
Perceptrons from Memristors

Francisco Silva,1, ∗ Mikel Sanz,2, † João Seixas,3, 4, ‡ Enrique Solano,2, 5, 6, § and Yasser Omar1, 7, ¶

1Instituto Superior Técnico, Universidade de Lisboa, Portugal
2Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain

3CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Portugal
4Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas (LIP), Lisbon, Portugal
5IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain

6Department of Physics, Shanghai University, 200444 Shanghai, China
7Physics of Information and Quantum Technologies Group, Instituto de Telecomunicações, Portugal

(Dated: July 16, 2018)

Memristors, resistors with memory whose outputs depend on the history of their inputs, have been
used with success in neuromorphic architectures, particularly as synapses or non-volatile memories.
A neural network based on memristors could show advantages in terms of energy conservation and
open up possibilities for other learning systems to be adapted to a memristor-based paradigm, both
in the classical and quantum learning realms. No model for such a network has been proposed so
far. Therefore, in order to fill this gap, we introduce models for single and multilayer perceptrons
based on memristors. We adapt the delta rule to the memristor-based single-layer perceptron and
the backpropagation algorithm to the memristor-based multilayer perceptron. We ran simulations
of both the models and the training algorithms. These showed that both of them perform well and
in accordance with Minsky-Papert’s theorem, which motivates the possibility of building memristor-
based hardware for a physical neural network.

I. INTRODUCTION

The perceptron, introduced by Rosenblatt in 1958 [1],
was one of the first models for supervised learning. In a
perceptron, the inputs x1...xn are linearly combined with
coefficients given by the weights w1...wn, as well as with a
bias b to form the input v to the neuron (see Fig. 1). v is
then fed into a non-linear function whose output is either
0 or 1. The goal of the perceptron is thus to find a set
of weights {wi} that correctly assigns inputs {xi} to one
of two predetermined binary classes. The correct weights
for this task are found by an iterative training process,
for instance the delta rule [2]. However, the perceptron
is only capable of learning linearly separable patterns, as
was shown in 1969 by Minksy and Papert [3]. These limi-

Fig. 1. In a single-layer perceptron (SLP) the inputs xi are
multiplied by their respective weights wi and added, together
with a bias b to form the net input to the SLP, v. The output
y of the SLP is given by some activation function, φ(v).

∗ francisco.horta.ferreira.da.silva@tecnico.ulisboa.pt
† mikel.sanz@ehu.eus
‡ joao.seixas@tecnico.ulisboa.pt
§ enr.solano@gmail.com
¶ yasser.omar@lx.it.pt

tations triggered a search for more capable models, which
eventually resulted in the proposal of the multilayer per-
ceptron. These objects can be seen as several layers of
perceptrons connected to each other by synapses (see Fig.
2). This structure ensures that the multilayer perceptron
does not suffer from the same limitations as Rosenblatt’s
perceptron. In fact, a multilayer perceptron with at least
one hidden layer of neurons and with conveniently cho-
sen activation functions can approximate any continuous
function to an arbitrary accuracy [4].

There are various methods to train a neural network
such as the multilayer perceptron. One of the most
widespread is the backpropagation algorithm, a gener-
alization of the original delta rule [5]. Artificial neural

Fig. 2. In a multilayer perceptron (MLP), single-layer per-
ceptrons (SLP) are arranged in layers and connected to each
other, with the outputs of the SLPs in the output layer being
the outputs of the MLP. Here, each SLP is represented by a
disc.

networks such as the multilayer perceptron have proven
extremely useful in solving a wide variety of problems [6–
8], but they have thus far mostly been implemented in
digital computers. This means that we are not profiting
from some of the advantages that these networks could
have over traditional computing paradigms, such as very

ar
X

iv
:1

80
7.

04
91

2v
1 

 [
cs

.E
T

] 
 1

3 
Ju

l 2
01

8

mailto:francisco.horta.ferreira.da.silva@tecnico.ulisboa.pt
mailto:mikel.sanz@ehu.eus
mailto:joao.seixas@tecnico.ulisboa.pt
mailto:enr.solano@gmail.com
mailto:yasser.omar@lx.it.pt


2

low energy consumption and massive parallelization [9].
Keeping these advantages is, of course, of utmost inter-
est, and this could be done if a physical neural network
was used instead of a simulation on a digital computer.
In order to construct such a network, a suitable building
block must be found, with the memristor being a good
candidate.

The memristor was first introduced in 1971 as a two-
terminal device that behaves as a resistor with mem-
ory [10]. The three known elementary circuit elements,
namely the resistor, the capacitor and the inductor, can
be defined by the relation they establish between two
of the four fundamental circuit variables: the current
i, the voltage u, the charge q and the flux-linkage φ.
There are six possible combinations of these four vari-
ables, five of which lead to widely-known relations: three
from the circuit elements mentioned above, and two given

by q(t) =
∫ t
−∞ i(τ)dτ and φ(t) =

∫ t
−∞ u(τ)dτ . This

means that only the relation between φ and q remains
to be defined: the memristor provides this missing rela-
tion. Despite having been predicted in 1971 using this
argument, it was not until 2008 that the existence of
memristors was demonstrated at HP Labs [11], which
led to a new boom in memristor-related research [12]. In
particular, there have been proposals of how memristors
could be used in Hebbian learning systems [13–15], in the
simulation of fluid-like integro-differential equations [16],
in the construction of digital quantum computers [17]
and of how they could be used to implement non-volatile
memories [18].

The pinched current-voltage hysteresis loop inherent
to memristors endows them with intrinsic memory capa-
bilities, leading to the belief that they might be used as a
building block in neural computing architectures [19–21].
It is then natural to ask if they can be used as a basic
unit in artificial neural networks. The main goal of this
paper is to introduce a memristor-based perceptron, i.e.,
a single-layer perceptron (SLP) built from memristors,
which will be generalized to a memristor-based multi-
layer perceptron (MLP). We will also introduce learning
rules for both perceptrons, based on the delta rule for
the SLP, and on the backpropagation algorithm for the
MLP. It is important to note that while there have been
proposals of how memristors can be used in learning sys-
tems [13–15], these were only regarding Hebbian learning,
which constitutes a different learning paradigm than the
perceptrons we are proposing.

II. THE MEMRISTOR AS A DYNAMICAL
SYSTEM

In general, a current-controlled memristor is a dynam-
ical system whose evolution is described by the following
pair of equations [10]

{
V = R(~γ, I)I, (1a)

~̇γ = ~f(~γ, I). (1b)

The first one is Ohm’s law and relates the voltage output
of the memristor V with the current input I through the
memristance R(~γ, I), which is a scalar function depend-
ing both on I and on the set of the memristor’s internal
variables ~γ. This dependence of the memristance on the
internal variables induces the memristor’s output depen-
dence on past inputs, i.e., this is the mechanism that en-
dows the memristor with memory. The second equation
describes the time-evolution of the memristor’s internal
variables by relating their time derivative, ~̇γ, to an n-

dimensional vector function ~f(~γ, I), depending on both
previous values of the internal variables and the input of
the memristor.

A. Memristor-based Single-Layer Perceptron

Our goal is to implement a perceptron and an adapta-
tion of the delta rule to train it using only a memristor.
To this end, we use the memristor’s internal variables to
store the SLP’s weights. Equation (1b) allows us to con-
trol the evolution of the memristor’s internal variables
and implement a learning rule. If, for example, we want
to implement a SLP with two inputs we need a mem-
ristor with three internal variables, two of them to store
the weights of the connections between the inputs and the
SLP and the other one to store the SLP’s bias weight.

Let us then consider a memristor with three internal
state variables, from now on labeled by ~γ = (γ1, γ2, γ3)

and in which ~f = (f1, f2, f3). It could be difficult to
externally control multiple internal variables. However, a
possible solution is to several memristors with the chosen
requirements and with an externally controlled internal
variable each.

In order to understand the form of these functions, we
must remember that we expect different behaviours from
the perceptron depending on the stage of the algorithm.
In the forward propagation stage, the weights must re-
main constant to obtain the output for a given input. In
this phase the internal variables must not change. On
the other hand, in the backpropagation stage, we want
to update the perceptron’s weights by changing the inter-
nal variables. However, it may happen that the update
is different for each of the weights, so we need to be able
to change only one of the internal variables without af-
fecting the others.

There are thus three different possible scenarios in the
backpropagation stage: we want to update γ1, while γ2
and γ3 should not change; we want to update γ2, while
γ1 and γ3 should not change, and we want to update γ3,
while γ1 and γ2 should not change. To conciliate this
with the fact that a memristor takes only one input, we
propose the use of threshold-based functions, as well as a
bias current Ib, for the evolution of the internal variables

V (t) = g(I, γ1, γ2, γ3), (2)

γ̇i = (I − Ib)θ(I − Iγi), (3)



3

where g is an activation function and θ is the Heavi-
side function. If Iγ1 , Iγ2 and Iγ3 are sufficiently different
from each other and from zero, we can reach the correct
behaviour by choosing the memristor’s input appropri-
ately. In the aforementioned construction in which our
memristor with three internal variables is constructed as
an equivalent memristor, we can also use an external cur-
rent or voltage control to keep the internal variable fixed.
In fact, this is how it is usually addressed experimentally
[21–24]. Therefore, we can assume that this construction
is possible. It is important to note that, in an experi-
mental implementation, this threshold system does not
need to be based on the input currents’ intensities. It
can, for instance, be based on the use of signals of differ-
ent frequencies for each of the internal variables or in the
codification of the signals meant for each of the internal
variables in AC voltage signals.

Algorithm 1 Delta rule for Single-layer Perceptron
Initialization
Set the bias current Ib to 0.
Initialize the weights w1, w2, wb.
Set the internal state variables γ1, γ2, γ3 to w1, w2 and wb,
respectively.
for d in data do
Forward Pass
Compute the net input to the perceptron:

I = w1x1 + w2x2. (4)

Compute the perceptron’s output:

V = g(I, γ1, γ2, γ3). (5)

Backward Pass
Compute the difference ∆ between the target output and
the actual output:

∆ = T − V. (6)

Compute the derivative of the activation function with re-
spect to the net input, g′.
for i in internal variables do
Set the bias Ib = Iγi .
Update γi by inputting I = ∆xig

′ + Ib.
end for
Update the weights by setting them to the updated values
of the internal state variables.
Set the bias Ib = 0.
end for

We are now ready to present a learning algorithm for
our SLP based on the delta rule, which is described in
Algorithm 1. In case one wants to generalize this pro-
cedure to an arbitrary number of inputs n, this can be
trivially achieved by using a memristor with n+1 internal
variables and adapting Algorithm 1 accordingly.

B. Memristor-based Multilayer Perceptron

In this model, memristors are used to emulate both
the connections and the nodes of a MLP. In principle,
the nodes could be emulated by non-linear resistors, but
using memristors allows us to take advantage of their
internal variable to implement a bias weight, which in
some cases proves fundamental for a successful network
training.

The equations describing the evolution of the memris-
tor at each node in this model are the same as in the
seminal HP Labs paper [11]. We have chosen the exper-
imentally tested set

V (t) =

(
RON

γ(t)

D
+ROFF

(
1− γ(t)

D

))
I(t), (7)

γ̇ =

{
µV

RON

D I(t)− Iγ if µV
RON

D I(t) > Iγ ,

0 o.w.
(8)

Here, RON and ROFF are, respectively, the doped and un-
doped resistances of the memristor, D and µV are phys-
ical memristor parameters, namely the thickness of its
semiconductor film and its average ion mobility, and Iγ
is a threshold current playing the same role as the I~γ
in the model for the memristor-based SLP introduced
above. Equation (7) can be approximated by

V (t) = ROFF

(
1− γ(t)

D

)
I(t), (9)

since we have that RON

ROFF
≈ 1

100 . If, for instance, we im-
pose a constant current input I to the memristor for a
time t, the output is given by

V (t) ∝ −I2t. (10)

This can be achieved in practice by using a current
integrator. It is then possible to implement non-linear
activation functions starting from Equation (7), which
is an important condition for the universality of neural
networks [25].

Looking now at synaptic memristors, their evolution is
described by

V (t) = γ(t)I(t), (11)

γ̇ =

(
µV

RON

D
I(t)− Iγ

)
θ

(
µV

RON

D
I(t)− Iγ

)
. (12)

In synaptic memristors, the internal variable γ is used
to store the weight of the respective connection, whereas
in node memristors the internal variable is used to store
the node’s bias weight.

As explained before, the node memristors are chosen
to operate in a non-linear regime, which allows us to im-
plement non-linear activation functions. On the other
hand, we choose a linear regime for synaptic memristors,



4

which allows us to emulate the multiplication of weights
by signals.

It must be mentioned that Equation (8) is only valid
γ ∈ [0, D]. If we were to store the network weights in the
internal variables using only a rescaling constant A, i.e.,
w = Aγ, then the weights would all have the same sign.
Although convergence of the standard backpropagation
algorithm is still possible in this case [26], it is usually
slower and more difficult, so it is convenient to redefine
the variable [11] D → D′ so that the interval of the in-
ternal variable in which Equation (8) is valid becomes
[−D′/2, D′2]. Using a rescaling constant B, the network
weights can then be in the interval [−BD′/2, BD′/2].

The new learning algorithm is an adaptation of the
backpropagation algorithm, chosen due to its widespread
use and robustness. In our case, the activation function
of the neurons is the function that relates the output of
a node memristor with its input, as seen in Equation (7).
The local gradients of the output layer and hidden layer
neurons respectively given by:


Output: δk = Tkφ

′

(∑
i

Vik

)
, (13)

Hidden: δk = φ′

(∑
i

Vik

)∑
l

δlwkl. (14)

In Equation (13), Tk denotes the target output for neu-
ron k in the output layer. In Equations (13) and (14), φ′

is the derivative of the neuron’s activation function with
respect to the input to the neuron

∑
i Vik. Finally, in

Equation (14), the sum
∑
l δlwkl is taken over the gradi-

ents of all neurons l in the layer to the right of the neuron
that are connected to it by weights wkl. The update to
the bias weight of a node memristor is given by:

∆wk = ηδk, (15)

where η is the learning rate. The connection weight wij
is updated using ∆wij = ηδjVi, where δj is the local
gradient of the neuron to the right of the connection,
and Vi is the output of the neuron to the left of the
connection.

We count now with all necessary elements to adapt
the backpropagation algorithm for our memristor-based
MLP, as described in Algorithm 2.

Algorithm 2 Backpropagation for Multilayer Percep-
tron

Initialization
Set the bias current Ib to 0.
Initialize the weights {wij} and {wbk}.
Set the internal variable γij of each connection memristor
ij to the respective connection weight wij .
Set the internal variable γk of each connection memristor k
to the respective bias weight wbk .
for d in data do
Forward Pass
for l in layers do
Compute the output of each connection memristor ij in
layer l:

Vij(wij , I) = wijI. (16)

Sum the outputs of the connection memristors connected
to each node memristor k in layer l

ink =
∑

Iik (17)

Compute the node memristor’s output:

Vk = ROFF

(
1− γbk

D
+

RON

ROFF

γbk
D

)
ink.

end for
Backward Pass
for k in output layer do
Compute the difference ∆ between the target output and
the actual output of the node memristor:

∆k = Tk − Vk. (18)

Compute the local gradient of the node memristor using
Equation (13).
end for
for layer in hidden layers do
for node in layer do
Compute the local gradient of node memristor l in layer
using Equation (14).
end for
end for
for connection in connections do
Compute the weight update.
Set the bias current: Ib = Iγij .
Update the connection memristor’s internal variable by in-
putting I = ∆wij + Ib to it.
Update the connection’s weight by setting it to the updated
value of the respective internal variable.
end for
for node in nodes do
Compute the bias weight update according to Equa-
tion (15).
Set the bias current: Ib = Iγb .
Update the node memristor’s internal variable by inputting
I = ∆wk + Ib.
Update the bias weight by setting it to the updated value
of the respective internal variable.
end for
end for



5

III. SIMULATION RESULTS

In order to test the validity of our SLP and MLP,
we tested their performance on three logical gates: OR,
AND and XOR. The first two are simple problems which
should be successfully learnt by SLP and MLP, whereas
only the MLP should be able to learn the XOR gate, due
to Minsky-Papert’s theorem.

The Glorot weight initialization scheme [27] was used
for all simulations, as it has been shown to bring faster
convergence in some problems when compared to other
initialization schemes. In this scheme the weights are

initialized according to U(−1, 1), weighed by
√

6
nin+nout

,

where nin and nout are the number of neurons in the
previous and following layers, respectively. The data sets
used contain 100 randomly generated labeled elements,
which were shuffled for each epoch, and the cost function
is:

E =
1

2
(T −O)2, (19)

where T is the target output and O the actual output.

A. Single-Layer Perceptron Simulation Results

For the SLP, a learning rate of 0.1 was used for all
tested gates, a value set by trial and error. The metric
we used to evaluate the evolution of the network’s per-
formance on a given problem was its total error over an
epoch, which is given by Equation (20).

Etotal =
∑
j

Ej =
1

2

∑
j

(Tj −Oj)2, (20)

where the sum is taken over all elements in the training
set. In Fig. 3, the evolution of the total error over 1000
epochs, averaged over 100 different realizations of the
starting weights, is plotted.

We observe that our SLP successfully learns the gates
OR and AND, with the total error falling to 0 within 200
epochs, as expected from a SLP. However, the total error
of our SLP for the XOR gate does not go to zero, which
means that it is not able to learn this gate, in accordance
with Minsky-Papert’s theorem.

B. Multilayer Perceptron Simulation Results

The structure of the network was chosen following [28].
There, a network with one hidden layer of two neurons is
recommended for the case of two inputs and one output.
As noted in [28], networks with only one hidden layer
are capable of approximating any function, although
in some problems, adding extra hidden layers improves
the performance. However, the results obtained by

Fig. 3. Evolution of the learning progress of our single-layer
perceptron (SLP), quantified by its total error, given by Equa-
tion (20), for the OR, AND and XOR gates over 1000 epochs.
The total error of our SLP for the OR and AND gates goes
to 0 very quickly, indicating that our SLP successfully learns
these gates. The same is not true for the XOR gate, which
our SLP is incapable of learning, in accordance with Minksy-
Papert’s theorem [3].

employing only one hidden layer are satisfactory, thus
there is no need for a more complex network structure.
There is also the matter of how many neurons must
be employed in the hidden layer. In this case, there is
a trade-off between speed of training and accuracy. A
network with more neurons in the hidden layer counts
with more free parameters, so it will be able to output
a more accurate fit, but at the cost of a longer time
required to train the network. A rule of thumb for
choosing the number of neurons in the hidden layer is
to start with an amount that is between the number of
inputs and the number of outputs and adjust according
to the results obtained. This leads to two neurons
for the hidden layer and, similarly to what happened
with the number of hidden layers, the results obtained
using two neurons in the hidden layer are sufficiently
accurate, so there was no need to try other structures.
The learning rates used, which we have chosen through
trial and error, are 0.1 for the OR and AND gates, and
0.01 for the XOR gate. In Fig. 4, the evolution of the
total error over 1000 epochs, averaged over 100 different
realizations of the starting weights, is plotted.

As was the case for our SLP, our MLP successfully
learns the OR and AND gates. In fact, it is able to learn
them faster than our SLP, which is a consequence of the
larger number of free parameters. Additionally, it is able
to learn the XOR gate, indicating that it behaves as well
as a regular MLP.

In summary, both memristor-based perceptrons be-
have as expected. Our SLP is able to learn the OR and
AND gates, but not the XOR gate, so it is limited to solv-
ing linearly separable problems, just as any other single-
layer neural network. However, our MLP is not subject
to such a limitation and it is able to learn all three gates.



6

Fig. 4. Evolution of the learning progress of our multilayer
perceptron (MLP), quantified by its total error, given by
Equation (20) for the OR, AND and XOR gates over 1000
epochs. As can be seen, the total error of our MLP for the
these gates approaches 0, indicating that it successfully learns
all three gates.

C. Receiver Operating Characteristic Curves

As another measure of the perceptrons’ performance,
we show in Fig. 5 the receiver operating characteristic
(ROC) curves obtained with perceptrons trained for 500
epochs on data sets of size 100. The curves shown were
obtained using a SLP trained for the OR gate, a SLP
trained for the XOR gate and a MLP trained for the XOR
gate, with thresholds of t = 0.3, 0.5 and 0.7 for each.
Again, we see that the SLP is capable of learning the OR
gate but not XOR, since it correctly classifies the inputs
for OR every time, but its performance is equivalent to
random guessing for XOR. We can also see that the MLP
is capable of learning the XOR gate, since it correctly
classifies its inputs every time. The learning rates used
in training were 0.1 for the SLP on both gates and 0.01
for the MLP on XOR gate, as explained in the previous
subsection.

IV. CONCLUSION

In this paper, we introduced a model for single and
multilayer perceptrons based on memristors. We provide
learning algorithms for both, based on the delta rule and
on the backpropagation algorithm, respectively. Using
a threshold-based system, our model is able to use the
internal variables of memristors to store and update the
perceptron’s weights. We also ran simulations of both
models, which revealed that they behaved as expected
and in accordance with Minsky-Papert’s theorem. Our
memristor-based perceptrons have the same capabilities

and are subject to the same limitations of regular percep-
trons and show the feasibility and power of a memristor-
based neural network.

Our models are the first ones in which memristors are
used as both the nodes and the synapses, thus paving

Fig. 5. ROC curves obtained with the SLP for the OR and
XOR gates, and with the MLP for the XOR gate. The thresh-
olds used were t = 0.3, 0.5 and 0.7 We can see that the SLP
correctly classifies the inputs for the OR gate every time, but
it does not perform better than random guessing for the XOR
gate, as expected. On the other hand, the MLP correctly clas-
sifies the XOR gate inputs every time.

the way for other neural network architectures and algo-
rithms based on memristors. In particular, it would be
interesting to try to extend these models to the quantum
computing paradigm, using a recently proposed quantum
memristor [29], and its implementation in different quan-
tum technologies, such as superconducting circuits [30] or
quantum photonics [31].

ACKNOWLEDGMENTS

Work by FS was supported in part by a New Talents
in Quantum Technologies scholarship from the Calouste
Gulbenkian Foundation. MS and ES are grateful for the
funding of Spanish MINECO/FEDER FIS2015-69983-
P and Basque Government IT986-16. This material
is also based upon work supported by the U.S. De-
partment of Energy, Office of Science, Office of Ad-
vance Scientific Computing Research (ASCR), under field
work proposal number ERKJ335. YO thanks support
from Fundação para a Ciência e a Tecnologia (Portu-
gal), namely through programmes PTDC/POPH/POCH
and projects UID/EEA/50008/2013, IT/QuNet, par-
tially funded by EU FEDER, from the QuantERA
project TheBlinQC, and from the JTF project NQuN
(ID 60478).

[1] F. Rosenblatt, “The perceptron: a probabilistic model
for information storage and organization in the brain.”

Psychological review, vol. 65, no. 6, p. 386, 1958.



7

[2] B. Widrow and M. E. Hoff, “Adaptive switching cir-
cuits,” Stanford Univ Ca Stanford Electronics Labs,
Tech. Rep., 1960.

[3] M. Minsky, S. A. Papert, and L. Bottou, Perceptrons:
An introduction to computational geometry. MIT press,
2017.

[4] G. Cybenko, “Approximation by superpositions of a sig-
moidal function,” Mathematics of control, signals and
systems, vol. 2, no. 4, pp. 303–314, 1989.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning representations by back-propagating errors,”
nature, vol. 323, no. 6088, p. 533, 1986.

[6] H. A. Rowley, S. Baluja, and T. Kanade, “Neural
network-based face detection,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 20, no. 1,
pp. 23–38, 1998.

[7] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and
J. Makhoul, “Fast and robust neural network joint mod-
els for statistical machine translation,” in Proceedings of
the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), vol. 1,
2014, pp. 1370–1380.

[8] F. Ercal, A. Chawla, W. V. Stoecker, H.-C. Lee, and
R. H. Moss, “Neural network diagnosis of malignant
melanoma from color images,” IEEE Transactions on
biomedical engineering, vol. 41, no. 9, pp. 837–845, 1994.

[9] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial
neural networks: A tutorial,” Computer, vol. 29, no. 3,
pp. 31–44, 1996.

[10] L. Chua, “Memristor-the missing circuit element,” IEEE
Transactions on circuit theory, vol. 18, no. 5, pp. 507–
519, 1971.

[11] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams, “The missing memristor found,” Nature, vol.
453, no. 7191, p. 80, 2008.

[12] T. Prodromakis and C. Toumazou, “A review on mem-
ristive devices and applications,” in Electronics, Circuits,
and Systems (ICECS), 2010 17th IEEE International
Conference on. IEEE, 2010, pp. 934–937.

[13] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and
S. Kvatinsky, “Hebbian learning rules with memristors,”
Israel Institute of Technology: Haifa, Israel, 2013.

[14] K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A.
Chapman, E. M. Vogel et al., “Hebbian learning in spik-
ing neural networks with nanocrystalline silicon tfts and
memristive synapses,” IEEE Transactions on Nanotech-
nology, vol. 10, no. 5, pp. 1066–1073, 2011.

[15] W. He, K. Huang, N. Ning, K. Ramanathan, G. Li,
Y. Jiang, J. Sze, L. Shi, R. Zhao, and J. Pei, “Enabling
an integrated rate-temporal learning scheme on memris-
tor,” Scientific reports, vol. 4, p. 4755, 2014.

[16] G. A. Barrios, J. Retamal, E. Solano, and M. Sanz, “Ana-
log simulator of integro-differential equations with classi-
cal memristors,” arXiv preprint arXiv:1803.05945, 2018.

[17] Y. V. Pershin and M. Di Ventra, “Neuromorphic, digi-
tal, and quantum computation with memory circuit el-
ements,” Proceedings of the IEEE, vol. 100, no. 6, pp.
2071–2080, 2012.

[18] Y. Ho, G. M. Huang, and P. Li, “Nonvolatile memristor
memory: device characteristics and design implications,”
in Computer-Aided Design-Digest of Technical Papers,
2009. ICCAD 2009. IEEE/ACM International Confer-
ence on. IEEE, 2009, pp. 485–490.

[19] F. L. Traversa and M. Di Ventra, “Universal memcom-
puting machines,” IEEE transactions on neural networks
and learning systems, vol. 26, no. 11, pp. 2702–2715,
2015.

[20] Y. V. Pershin and M. Di Ventra, “Experimental demon-
stration of associative memory with memristive neural
networks,” Neural Networks, vol. 23, no. 7, pp. 881–886,
2010.

[21] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Mem-
ristive devices for computing,” Nature nanotechnology,
vol. 8, no. 1, p. 13, 2013.

[22] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J.
Cardinali, J. J. Yang, W. Wu, X. Li, W. M. Tong, D. B.
Strukov et al., “Memristor- cmos hybrid integrated cir-
cuits for reconfigurable logic,” Nano letters, vol. 9, no. 10,
pp. 3640–3645, 2009.

[23] D. Yu, H. H.-C. Iu, Y. Liang, T. Fernando, and L. O.
Chua, “Dynamic behavior of coupled memristor cir-
cuits,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 62, no. 6, pp. 1607–1616, 2015.

[24] R. K. Budhathoki, M. P. Sah, S. P. Adhikari, H. Kim,
and L. Chua, “Composite behavior of multiple memristor
circuits,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 60, no. 10, pp. 2688–2700, 2013.

[25] K. Hornik, “Approximation capabilities of multilayer
feedforward networks,” Neural networks, vol. 4, no. 2,
pp. 251–257, 1991.

[26] F. Dickey and J. DeLaurentis, “Optical neural networks
with unipolar weights,” Optics communications, vol. 101,
no. 5-6, pp. 303–305, 1993.

[27] X. Glorot and Y. Bengio, “Understanding the difficulty
of training deep feedforward neural networks,” in Pro-
ceedings of the thirteenth international conference on ar-
tificial intelligence and statistics, 2010, pp. 249–256.

[28] S. Walczak and N. Cerpa, “Heuristic principles for the de-
sign of artificial neural networks,” Information and soft-
ware technology, vol. 41, no. 2, pp. 107–117, 1999.

[29] P. Pfeiffer, I. Egusquiza, M. Di Ventra, M. Sanz, and
E. Solano, “Quantum memristors,” Scientific reports,
vol. 6, p. 29507, 2016.

[30] J. Salmilehto, F. Deppe, M. Di Ventra, M. Sanz, and
E. Solano, “Quantum memristors with superconducting
circuits,” Scientific reports, vol. 7, p. 42044, 2017.

[31] M. Sanz, L. Lamata, and E. Solano, “Invited article:
Quantum memristors in quantum photonics,” APL Pho-
tonics, vol. 3, no. 8, p. 080801, 2018.


	Perceptrons from Memristors
	Abstract
	I Introduction
	II The memristor as a dynamical system
	A Memristor-based Single-Layer Perceptron
	B Memristor-based Multilayer Perceptron

	III Simulation results
	A Single-Layer Perceptron Simulation Results
	B Multilayer Perceptron Simulation Results
	C Receiver Operating Characteristic Curves

	IV Conclusion
	 Acknowledgments
	 References


