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We study the performance of a quantum Otto cycle using a harmonic work medium and un-
dergoing collisional dynamics with finite-size reservoirs. We span the dynamical regimes of the
work strokes from strongly non-adiabatic to quasi-static conditions, and address the effects that
non-Markovianity of the open-system dynamics of the work medium can have on the efficiency of
the thermal machine. While such efficiency never surpasses the classical upper bound valid for
finite-time stochastic engines, the behaviour of the engine shows clear-cut effects induced by both
the finiteness of the evolution time, and the memory-bearing character of the system-environment
evolution.

I. INTRODUCTION

The study of work- and heat-exchanges at the quan-
tum scale [1–3] is paving the way to the understanding
of how quantum fluctuations influence the energetics of
non-equilibrium quantum processes. In turn, such fun-
damental progress is expected to have significant reper-
cussions on the design and functioning of quantum heat
machines [4–9].

Such devices thus play the role of workhorses for the ex-
plorations of the potential advantages stemming from the
exploitation of quantum resources for thermodynamic ap-
plications at the nano-scale [10, 11]. Theoretical models
of microscopic heat engines based on the use of work-
ing fluid comprising two-level systems [12] or quantum
harmonic oscillators [13] have been introduced. Such de-
signs appear increasingly close to grasp in light of the
recent progresses in the experimental management of
(so far classical) thermal engines using individual par-
ticles [14, 15] or mechanical systems [16–18].

Is it possible to pinpoint genuine signatures of quan-
tum behaviour that influence the thermodynamics of a
system in ways that could never be produced by a clas-
sical mechanism [19]? How would quantum mechanics
enhance the performance of a quantum thermal engine
beyond anything achievable classically [20–23]? Do co-
herences in the energy eigenbasis [24–27] or non-thermal
reservoirs [28, 29] represent exploitable (quantum) ther-
modynamic resources? In an attempt at providing an-
swers to such burning questions, in this paper we study
the finite-time thermodynamics of a heat engine opera-
ting an Otto cycle whose work fluid is a quantum har-
monic oscillator. Hot and cold environments are model-
led via a collections of spin-1/2 particles (Fig. 1). The
work strokes of the cycle are implemented via parametric
changes of the frequency of the harmonic oscillator, while
heat exchanges result from collisional dynamics with the
environments that may allow for memory effects [30].
The significant flexibility and richness of dynamical con-
ditions of collisional models is perfectly suited to the ex-
ploration of non-Markovian dynamics in a wide range of
conditions [31–38].

The scope of our study is twofold: on the one hand, we
investigate work transformations of controlled yet varia-
ble duration, spanning the whole range from an infinitely
slow (and thus adiabatic) transformations, to the oppo-
site extreme of a sudden quench. On the other hand, by
including intra-environment interactions, we allow for the
emergence of memory effects and thus non-Markovianity
in the dynamics of the engine. We investigate numeri-
cally the behaviour of the engine and its performance in
the two cross-overs from adiabaticity to sudden quench,
and from Markovianity to non-Markovianity. We aim at
identifying the optimal trade-off between efficiency and
speed, and the role and impact of memory effects on the
engine performance.

Among the results reported in this paper is the demon-
stration that the efficiency of the device always decreases
as we approach the sudden-quench regime, and the quan-
tification of an optimal time at which the power output is
maximum. Intra-environment interactions, in turn, seem
to have no effect on the long-time engine performance.
However, they affect the transient of the evolution of the
engine by seemingly lowering the efficiency of the heat-
transfer process – at least in the case when the both the
engine and the environment particles are initialized in a
thermal state. In no case we observe a performance ex-
ceeding the classical bounds, which is in agreement with
the result reported in [19]. We do observe however a
strong connection between non-Markovianity and the co-
herences in the initial engine state.

The remainder of the article is structured as follows.
Sec. II introduces our model for heat engine, describ-
ing how the work and heat transformations are real-
ized. Sec. III presents the results of our quantitative
analysis, while in Sec. IV we draw our conclusions. Fi-
nally, Appendix A reviews key concepts of quantum non-
Markovianity and its characterization used in our quan-
titative analysis.
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FIG. 1. (a) We study an engine performing an Otto cycle with
a quantum harmonic oscillator as the working fluid, which in
turn interacts with two environments composed of spin-1/2
particles. Work is done on/by the oscillator by changing the
frequency of its potential, while in isolation from the envi-
ronments (cf. Sec. II B). Heat is exchanged with the latter
through collisions with the spin-1/2 particles (cf. Sec. II C).
Additional intra-environment interactions allow the environ-
ments to keep memory of past interactions with the engine.
(b) As its classical version, the cycle is composed by four
strokes: two isentropic (strokes 1 and 3), where work is per-
formed on or by the engine, and two (strokes 2 and 4), during
which heat is exchanged with the reservoirs. In our model,
the control parameter is the oscillator frequency ω, whose
changes play the role of an effective modification in volume in
the classical version of the engine. Therefore, strokes 2 and
4 are analogous to isocoric transformations. On the vertical
axis, we report the average internal energy of the oscillator
〈Ĥ〉, which quantifies the energy exchanges resulting from the
four strokes.

II. THE ENGINE MODEL

We study a model of heat engine operating according
to an Otto cycle, whose working fluid is a quantum har-
monic oscillator governed by the Hamiltonian

Hs(t) =
p2

2m
+
mω2(t)x2

2
. (1)

The subscript "s" stands for "system" as we may regard
the engine as our main system of interest. The Otto cycle
consists of two work strokes and two heat strokes. The
work strokes are implemented by changing the frequency
ω of the harmonic potential. The hot and cold environ-
ments are modelled as a collection of spin-1/2 particles
with Hamiltonian

H(n)
e =

1

2
~ωeσze,n, ωe > 0, e = c, h

for the n-th particle. The subscripts "h,c" stands for
either a hot- or a cold-reservoir particle. The engine in-
teracts with them through a collisional model, similar
to the one employed in Ref. [35]. The details of these
dynamical processes, pictured in Fig. 1, are outlined in
following Subsections.

A. Details of the cycle operation and
thermodynamics of the process

We are now going to outline the protocol through
which the Otto cycle is implemented, and its thermo-
dynamics. Let us define the thermodynamic quantities
that will be central to our analysis.

We start with the internal energy of the engine, which
is defined as

E := Tr[ρsHs]. (2)

The second quantity of relevance is the work done on/by
the engine during a work-producing stroke. As, in an
Otto cycle, no heat is exchanged in one of such strokes,
the difference between the values of the internal energy
of the engine at the initial and final points of the stroke
quantifies the exchanged work. We thus have

W := E
(k)
in − E

(k)
fin , (3)

where k = 1, 3 identifies the work-producing strokes. In
what follows, we use the usual convention that W > 0
when work is performed by the engine. This is also in
agreement with a definition of the average exchanged
work based on the so-called two-projective-measurement
approach [39].

Similarly to the above considerations, no work is ex-
changed during a heat-exchanging stroke, so that the dif-
ference between the values of the internal energy of the
engine at the initial and final points of the stroke provides
an estimate of the exchanged heat Q. Therefore

Q := E
(k)
fin − E

(k)
in , (4)

where Q > 0 if it is absorbed by the work medium, and
k = 2, 4 is the label for the heat-producing strokes. An
engine-environment interaction that conserves the total
energy [such as the one illustrated in Sec. II C], is a physi-
cally sound description of a heat transfer process, as it
is well suited to describe the heat exchange as a flow of
energy from one system (engine or environment) to the
other. Moreover, it is consistent with a more general
definition of the exchanged heat as the difference of the
environment internal energy.

The environmental particles are assumed to be all pre-
pared in a single-particle thermal state,

ρ(n)
e =

e−βeH
(n)
e

Tr [e−βeH
(n)
e ]

with βe = 1/(κTe) the inverse temperature of the e =
c,h environment. We have also assumed the hierarchy
of temperatures Tc < Th. The work fluid is assumed to
be initialized in a thermal state at initial temperature Ts
such that Tc < Ts < Th.

With reference to Fig. 1, our Otto cycle is implemented
with the following steps:
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Stroke 1–Compression: let the initial engine internal
energy be E0. The oscillator frequency is changed
from ωc to ωh in isolation from any environment.
The final energy is E1 and the work done on the
engine is Win = E0 − E1 < 0.

Stroke 2a–Contact with hot environment: the en-
gine interacts with a hot-environment particle and
the final internal energy is E2. The engine absorbs
the heat Qin = E2 − E1 > 0.

Stroke 2b–Intra-environment interaction: the in-
ternal interaction between the environmental par-
ticles may propagate some memory of the engine
state and feed it back at a later stage. This step
has no direct effect on the thermodynamics of the
engine.

Stroke 3–Expansion: the oscillator’s frequency is
changed from ωh back to ωc in isolation from any
environment. The final energy is E3 and the work
performed by the engine is Wout = E3 − E2 > 0.

Stroke 4a–Contact with cold environment: the
engine interacts with a cold-environment particle
and the final internal energy is E4. The engine has
transferred an amount of heat Qout = E4 −E3 < 0
to the environment.

Stroke 4b–Intra-environment interaction: similar
to stroke 2b.

The final state of the engine becomes the initial state of
a new cycle and the steps are iterated, involving new
environmental particles. The dynamics thus proceeds
through discrete time steps, each of them being a full
iteration of the Otto cycle. At the end of each cycle, we
compute the power output of a cycle, and its efficiency.
By denoting with T the total duration of one cycle, the
power output is P := (Win+Wout)/T , while the efficiency
reads η := (Win +Wout)/Qin.

Let us recall the usual expression for the internal ener-
gy of a quantum harmonic oscillator E = ~ω(1/2 + 〈n〉)
with n the number operator. Let us define as ni = 〈n〉i
(i = 0, . . . , 4) the average occupation number at the be-
ginning (i = 0) and after step i ≥ 1 of the protocol, such
that Ei = ~ωe(1/2 + ni), with ωe = ωc at the beginning
and after strokes 3 and 4, and ωe = ωh after strokes 1
and 2. We finally assume n4 = n0 if the engine performs
a stationary cycle. Using Eqs. (2)-(4) we have

η =
E2 − E3 + E0 − E1

E2 − E1
= 1− ωc(n3 − n0)

ωh(n2 − n1)
.

If the work transformations are performed adiabatically,
the populations remain unchanged, thus n1 = n0 and
n2 = n3, leading to the remarkably simple theoretical
efficiency

ηth = 1− ωc
ωh
, (5)

irrespectively of the details of the heat exchanges.

B. Work transformations

The work strokes are implemented through a unitary
transformation on the engine alone, isolated from the
cold or hot environment. A theoretical description of
such processes was developed in Ref. [40] and further ex-
tended in Ref. [39]. In the following, we summarise the
key steps of this treatment, which represent the basis for
our implementation of the work strokes.

We wish to find a wave-function ψ(x, t) satisfying the
Schrödinger equation

i~∂tψ(x, t) = Hs(t)ψ(x, t) (6)

within the time interval [0, τ ], with ω(0) = ω1 and
ω(τ) = ω2. In the following, ω1 and ω2 will be either ωc
or ωh depending on which work transformation is being
performed. The Hamiltonian in Eq. (1) can be written,
at any fixed time t, in the second quantization formalism
as

Hs(t) = ~ω(t)
(
1/2 + a†(t)a(t)

)
, (7)

where the operators

a(t) =

√
mω(t)

2~
x+ i

√
1

2m~ω(t)
p (8)

and a†(t) = [a(t)]† depend explicitly on time. From
Eq. (7), we obtain the instantaneous eigenvalues Etn =
~ω(t)(1/2 + n(t)) and the wave-function φtn(x) of its
eigenvectors, which are just a slight generalization of the
solutions for the time-independent quantum harmonic os-
cillator. Explicitly

φtn(x) =
4

√
mω(t)

π~
1√

2nn!
e−

mω(t)
2~ x2

Hn

(
x

√
mω(t)

~

)
,

(9)
where Hn(z) is the n-th Hermite polynomial of argument
z. The superscript t aims at reminding that t here plays
just the role of a label.

It can be seen by direct inspection that Eq. (6) admits
solutions satisfying the Gaussian ansatz

ψ(x, t) = exp
[
i
(
A(t)x2 + 2B(t)x+ C(t)

)
/2~
]
. (10)

By inserting this formula into Eq. (6), we obtain a system
of three differential equation for the coefficients A, B, C
reading

dA

dt
= −A

2

m
−mω2(t) (11)

dB

dt
= −A

m
B (12)

dC

dt
= i~

A

m
− 1

m
B2. (13)

Eq. (11) can be mapped into the equation of motion of a
classical time-dependent oscillator with amplitude X(t),
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through the substitution A = mẊ/X. Explicitly

d2X

dt2
+ ω2(t)X = 0. (14)

Once a parametrization is chosen for the transformation
ω(t), solving such equation gives A(t), from which also
B(t) and C(t) can be found by integrating Eqs. (12)
and (13). In [39] it is shown that by choosing the
parametrization

ω2(t) = ω2
2 + t(ω2

1 − ω2
2)/τ,

an analytic solution to such problem can be found. We
refer to the mentioned reference for the full expression.
Another key result, obtained in Ref. [40], is the expression
of the propagator

U(x, τ |x0, 0) =

√
m

2πi~X(τ)
e

im
2~X(τ)

(Ẋ(τ)x2−2xx0+Y (τ)x2
0),

(15)

where now X(t) and Y (t) are two specific solutions of
Eq. (14) satisfying the boundary conditions

X(0) = 0, Ẋ(0) = 1,

Y (0) = 1, Ẏ (0) = 0.

Having the explicit form of the propagator U(x, τ |x0, 0),
we now have all the tools to describe the effect of the work
transformation ω1 → ω2 (for arbitrary values of ω1,2) on
the engine density operator ρ(x, y; t), considered here as
dependent on position. We have

ρ(x0, y0; 0) 7→

ρ(x, y; τ) =

∫
U(x, τ |x0, 0)ρ(x0, y0; 0)U†(y, τ |y0, 0)dx0dy0

(16)

One further step is required, with the aim of making
the above transformation amenable to numerical treat-
ment: the expansion of both the density matrix ρ and
the operator U on the basis given by the eigenfunctions
in Eq. (9). Let us define

ρmn(t) := 〈φtm|ρ(t)|φtn〉, (17)

Umn := 〈φτm|U(τ, 0)|φ0
n〉, (18)

where we omitted the position dependencies since they
are integrated over in the scalar products. It should be
stressed that the Umn elements are computed by taking
scalar products with two different sets of eigenfunctions,
the effect of U(τ, 0) being precisely that of implemen-
ting the transformation from one Hamiltonian to another.
Eq. (16) then becomes

ρmn(0) 7→ ρkl(τ) =
∑
mn

Ukmρmn(0)U†nl.

0.1 0.5 1 5 10
0.0

0.5

1.0

1.5

2.0

τ

Q*

Deviation from adiabaticity

FIG. 2. Deviation from the adiabatic regime, as captured by
the Q∗ factor as a function of the work stroke duration τ , for
ω1 = 1 and ω2 = 4. The green (lighter) line represents the
limit Q∗ = 1 for τ →∞.

In Ref. [40] an expression for the generating function of
transition probabilities from the initial to the final eigen-
states P τm,n = |〈φτm|U(τ, 0)|φ0

n〉|2 is provided:

P (u, v) =
∑
m,n

umvnP τm,n

=

√
2

Q∗(1− u2)(1− v2) + (1 + u2)(1 + v2)− 4uv
,

Remarkably, the above expression depends on the details
of the parametrization ω(t) only through the factor Q∗,
whose expression for the most general transformation is
provided in [39]:

Q∗ =
ω2

1

(
ω2

2X(τ)2 + Ẋ(τ)2
)

+
(
ω2

2Y (τ)2 + Ẏ (τ)2
)

2ω1ω2
(19)

The factor tends to the limiting value Q∗ → 1 for τ →∞,
and becomes increasingly greater than 1 as τ becomes
smaller, as exemplified in Fig. 2.

The following special cases are of particular interest:

• No transformation is performed, ω2 = ω1. It can be
shown that the propagator (15) becomes the iden-
tity operator embodied by U(x, τ |x0, 0) = δ(x−x0).
The matrix elements (18) are Umn = δmn, since the
initial and final eigenbasis coincide.

• Sudden quench, τ → 0. Also in this case
U(x, τ |x0, 0) → δ(x − x0), because the transfor-
mation is so quick that the density operator is left
unchanged. Its matrix elements ρmn, however, un-
dergo a unitary change of basis through the matrix
Umn = 〈φ(2)

m |φ(1)
n 〉, where the superscripts refer to

the frequencies ω1, ω2.

• Adiabatic transformation, τ → ∞. The initial
eigenstates are mapped one-to-one to the final ones,
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infinitely slowly. The propagator can be expressed
as U(τ, 0) =

∑
n |φτn〉

〈
φ0
n

∣∣, which gives Umn = δmn.

From now on, we will denote the duration τ of the work
transformations by τw.

C. Heat exchanges: collisional model

Let us now introduce the model for the environments
and for how they interact, both with the engine and
within themselves. The interactions are implemented
through a collisional model. When the engine interacts,
say, with the cold environment, it undergoes an inter-
action with one, and only one, environment particle at
a time, through a unitary operator acting non-trivially
only on the Hilbert spaces of the engine and said particle.
This is what we refer to as a collision, meaning a "point-
like" interaction between the engine and one element of
the environment. With the thermodynamic limit in sight,
it is assumed that the engine never interacts twice with
the same environment particle: at each collision, the en-
gine interacts with a new, "fresh" particle.

The unitary Vse through which the interaction happens
is generated by a resonant excitation conserving Hamil-
tonian

Hse = J
(
aσ+

e + a†σ−e
)
, (20)

Vse = exp

[
− i

~
Hseτse

]
, e = c, h (21)

where the main coupling constant J and the interaction
time τse rule the interaction strength, and are assumed
to be the same for both environments. As mentioned in
Sec. II A, at the moment of interaction the engine fre-
quency matches exactly that of the environment parti-
cle it is interacting with. In the most basic, completely
memoryless implementation of such a model, only one
particle for each environment actually stored at any time.
Indicating by Hs, Hc and Hh Hilbert spaces of the en-
gine, of a cold and a hot particle respectively, the minimal
total Hilbert space is

H = Hc ⊗Hs ⊗Hh.

With reference to Fig. 1 (a), suppose the engine is in
the state ρs at the beginning of iteration n of the thermo-
dynamic cycle, and interacts with the n-th cold particle
initially in the state ρ(n)

c ,

ρ(n)
c ⊗ ρs ⊗ ρ(n)

h →

ρ̃csh = (Vsc ⊗ Ih)
(
ρ(n)
c ⊗ ρs ⊗ ρ(n)

h

)
(V †sc ⊗ Ih),

and a hot particle ρ
(n)
h , while present, is left unaf-

fected [41]. After interaction, we take the local marginals
of both parties ρ̃s = Trc,h[ρ̃csh] and ρ̃

(n)
c = Trs,h[ρ̃csh]

and possibly use them to compute the various thermo-
dynamic quantities as explained in Sec. II A. The particle

ρ
(n)
c is then discarded, in practice traced away from the

global density matrix, and a new one ρ(n+1)
c is included

in the model in its place, such the global state ready for
the next step is

ρ(n+1)
c ⊗ ρ̃s ⊗ ρ(n)

h

We now take a step further and introduce intra-
environment collisions, thus allowing the environments
to carry over memory of past interactions with the en-
gine, opening the possibility for the engine dynamics to
be non-Markovian. We wish therefore to consider two
particles for each environment at any given time. In or-
der to do so, we need to extend the Hilbert space we work
with to

H = Hc,b ⊗Hc,a ⊗Hs ⊗Hh,a ⊗Hh,b,

where the additional subscript "a" indicates now the first
(hot or cold) environment particle interacting with the
engine and "b" indicates the second, that is particles
n and n + 1 in our example. Before is it traced away,
the environment particle n undergoes a further collision
with the particle n+ 1, through a Heisenberg interaction
Hamiltonian:

Hee = Jee
(
σxnσ

x
n+1 + σynσ

y
n+1 + σznσ

z
n+1

)
, (22)

Vee = exp

[
− i

~
Heeτee

]
, ee = cc, hh (23)

with coupling constant Jcc(Jhh) and interaction time
τcc(τhh) for the cold (hot) environment. As explained
in [42], [32] and [35], the interaction acts effectively as a
partial swap, exchanging the states of the two particles
with probability sin2(2Jeeτee). In particular, a perfect
swap is achieved for Jeeτee = π/4.

Continuing in our example, after the subsequent appli-
cation of Vsc and Vcc, the engine and particle n+1 will be
in general in a correlated state, ρ̃(n+1)

sc even if they haven’t
interacted directly yet. After tracing away the cold par-
ticle n, "shifting" particle n+ 1 from position c, b to c, a
in our Hilbert space, and including a new particle n+ 2
in position (c, b), the global state is

ρ(n+2)
c ⊗ ρ̃(n+1)

sc ⊗ ρ(n)
h ⊗ ρ(n+1)

h .

This completes the description of one full heat stroke.
The state is now ready for the next stroke, which will be
a work one. The interactions between the engine and the
hot environment, and within the hot environment, would
occur in exactly the same way. Therefore, at the end of
a full cycle, composed of all the steps of Sec. II A, the
global state looks like

ρ(n+2)
c ⊗ ρ̃(n+1)

sch ⊗ ρ(n+2)
h ,

with the engine correlated to the hot and cold parti-
cles (n + 1). More details on this model of system-
environment interaction can be found in [35].
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FIG. 3. Signatures of non-Markovianity: time evolution of
the degree of non-Markovianity N , with intra-environment
interaction Jeeτee increasing from blue to red (bottom to top).
Nearly adiabatic work strokes (Jτw = 32) and pure initial
states

∣∣ψ±test〉. Inset: final N against the intra-environment
interaction Jeeτee. The dashed line is a guide for the eye.

Finally, the total cycle duration is T = 2(τw + τse),
taking into account only the steps in which the engine is
directly involved and assuming the intra-environment in-
teractions to occur at the same time as the work strokes.

III. RESULTS

We present here the results on the engine perfor-
mance and the possible influence of non-Markovianity
on its operations. First, we present evidence of non-
Markovianity in the engine dynamics and its depen-
dence on intra-environment interactions. We then in-
vestigate the crossover from adiabatic to sudden quench
work strokes in the purely Markovian regime. Finally we
show how the non-Markovianity affects the engine per-
formance.

Few words on the choice of parameters. We work in
units where ~ = 1, κ = 1, and also choose J = Jcc =
Jhh = 1 without loss of generality. The temperatures
of the environments are Tc = 0.1 and Th = 10, giving
a Carnot efficiency of 0.99 and a Curzon-Ahlborn effi-
ciency of 0.9 as theoretical upper bounds. The engine is
initialized in a thermal state at Ts = 0.5 unless otherwise
stated. While the initial temperature is not very cru-
cial for the thermodynamics, the fact of the initial state
being diagonal in the energy eigenbasis does impact the
behaviour of the engine.

We chose an interaction between the engine and the
environments of moderate strength Jτse = 0.3, in or-
der for it to be quite weak, but not so weak that the
heat exchanged per cycle becomes too small, compared
to the exchanged work. The chosen environment frequen-
cies are ωc = 1 and ωh = 4, close enough to each other
that the work exchanged is not too big, compared to
the exchanged heat, and such that the adiabatic regime
(τw → +∞) is approximated well at τw = 16 and very
well at τw = 32. The gap between ωh and ωc is nonthe-
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FIG. 4. Time evolution of the coherence C in the engine
density matrix, with intra-environment interaction Jeeτee in-
creasing from blue to red (bottom to top). Pure initial states∣∣ψ±test〉. The work strokes are nearly adiabatic, Jτw = 32. In-
set: degree of non-Markovianity N against initial coherence
in the pure initial states

∣∣ψ±α 〉, with α on the x axis. The
dashed line is a guide for the eye.

less big enough that, in the sudden quench regime, the
Q∗ factor is appreciably different from 1, in fact surpas-
sing 2 as can be seen in Fig. 2. The theoretical efficiency
in the adiabatic case is ηth = 0.75.

The density matrices of the environment particles are
represented in the eigenbasis { |0〉 , |1〉 } of the Hamilto-
nian ~ωeσze/2.

As the initial temperature Ts is low, the initial pop-
ulations decay quite fast, being negligible (below ma-
chine precision) above level n = 20. Therefore, in most
simulations we could safely truncate the Fock space at
n = 30, checking that the matrices representing the uni-
taries U, Vse, and Vee in the truncated space remain ap-
proximately unitary. We performed tests extending the
Fock space up to n = 50 to confirm that the results were
not appreciably different than those obtained truncating
at n = 30. Since at any time we simulate two particles for
each environment, the dimension of the total dimension
of the density matrix is 24 × 31 = 496.

A. Non-Markovianity of the engine dynamics

As summarized in Appendix A, in order to quantify
the degree of non-Markovianity N according to the BLP
measure, one has to choose pairs of initial states, make
them evolve in time according to the specific dynamics
in object, and observe the behaviour of the trace dis-
tance. It is then required to maximise N over all pos-
sible choices of initial pairs. In our case, however, the
state of the engine is represented by a 31 × 31 complex
hermitian matrix and the maximization is an extremely
demanding task. We chose therefore heuristically a cou-
ple of pure orthogonal states

∣∣ψ±test〉, guided by analogy
with the spin-1/2 particle case in which often the optimal
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FIG. 5. (a) Stationary cycle efficiency η∞ against the dura-
tion of the work stroke τw, for engine-environment coupling
constant J = 1. The dashed line is a guide for the eye, the
green (solid) line represents the theoretic adiabatic efficiency
ηth = 1 − ωc/ωh. (b) Number of iterations N∞ required to
reach the stationary cycle against the duration of the work
stroke τw, for engine-environment coupling constant J = 1.
The dashed line is a guide for the eye, the green (solid) line
represents the limit τw →∞.

pair is |±〉 = (|0〉 ± |1〉)/
√

2 [32, 35]. The choice was

∣∣ψ±test〉 =
|0〉 ± |10〉√

2
, (24)

as we found that pure states in the form (|0〉 ± |n〉)/
√

2,
with a high degree of coherence in the energy eigen-
basis, seem to be particularly favourable to boost the
non-Markovianity measure. This particular choice

∣∣ψ±test〉
turned out to be the one yielding the biggest N . Even
though we do not have evidence that this is the best pair
of states maximising the non-Markovianity degree N , we
are confident that the results may still provide a valuable
insight on the non-Markovian character of the dynamics.

Fig. 3 presents the behaviour of the non-Markovianity
degree N in its dependence on the intra-environment in-
teraction strength and in its time evolution, in the case of
adiabatic work strokes. The non-Markovian behaviour is
intrinsically a property of the dynamics during the tran-
sient to stationary state. Fig. 4 shows the dynamics of
the total internal coherence of the engine, quantified by

C :=
∑
i 6=j

|ρij |.

The coherence in the stationary state settles to a quite
small value, irrespective of the initial state. Further-
more, the more the dynamics is non-Markovian, the
longer the coherences survive. This is most likely a di-
rect consequence of the fact that the interaction with
non-Markovian environments slows down the approach
to the stationary state (see also Fig. 7). The inset of
Fig. 4 shows the relation between non-Markovianity and
the initial coherence present in the engine, when initiali-
zed in the state |ψ±α 〉 = (|0〉 ± α |10〉)/Nα, normalized by
Nα, with α = m× 0.1, m = 0, 1, . . . , 10. The connection
between the presence of coherence in the initial states and
their effectiveness in the detection of non-Markovianity
is evident.

0.05 0.10 0.50 1 5 10
0.00

0.01

0.02

0.03

0.04

0.05

Jτw

P∞

Power

FIG. 6. Power output against the duration of the work stroke
τw, for engine-environment coupling constant J = 1. The
dashed line is a guide for the eye. The power vanishes for
τw → ∞, as the efficiency approaches the limit ηth while the
cycle duration grows as ∼ 2τw. In the sudden quench limit,
instead, it approaches a finite value, being η non-zero for τw →
0 while the cycle duration is ∼ 2τse.

B. Engine performance

Fig. 5 and 6 summarize the behaviour of the engine
in the Markovian regime, with no intra-environment in-
teractions, focusing on the crossover from adiabatic to
sudden quench work strokes. We can see that the sta-
tionary cycle efficiency η∞ reaches the expected limit ηth
in the adiabatic case, and decreases as we depart from
adiabaticity. The duration of the work strokes τw also
affects the number of iterations N∞ it takes for the en-
gine to reach the stationary regime, which grows as we
approach the sudden quench regime. This further indi-
cates a drop of the engine performance as we move away
from adiabaticity. The power output per single iteration
P∞, however, has a maximum around τw = 1, since at
that point the efficiency deviates only slightly from ηth.

Fig. 7 and 8 present the behaviour of the performance
in the most general case of the engine operating with non-
adiabatic work strokes and non-Markovian environments.
Non-Markovianity seem to always affect negatively the
performance, but it does so more pronouncedly as we
deviate from the adiabatic regime. In particular, the effi-
ciency in the adiabatic case is mostly independent of the
non-Markovian character of the dynamics, approaching
in fact ηth, while for smaller durations of the work strokes
it drops more pronouncedly as the intra-environment in-
teractions become stronger. The power output, therefore,
decreases accordingly.

IV. CONCLUSIONS AND OUTLOOK

In this work we studied the out-of-equilibrium ther-
modynamics and performance of a quantum Otto cycle
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FIG. 7. Number of iterations N∞ to the stationary cycle,
against the intra-environment interaction Jeeτee. The dashed
lines are guides for the eye. The duration τw of the work
strokes increases from the red to the blue curve (top to bot-
tom).

employing a harmonic oscillator as working fluid, in in-
teraction with a finite-size environment through a colli-
sional dynamics that may allow for memory effects, and
thus for the emergence of non-Markovianity. We ex-
plored the crossover from adiabatic to sudden quench
work strokes and found that, while departing from the
adiabatic regime induces a drop in the efficiency, it is
possible to find an optimal duration of the work strokes
such that the power output is maximised. We do not
observe better than classical performance, at least in the
case when the both the engine and the environment par-
ticles are initialized in thermal states, which is consis-
tent with the what reported in [19] on the thermody-
namics of heat machines with quantized energy levels.
Non-Markovianity signatures are observed in the engine
dynamics, and even though such memory effects do not
impact the stationary engine performance, they do affect
the approach to the asymptotic cycle, slowing it down.
Non-Markovianity is however found to be closely con-
nected with the presence of initial coherences in the en-
ergy eigenbasis of the engine.
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Appendix A: Quantum non-Markovianity

Recently, the issue of non-Markovianity of quan-
tum dynamics has received considerable attention aimed
at characterizing the phenomenology of non-Markovian
open-system dynamics through general tools of broad ap-
plicability. Such efforts are based on the formal assess-
ment of the various facets with which non-Markovianity
is manifested.

One of such approaches to the definition of Markovian-
ity is based on the notion of divisibility [43]: a dynamical
process is said to be Markovian if, for any two times
t ≤ s there is a completely positive map Γ(s, t) such
that ρ(s) = Γ(s, t)ρ(t), and such maps form a semigroup.
The requirement of complete positivity links very tightly
Markovianity with the behaviour of the dynamical maps
on entangled states, in the sense that a Markovian pro-
cess is always expected to degrade entanglement. In order
to assess the (non-)Markovian character of the dynamics,
one needs to perform a tomography of the process so as
to reconstruct the map Γ.

Another widely employed approach, introduced in
Refs. [44, 45], is based on the concept of information
backflow. The starting point is the fact that any com-
pletely positive trace-preserving (CPTP) map is a con-
traction for the trace distance [46], defined as

D(ρ1, ρ2) := 1
2‖ρ1 − ρ2‖ ,

where ‖A‖ = Tr
√
A†A is the trace-1 norm and ρ1,2 are

two density matrix of the system under scrutiny. The
trace distance is a metric in the space of density matri-
ces, closely related to their distinguishability: a value of
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D(ρ1, ρ2) = 1 implies perfect distinguishability.
The contractive character of D(ρ1, ρ2) under CPTP

maps is the key idea for the quantification of non-
Markovianity based on information backflow: Markovian
maps can not increase the distinguishability of any two
given states. If, however, one can find a pair of initial
states and a time t for which contractivity is violated,
resulting in

σ(t) =
dD(ρ1(t), ρ2(t))

dt
> 0, (A1)

this is held as a signature of non-Markovianity in the

dynamics. Such criterion can be used to build a quanti-
tative measure N of non-Markovianity as

N := max
{ρ1,ρ2}

∫
Σ+

σ(t)dt, (A2)

where Σ+ is the time window where σ(t) > 0, and maxi-
mise on the choice of initial states. While finding the
optimal pair of initial states is in general challenging, the
task is often simplified owing to the result reported in
Ref. [47], where it is proven that the states maximizing
N must be orthogonal and belonging to the boundary of
the state space.
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