, the associated tangential part of
the susceptibility does not depend on temperature, thus
the gap vanishing points remain prominent. The DFS
from Eq. thus predicts gradual smearing of critical
behaviour, consistent with previous findings that showed
the absence of phase transitions at finite temperatures
in the static case [14, [I5]. The DIS from Eq.(I3) has
a tangential term that is not coupled to the tempera-
ture, persisting at higher temperatures and giving rise
to abrupt changes in the finite temperature system’s be-
haviour. This is also consistent with previous studies in
the literature, where DPT's were found even at finite tem-
peratures [38, [39]. Additionally, the interferometric LE
depends on the normal components of the variation of Z.

Comparing the two approaches

The above analysis of the two dynamical susceptibil-
ities (metrics) reflects the essential difference between
the two distinguishability measures, one based on the
fidelity, the other on interferometric experiments. From
the quantum information theoretical point of view, the
two quantities can be interpreted as distances between
states, or between processes, respectively. The Hamilto-
nian evaluated at a certain point of parameter space M
defines the macroscopic phase. Associated to it we have
thermal states and unitary processes. The fidelity LE
is obtained from the Bures distance between a thermal
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FIG. 1. The susceptibility modulating function for the tan-
gential components at ¢t = 1.

state p; in phase 1 and the one obtained by unitarily
evolving this state, ngUg, with U; associated to phase
2. Given a thermal state p; prepared in phase 1, the in-
terferometric LE is obtained from the distance between
two unitary processes U; and Us (defined modulo a phase
factor), associated to phases 1 and 2.

The quantum fidelity between two states p and o is in
fact the classical fidelity between the probability distribu-
tions {p;} and {¢;}, and is obtained by performing an op-
timal measurement . on the two states p and o, respec-
tively. For that reason, one can argue that the fidelity
is capturing all order parameters (i.e., measurements)
through its optimal observables .#. On the other hand,
the interferometric phase is based on some interferomet-
ric experiment to distinguish two states, p and UpUT: it
measures how the intensities at the outputs of the inter-
ferometer are affected by applying U to only one of its
arms [44]. Therefore, to set up such an experiment, one
does not need to know the state p that enters the interfer-
ometer, as only the knowledge of U is required. This is a
different type of experiment, not based on the observation
of any physical property of a system. It is analogous to
comparing two masses with weighing scales, which would
show the same difference of Am = m; —msg, regardless of
how large the two masses m; and my are. For that rea-
son, interferometric distinguishability is more sensitive
than the fidelity (fidelity depends on more information,
not only how much the two states are different, but in
which aspects this difference is observable). In terms of
experimental feasibility, the fidelity is more suitable for
the study of many-body macroscopic systems and phe-
nomena, while the interferometric measurements provide
a more detailed information on genuinely quantum (mi-
croscopic) systems. Finally, interferometric experiments
involve coherent superpositions of two states. Therefore,
when applied to many-body systems, one would need to
create genuine Schrédinger cat-like states, which goes be-
yond the current, and any foreseeable, technology (and
could possibly be forbidden by more fundamental laws of
physics, see for example objective collapse theories [53]).



III. DPTS OF TOPOLOGICAL INSULATORS AT
FINITE TEMPERATURES

In order to confirm the main result of our paper from
Section II, obtained for generic two-band systems, we
study the fidelity LE on concrete examples of two topo-
logical insulators (as noted before, the analogous study
for the interferometric LE on concrete examples has al-
ready been performed, and is consistent with our find-
ings [38, 54]). In particular, we present quantitative re-
sults obtained for the first derivative of the rate func-
tion, dg/dt, where g(t) = —+ log F, and F is given by
Eq. @ The quantity dg/dt is the figure of merit in the
study of the DQPTs, therefore we present the respec-
tive results that confirm the previous study: the gener-
alisation of the LE with respect to the fidelity shows the
absence of finite — temperature dynamical PTs. We con-
sider two paradigmatic models of topological insulators,
namely the SSH [55] and the MD [45] models.

SSH model (1D)

The SSH model was introduced in [55] to describe poly-
acetilene, and it was later found to describe diatomic
polymers [56]. In momentum space, the Hamiltonian for
this model is of the form H(k,m) = Z(k,m) - &, with
m being the parameter that drives the static PT. The
vector Z(k, m) is given by:

Z(k,m) = (m + cos(k), sin(k), 0).

By varying m we find two distinct topological regimes.
For m < m, = 1 the system is in a non-trivial phase with
winding number 1, while for m > m. = 1 the system is
in a topologically trivial phase with winding number 0.

We consider both cases in which we go from a triv-
ial to a topological phase and vice versa (FIGs 2 and
3, respectively). We notice that non-analyticities of the
first derivative appear at zero temperature, and they are
smeared out for higher temperatures.

MD model (2D)

The Massive Dirac model (MDM) captures the physics
of a 2D Chern insulator [45], and shows different topolog-
ically distinct phases. In momentum space, the Hamilto-
nian for the MDM is of the form H(k,m) = Z(k,m) - &,
with m being the parameter that drives the static PT.
The vector E(E, m) is given by

Z(k,m) = (sin(k,), sin(ky), m — cos(ky) — cos(ky)).
By varying m we find four different topological regimes:

e For —oo < m < m¢, = —2 it is trivial (the Chern
number is zero) — Regime I

dt

FIG. 2. We plot the time derivative of the rate function,
dg/dt, as a function of time for different values of the inverse
temperature 8 = 1/T. We consider a quantum quench from
a trivial phase (m = 1.2) to a topological phase (m = 0.8).
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FIG. 3. The time derivative of the rate function, dg/dt, as a
function of time for different values of the inverse tempera-
ture. The quench is from a topological (m = 0.8) to a trivial
phase(m = 1.2).

e For —2 =m,, <m < m,, =0 it is topological (the
Chern number is —1) — Regime II

e For 0 = m., < m < m,, = 2 it is topological (the
Chern number is +1) — Regime III

e For 2 = m,, < m < oo it is trivial (the Chern
number is zero) — Regime IV

In FIGs 4,5 and 6 we plot the first derivative of the rate
function ¢(t), as a function of time for different temper-
atures. We only consider quenches that traverse a single
phase transition point.

We observe that at zero temperature there exist non-
analyticities at the critical times — the signatures of
DQPTs. As we increase the temperature, these non-
analyticities are gradually smeared out, resulting in
smooth curves for higher finite temperatures. We note
that the peak of the derivative dg(t)/dt is drifted when
increasing the temperature, in analogy to the usual drift
of non-dynamical quantum phase transitions at finite
temperature [57].
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FIG. 4. The time derivative of the rate function, dg/dt, as
a function of time for different values of the inverse temper-
ature. We quench the system from a trivial to a topological
regime (Regimes from I to II and from IV to III).

dg
dt

1.0

FIG. 5. The time derivative of the rate function, dg/dt, as
a function of time for different values of the inverse temper-
ature. The quench is from a topological to a trivial regime
(Regimes from II to I and from III to IV).

Next, we proceed by considering the cases in which
we cross two phase transition points, as shown in FIGs
7 and 8. At zero temperature we obtain a non-analytic
behaviour, which gradually disappears for higher temper-
atures.

Finally, we have also studied the case in which we move
inside the same topological regime from left to right and
vice versa. We obtained smooth curves without non-
analyticities, which we omit for the sake of briefness.

IV. CONCLUSIONS

We analysed the fidelity and the interferometric gener-
alisations of the LE for general mixed states, and applied
them to the study of finite temperature DPT's in topolog-
ical systems. At the level of dynamical susceptibilities,
i.e., the metric tensors they define in the space of param-
eters, the two tensors emerge as pull-backs of metrics
in different spaces. Using the fidelity LE, we show that
the dynamical susceptibility is the pull-back of the Bures

d
dt
3

— B=100

2 j-8

— g=7

FIG. 6. The time derivative of the rate function, dg/dt, as
a function of time for different inverse temperatures. The
quantum quench is from a topological to a topological regime
(Regimes from II to III and vice versa).

dg
dt

30 / \

FIG. 7. The time derivative of the rate function, dg/dt, as a
function of time for different values of the inverse tempera-
ture, in the case that we quench the system from a trivial to

a topological regime (Regimes from I to III and from IV to
ID).

metric in the space of density matrices, i.e., states. On
the other hand, if we make us of the interferometric LE,
the dynamical susceptibility is the pull-back of a metric
in the space of unitaries (i.e., evolutions/processes).

As discussed in Section II, the difference between the
two metrics reflects the fact that the fidelity is a measure
of the state distinguishability between two given states p
and o in terms of observations, while the “interferomet-
ric distinguishability” quantifies how a quantum chan-
nel (a unitary U) changes an arbitrary state p to UpUT.
Therefore, while the “interferometric distinguishability”
is in general more sensitive, and thus appropriate for the
study of genuine (microscopic) systems, it is the fidelity
that is the most suitable for the study of many-body
system phases. Moreover, interferometric experiments
involve coherent superpositions of two states, which for
many-body systems would require creating and manip-
ulating genuine Schrodinger cat-like states. This goes
beyond any foreseeable future technologies.

We have presented analytic expressions for the dynam-



dg
dt

FIG. 8. The time derivative of the rate function, dg/dt, as a
function of time for different values of the inverse tempera-
ture. The system is quenched from a topological to a trivial
regime (Regimes from III to I and from II to IV).

function, dg(t)/dt, on two representatives of topological
insulators: the 1D SSH and the 2D Massive Dirac models.
In perfect agreement with the general result, the fidelity-
induced first derivatives gradually smear smears down
with temperature, not exhibiting any critical behaviour
at finite temperatures. This is consistent with recent
studies of one-dimensional symmetry protected topolog-
ical phases at finite temperatures [14, [I5]. On the con-
trary, the interferometric LE exhibits critical behavior
even at finite temperatures (confirming previous studies
on DPTs [38], 39]).
Note added.
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ical susceptibilities in the case of two-band Hamiltonians.
At finite temperature, the fidelity LE indicates gradual
disappearance of the zero-temperature DQPTs, while the
interferometric LE predicts finite-temperature DPTs. To
confirm those results, we have performed finite tempera-
ture study of the first time derivative of the fidelity rate
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APPENDIX
Analytical Derivation of the Dynamical Susceptibilities

Zero Temperature case

Let 2 be a Hilbert space. Suppose we have a family of Hamiltonians {H () : A € M} where M is a smooth
compact manifold. We assume that besides a closed finite subset of M, C = {\;}?_; C M, the Hamiltonian is gapped
and the ground state subspace is one-dimensional. Locally, on M — C, we can find a ground state (with unit norm),
described by |1()A)). Take A; € C, and let U be an open neighbourhood containing A;. Of course, for sufficiently small
U, on the open set U—{\;} one can find a smooth assignment A — |t)(\)). Consider a curve [0,1] 3 s — A(s) € U, with
initial condition A(0) = Ag, such that A(sp) = A; for some s¢ € [0,1]. The family of Hamiltonians H(s) := H(\(s)) is
well-defined for every s € [0, 1]. The family of states [¢)(s)) = [¢(A(s))) is well-defined for s # sy and so is the ground
state energy,

E(s) := (¢(s)|H (s)[1(s)).
The overlap:

is well-defined. We can write,

t
exp(—itH(s)) = exp(—itH(0))T exp {—z/ drV (s, T)}
0
If we take derivative with respect to ¢ of the equation, we find,

H(s) = H(0) 4+ exp(—itH(0))V (s, t) exp(itH(0))



V(s,t) = exp(itH(0))(H(s) — H(0)) exp(—itH(0)).

We can now write, since |1(0)) is an eigenvector of H(0),

A = O o) Tenp { i | V(s 7} o,

We now perform an expansion of the overlap

wores{-i [ Vs 7 b

in powers of s. Notice that,

T exp {z /Ot dTV(S,T)} =1- i/ot drV(s,7) — ;/Ot /Ot drodn T{V (s,72)V(s,71)} + ...

% (Texp{i /Ot dTV(s,T)})
(;i; (Texp{—i/ot dTV(s,T)D

Therefore,

and hence,

[tV
——Z/O dTE(O,T)

s=0

t
_ _@-/ / / dngTlT{ aan Tz)av(o,m)}.
—0 0 0s

and,

wonres {~i [ drvis.n) } oy =

t
1—is(y O|/d78—VOT|z/J0

T [ |/dT (0, 7)|6(0)) — (0)|/Ot/OtdmdﬁT{%‘;(o,Tg)%‘;(o,m)}¢(o>>]
+O( %)

Thus, by using the identity 6(7) + 8(—7) = 1 of the Heaviside theta function, we obtain

/ / drodr ({ {%V(O T2), %‘:(0 7'1)} 19(0))
- W(U)l s (0 72)[1(0)) (¥ (0 )l*(O 71)[4$(0)))] + O(s%).

If we denote the expectation value (1(0)].|1(0)) = (.) we can write,

bt 1[0V oV % ov
AP =1 [ [anan |G { G 0.m. 5 0m - GL0m G 0.m)]
+0(s%)

The quantity,

= [ [ anan [ {5 0. S0 b - GG 0m)|.
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is the susceptibility and it is naturally positive. In fact, defining V,(7) = 7O dH/ON*(Ng)e "H(®) such that, by
the chain rule,

ov )N
S (D) =Val) 2 0),

we can write,

. ON® QNP
X = gab()‘O)g(O)g(o)a

with the metric tensor given by

s = [ [ draan [ (G V() V) = Vi) Vi)

Loschmidt Echo at finite temperature

We can naively replace the average (.) = (¥(0)|.]#(0)) by the average on p(Ag) = p(0) =
exp(—BH(0))/Tr{exp(—FH(0))}. Then, the appropriate quantity is the amplitude

Als) = T {p(O)TeXp {—i /Ot drV (s, T)}} .

It is easy to see that |A(s)|? has the same expansion as before with the averages replaced by the average on p(0).

Loschmidt Echo susceptibility x at finite temperature

We now proceed to compute Y, or equivalently, gq,(Ag) in the case of a two-level system, where we can write,

—BH(X) 1
° S = XP (Vo).

) = Tr{e AH(N} 32
and we define variables r = | X ()| and n#(X) = X*(X\)/|X(X)|. Writing H(X) = 2#(\)o, (and H(s) = H(\(s))), we
have,

ozt

Vo(7) = 55

(/\O)eiTH(O)O,HefiTH(O) )

Hence,

(Va(7)

1 oz

- —BH(0)

) Tr{e*BH(A)}Tr{e U“} o M)
oz oz+

= r(M0)m(20) 717 (M) = X, (ho) 755 (o),

independent of 7. We then have,

(Va(r2)) (Vi) = (r30) P (30) G Qo) () S5 O)
= tank? (B h0)]) st 552 (o) s 25 O

where we used X*(\g) = tanh(8|z(Ao)|)xz*(Xo)/|z(Xo)|. Now, using the cyclic property of the trace,

Q’I‘I-{crlﬁf‘l(())}Tr {efﬁH(A){Va(sz ‘/1)(7—1)}} _

1 ox™ 0x°
—BH(0) 4 v
ey {e {00, o—u}} R (1) B (1) 552 () 55 (o)

oz lokind
= 5WR“A(T2)R”U(7'1)87;()\0) &

OND ()\0),
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where R* (7) is the rotation matrix defined by the equation
¢THO) g o =iTHO) — Rt (7).
We can explicitly write it as
RM (1) = cos(27]|2(Xo)] ) + (1 — cos(27]z(Xo)]))n" (Ao)n (o) + sin(27|z(Ao) ) (No)ey,,
Using the previous equation and, because {R(7)} form a one-parameter group,
S R\ (12) RV, (11) = 6uaR", (T2 — 1),

we find, using the fact that the final expression has to be symmetric under a <+ b (hence eliminating unnecessary
terms),

cos[2(r — 1) 2000 S (o) o (o)
+ (1= cos 2(r2 = e o)) (o7 55 Ol s 555 .

Putting everything together,

(% {Va(m2), Vo(11)}) = (Va(72))(Vs(11))

= cos [2(72 ~ 7)) ]| (P s (), P (A0)}
x(Xo) Oz z(Aog) Oz

+ 0tk B0 T3 g3e Qo (o) g o)

The integral on 71 and 75 can now be performed using,

t ot t gt
/ / drodr cos[2(me — T )e] = / / drodry (cos(272€) cos(271€) + sin(27€) sin(27y€))
0 Jo o Jo

1 [sin2(2t€) + (cos(2te) — 1)(cos(2te) — 1)]

T e
1
=2 [2 — 2 cos(2te)]
sin?(te)
So the final result is,
_ sin?(|z(Xo)|t) Ox Ox
Jab(Mo) = WKP(@XL (AO)»Pw(Aom
x(Xo) Oz x(Ao) Oz

+ 2(1 — tanh®(B]z(Ao|))(

maﬁ( 0)><|x()\0)|’8>\b(/\0)>’

Bures metric for a two-level system

Take a curve of full-rank density operators t — p(t) and an horizontal lift t — W (t), with W (0) = 1/p(0). Then
the Bures metric is given by

dp dp AW aw
90 G a) =\ o ar (-

Now the horizontality condition is given by

pdW _ AWt

W -
dt dt ’



for each t. In the full-rank case, we can find a unique Hermitian matrix G(t) such that

dW
e G(t)W,

solves the horizontality condition:

wt ™ _wiaw = Wy
dt dt

Also G is such that

d d
d’t) = S (WWH = Gp+ pG.

So if L, (R,) is left (right) multiplication by p, we have, formally,

_1dp
G=(L,+ Ry) 1E'
Therefore,

dp dp AWt dw
gp(t)(a’ E) =Tr {dt dt} =Tr {G*p}

1
= 5 Tr{G(pG + Gp)}
Ly, 1 ~idpdp
_zTr{Gdt}_QTr{(L”JrR”) dt dt |-

Therefore, if we write p(t) in the diagonal basis,
p(t) =Y pi(®)]i(0)(i(t)]

we find,

dp dp 1 _1dpdp
o) = 5| R

3% i OO0 5i)

)

Hence, we can read off the metric tensor at p:

1 J

1 1
gp = = i|dp|7){7|dpl|7),
=5 2 gy, Ul ol

s

11

using the diagonal basis of p. This is the result for general full rank density operators. For two-level systems, writing,

1
p= 5(1 7Xug,u)>

and defining variables |X| = r and n* = X*/|X|,

1 1
= —— | dp}, + dp12d
9p [1—|—T+1—7‘] P11 T dp12ap21
1
= ﬁdﬂi + dpr2dpay,

where we used dp11 = —dp22. Notice that,

1 1
dp11 = §Tr{de03U71} = iTr{dpn“ou},
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where U is a unitary matrix diagonalizing p: UosU ™! = nto,. Now,
1 "
dp = —idX O,
and hence,
1 1
dp11 = _iqunu = —§dr.

On the other hand,

1 . _ . _

dp12dpo1 = ZTr{de(al —io9)U 1}Tr{de(0'1 —i09)U 1}
1 _ _ _ _
=3 [Tr{dpUc U~ "} Tr{dpUc U "} + Tr{dpUooU "} Tr{dpUcyU " '}]
1

1
= Z5W(dX“ — nfnydXM)(dXY — n"n,dX°) = irzdn“dnu,

where we used the fact that the vectors (u,v) defined by the equations Us U1 = uto, and Uoy U™ = vto, form
an orthonormal basis for the orthogonal complement in R3 of the line generated by n* (which corresponds to the
tangent space to the unit sphere S? at n#). The final result is

L[ dr? y
ds? = 1 (1_7ﬂ2 + 728, dndn ) . (14)

Pull-back of the Bures metric

We have a map
M 3 X p(0) = UN)pU )™ = SUR) (T~ X0, ) U™,
with
U(\) = exp(—itH(\)),

and we take

1y — —P(=BH ()
7 Tr {exp(—BH (M)}

We use the curve [0,1] 3 s — A(s), with A(0) = Ay, to obtain a curve of density operators

s> p(s) = p(A(s))-

Notice that p(0) = pg. Recall that for 2 x 2 density operators of full rank the Bures line element reads

, for some Ay € M.

1[ dr?

ds? = 1T + (5H,,r2dn“dn” ,
where
nt = X*/|X| and r = | X|,
with,
1
p= §(I—X“Ju).
Now,

o) = 5 (T = R4 () X¥0),
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with R* (\) being the unique SO(3) element satisfying
U\ UM =R, (Mo,
We then have, pulling back the coordinates,

r(A\) = |X| = constant and n*(\) = R*, (A\)n”

Therefore,
1 ont oOn¥ 1 L ORF_ORY
2 _ 2 a b _ = 2 T a b
ds® = 5””78)\“ N d\*d\ 47“ Oun’n’ 8)\‘1 I —Td\*d)\°.

in terms of the Euclidean metric on the tangent bundle of R?, denoted (., .),

1 _10R 1 0R
gab()‘>:1r2<R NG ’R ONb n),

written in terms of the pull-back of the Maurer-Cartan form in SO(3), R~'dR. We can further pullback by the curve
s+ A(s) and evaluate at s = 0,

ox o 1 JOR 9RO 9N
X = gab(Ao) — s (0)—=— e (0)*1 2R e n,R™ PV n) o ( )g( ),

and this will give us an expansion of the fidelity

We now evaluate x. Note that,

AU, U +Uc,dU™" = dR",0,
UlUdU,0,JU" = dRY,0,.

or
[U~'dU,0] = 0 - R™'dR.
Now, we can parameterise
U=1y"T+ iyt'o,, with ly|? = 1.
Therefore,
U~dU = (y° — iy*o,)(dy° +idy”o,)

= i(y dy" — y'dy°)o, + %(y“dy” — ¥ dy")e,, ox.

and

U700, = <2 | (P = BT S0 = )z e o

\H [\3\)—!

=2 |(Py ) G )6, 5780 o
= =2 [(y°dy" — y"dy e, + (Y dyT —yTdy")] o
=2[(y dy" — g dy ), .+ (Y dy" -y dy")] oy = (R™'dR), 0,

Observe that for H(\) = z#(\)o,, we have,

YO(V) = cos(a(A)[f) and g = — sin(le(A)]t)
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Therefore,
ay = — sin(lz (V[ dle(V)],

)d|
dy" = — cos(|z(A >|’5)TM( )d‘ W = sin(lz(A)ir)d (m)

oy

After a bit of algebra, we get,

Odyt — y# O:QJM()\) T — sin(|x cos(|x 2 (A)
Py~ = TSl ()] = s (] eos(e ) (T 55 ).
o ) (21
vy~ = 250 GO0 e ()
So that,
B PN PO e e 2T (20
(rtan); =27 S el - sinCieyina (58 ) &+ asint eyl (0 (T4,
At s =0, A(0) = A\ and the coordinate n*(A(0)) = x*(Xg)/|x(Ao)], so that,
(B4R = (RTRG0)Y,T
_ sin(2|x()\0)|t)m57 o (Mo)da" (Ao)

(1 - cos(@la(M)|0)d (;) (o)

Notice that the first term is perpendicular to the second. Therefore, we find,

xds? = %r2|R_1an|2 - irQ[SinQ(Q\x()\o)|t)ﬁ(5;\§g = 700 (\)da® (N (Ao )dzo (Ao)
(Ao
+ (1 = cos(2|z(Ao[t)* (Pda (o), Pdx()o)))]
osin?(lz(No)|t) , ., O Ox ON O

=T O0E o (0 P gxp (M) 5 (005 (0)ds”,

where we have introduced the projector P : T,R? = T, wa‘ e Nxwa‘ — TwS\zu onto the tangent space of the sphere of
radius |z| at . In other words, the Pullback metric by p of the Bures metric at \g is given by

2sm 2(lz(No)t) , ., Ox Ox

gab()\O) |I(A0)|2 <P8Aa (AO)’Pa)\b()‘O»
sin (|« v
=tz () RSO P 2 (). P Ol

where we noticed that r = | X| = tanh(8|z(\o)|). The expression (plx ()\0) 3)\1, L (X)) is just the Riemannian metric
on the sphere S, 2 | C R? evaluated on the tangent vectors P-2% e (Ao) and plz 735 (Ao). Notice that at infinite temperature,
since the state p()\) goes to the totally mixed state I/2, the susceptibility is zero. This is to be compared with

a b
<= 3 00) e (0) - (0)

= [ [ tman [ {0 G0 b - G0 G 0.

_sin®(Jz(Xo)[t) Ox Ox
*{WWD&M ()\o)aPa)\b(Ao»]

9 z(Ag) Oz z(Xo) Oz ON O
+t*(1 — tanh (5|x(>\0\))<maw( 0)><maw()\o)>}g(o)g(0)a
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with the average done using the thermal state pg = p(0) = p(Ag). This term appears in the expansion of the square
of the interferometric amplitude,

t
A(s) = Tr [p(0) exp(it H(0)) exp(—itH(s))] = Tr [p(O)TeXp(—i/ dTV(s,T))] ,
0
namely,
A(s)]> =1 — xs? + ...
The difference between the two susceptibilities is given by:

= x = (1= (L) (SN (P22 (2a), P25 o)

x z T x e b
e Gl 25 ) S 5-(0)

+ %

As 8 — 40, i.e., as the temperature goes to zero, the two susceptibilities are equal. Now, the function

£(t) = sin 2(et),

€

when € is arbitrary small is well approximated by t2. In that case the sum of the two terms appearing in the difference
between susceptibilities is just proportional the pull-back Euclidean metric on TR3.

The pullback of the inteferometric (Riemannian) metric on the space of unitaries

We first observe that each full rank density operator p defines a Hermitian inner product in the vector space of
linear maps of a Hilbert space ¢, i.e., End(5¢), given by,

(A, B), = Tr{pATB}.

This inner product then defines a Riemannian metric on the trivial tangent bundle of the vector space End(#). Since
the unitary group U(5#) C End(J¢), by restriction we get a Riemannian metric on U(5#). If we choose p to be
e PHXN /Tr{e=AHN Y then take the pullback by the map ®; : M 3 \; — e H(\1) € U(s#) and evaluate at \f = A,
we obtain the desired metric.

Next, we show that this version of LE is closely related to the interferometric geometric phase introduced by Sjoqvist
et. al [44,48]. To see this, consider the family of distances in U(#), d,, parametrised by a full rank density operator
p, defined as

d2(Uy,Us) = Te{p(Uy — Us)"(Uy — Us)}
= 2(1 — Re(Ul, U2>p),

where (-,-), is the Hermitian inner product defined previously. In terms of the spectral representation of p =
>_;P;13){il, we have

(U1, Us), =Y pi(§IU{Ual5).

J

The Hermitian inner product is invariant under U; — U, - D, ¢ = 1,2, where D is a phase matrix
D =Y )l
J

For the interferometric geometric phase, one enlarges this gauge symmetry to the subgroup of unitaries preserving
p. However, since we are interested in the interferometric LE previously defined, we choose not to do that. Next,
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promoting this global U(1)-gauge degree of freedom to a local one, i.e., demanding that we only care about unitaries
modulo a phase, we see that, upon changing U; — U; - D;, i = 1,2, we have,

(Ur,Us), —(U1 - D1,Us - D3),

=3 9y (U U j)eitez o),
J

We can choose gauges, i.e., D1 and Dy, minimizing d?,(Ul - D1,Usy - D), obtaining

d2(Uy - D1,Us - Dy) = 2(1 — |(Uy - Dy, Uy - Da),|)
2(1 = [(U1, U2),))-

Now, if {U; = U(t;) }1<i<n were the discretisation of a path of unitaries ¢ — U(t), t € [0, 1], applying the minimisation
process locally, i.e., between adjacent unitaries U; 1 and U;, in the limit N — co we get a notion of parallel transport
on the principal bundle U(5°) — U(5#)/U(1). In particular, the parallel transport condition reads,

Tr {pUT(t)aZi(t)} =0, for all t € [0, 1].

If we take p = exp(—BH()\;))/Tr{e PHRAI} U = exp(—itH(\;)) and Uy = exp(—itH ()\s)), then the interferometric
LE is

L(t, B Ap, Ni) = (U, Us) | = (U1, Ua),,

where (71 =U; - D; (i = 1,2) correspond to representatives satisfying the discrete version of the parallel transport
condition.
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