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We propose a quantum-enhanced sensing protocol to measure the response of a target object to the frequency
of a probe in a noisy and lossy scenario. In our protocol, a bi-frequency state illuminates a target embedded in
a thermal bath, whose reflectivity η(ω) is frequency-dependent. After a lossy interaction with the object, we
estimate the parameter λ = η(ω2)−η(ω1) in the reflected beam, which captures information about the response
of the object to different electromagnetic frequencies. Computing the quantum Fisher information H relative
to the parameter λ in an assumed neighborhood of λ ∼ 0 for a two-mode squeezed state (HQ), and a coherent
state (HC ), we show that a quantum enhancement in the estimation of λ is obtained when HQ/HC > 1. This
quantum advantage grows with the mean reflectivity of the probed object, and is noise-resilient. We derive
explicit formulas for the optimal observables, and propose a general experimental scheme based on elementary
quantum optical transformations. Furthermore, our work opens the way to applications in both radar and medical
imaging, in particular in the microwave domain.

Introduction. Quantum information technologies are open-
ing very promising prospects for faster computation, securer
communications, and more precise detection and measuring
systems, surpassing the capabilities and limits of classical in-
formation technologies [1–5]. Namely, in the domain of quan-
tum sensing and metrology [6], we are currently witnessing a
boost of applications to a wide spectrum of physical problems:
from gravimetry and geodesy [7–11], clock synchronisation
[5, 12], thermometry [13] and bio-sensors [14–17], to exper-
imental proposals to seek quantum behavior in macroscopic
gravity [18], to name just a few. Most of these studies are
focused on unlossy (unitary) scenarios, while the more real-
istic, lossy case needs to be investigated further [19–22]. It
is thus important to propose new sensing protocols that show
a quantum enhancement even in the presence of information
losses. Quantum illumination [23–32] is a particularly inter-
esting example of a lossy protocol where the use of entangle-
ment proves useful even in an entanglement-braking scenario.
In a radar setting, the detection of a low-reflectivity object
in a noisy thermal environment with a low-intensity signal is
shown to be enhanced when the signal is entangled to an idler
that is kept for a future joint measurement with the reflected
state. The decision problem of whether there is an object or
not can be rephrased as a quantum estimation of the object’s
reflectivity η, in order to discriminate an absence (η = 0) from
a presence (η � 1) of a low-reflectivity object [3].

The goal of quantum estimation [34] is to construct an
estimator λ̃ for certain parameter λ characterizing the sys-
tem. It is noteworthy that not every parameter in a system
corresponds to an observable, which may imply data post-
processing. However, the theory provides techniques to ob-
tain an optimal observable –not necessarily unique, i.e. whose
mean square error is minimal. The estimator λ̃ is nothing
but a map from the results of measuring the optimal observ-
able to the set of possible values of the parameter λ. One
of the main results of this theory is the quantum Cramér-Rao

(qCR) bound, which sets the ultimate precision of any esti-
mator. Whether this bound is achievable or not depends on
the data-analysis method used, and on the nature of the exper-
imental noise. In most practical situations, maximum likeli-
hood methods for unbiased estimators, together with Gaussian
noise make the bound achievable. In order to find the qCR –
and the explicit form of the optimal observable– one needs to
compute the quantum Fisher information [35] (QFI), which
roughly speaking quantifies how much information about λ
can be extracted from the system, provided that an optimal
measurement is performed. In general, computing the QFI
involves diagonalisation of the density matrix, which makes
the obtention of analytical results challenging. However, if
one restricts to Gaussian states and Gaussian-preserving op-
erations, the so-called symplectic approach simplifies the task
considerably [36]. As the QFI is by definition optimized over
all POVMs, it only depends on the initial state, often called
probe. This means that a second optimization of the QFI can
be pursued, this time over all possible probes. Moreover, this
approach allows us to quantitatively compare different proto-
cols, e.g. with and without entanglement in the probe, since
an increase in the QFI when the same resources are used –
which typically translates into fixing the particle number or
the energy– directly means an improvement in precision.

Here, we propose a quantum-enhanced, lossy protocol to
decide whether an object embedded in a noisy environment
has a frequency-dependent reflectivity or not. In a radar-like
setting, this can be seen as a second step after quantum illu-
mination: once the detection is completed, we may be inter-
ested in extracting further information about the object, e.g.
whether it is sensitive to frequency changes in the light it is
illuminated with. In the Supplemental Material [37] we test
our methods to reproduce the results of quantum illumina-
tion. The protocol comprises: a bi-frequency state sent to
probe a target, which is modeled as a beam splitter with a
frequency-dependent reflectivity η(ω). The object is embed-
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FIG. 1. An object reflects a bi-frequency beam (notice the similar
colors of the two beams coming out of the emitter), and mixes it
with a thermal bath, coming from the upper left. The transmitted
signal and reflected thermal state are lost, and a measurement Oλ̂ is
performed onto the available part (lower right corner), whose expec-
tation values converge, after classical data processing, to an estimator
of the parameter λ encoded in the object. In our case, Sλ represents
a multi-layered object acting as a beam splitter, and λ := η2 − η1,
where ηi = η(ωi) are the reflectivities for the different frequencies.
The emitter can in principle entangle the two modes, which proves
advantageous in the parameter estimation.

ded in a noisy environment, which is assumed to be in a ther-
mal state with equal expected photon number for both fre-
quencies ω1 and ω2, a good approximation provided that we
assume a short frequency distance. The goal is to obtain an es-
timator for the parameter λ = η(ω2)−η(ω1), that captures in-
formation about the frequency dependence of the beam split-
ter. It is assumed that the frequencies are sufficiently close so
that we can work in a neighborhood of λ ∼ 0. This is not only
a useful approach within estimation theory, but also a require-
ment when we assumed that the two thermal baths contain the
same number of photons. For a more detailed and quantitative
discussion, see the Supplemental Material [37]. By imposing
that the expected photon number is the same in quantum and
classical scenarios, we find the QFI ratio between them, and
analyze when it is greater than one. We find that the max-
imum advantage is obtained for highly reflective targets, and
derive explicit limits in the highly noisy case. We also provide
expressions for the optimal observables, proposing a general
experimental scheme described in FIG. S2 of the Supplemen-
tal Material [37], and motivating applications in microwave
technology [38].

Model, and fundamentals of quantum estimation the-
ory. The model is synthesized in FIG. 1: the tar-
get object, modeled as a beam splitter with a frequency-
dependent reflectivity is subject to an illumination with
a bi-frequency probe. For a single frequency, a beam
splitter is characterised by a unitary operator U(ω) ≡
exp

[
arcsin

(√
η(ω)

)
(ŝ†ω b̂ωe

iϕ − ŝω b̂†ωe−iϕ)
]
, where η(ω)

is a frequency-dependent reflectivity, related to transmittiv-
ity τ via η(ω) + τ(ω) = 1. We assume for simplicity that
ϕ = 0, i.e. there is no phase difference between transmit-
ted and reflected signals. This unitary maps states (density
matrices) that live in the density matrix space associated with
Hilbert space H, D(H) to itself. Formulating the problem
from a density operator perspective, we have that the received
state is ρλ = TrS1 TrS2

[
UλρU

†
λ

]
, where ρ ∈ HS1,S2,B1,B2 is

a four-mode state that includes the two signals (the two-mode
state that we can control) and two thermal environments of the
form ρth1 ⊗ ρth2 , where the subscript indicates the frequency,
i.e. ρtha = (1+Nth)−1

∑∞
n=0(Nth/(1+Nth))n |n〉a 〈n| where

Nth = Tr(ρtha b̂
†
ωa b̂ωa) is the average number of thermal pho-

tons, which we assume to be the same for the two modes.
This assumption is accurate for sufficiently small frequency
difference ω1 − ω2 [37]. The interaction Uλ comes from
reparametrizing the four-mode unitary U(ω1)⊗ U(ω2) using
the difference of reflectivities λ ≡ η2 − η1.

The quantum Fisher information H(λ) quantifies the infor-
mation about the value of λ that can be extracted from a state
ρλ. It assumes that an optimal measurement is performed.
The usual basis-dependent expression for the QFI is:

H(λ) = 2
∑
m,n

|〈Φm| ∂λρλ |Φn〉|2

ρm + ρn
, (1)

where {|Φm〉 , ρm}m are the solutions to the eigenproblem
of ρλ. Regardless of the basis one uses –the Fock number
basis or a coherent representation of states– the problem be-
comes hard to solve analytically. However, in the framework
of Gaussian states the calculation becomes simpler. Gaus-
sian states have a very convenient phase-space representation:
they can be fully characterised by their first and second mo-
ments: the displacement vector ~d and the covariance matrix
Σ, respectively. The QFI of a λ-parametrised Gaussian state
(Σλ, ~d) can be computed as

H(λ) =
1

2(det[A]− 1)

[
det[A] Tr

[
(A−1Ȧ)2

]
+
√

det[12 +A2] Tr
[(

(12 +A2)−1
)2]

−f(ν+, ν−)] + 2~̇d †Σ−1 ~̇d,

(2)

where f(ν+, ν−) := 4
(
ν2

+ − ν2
−
) ( (∂λν+)2

ν4
+−1

− (∂λν−)2

ν4
−−1

)
, the

dot over A and ~d denotes derivative with respect to λ, and
ν± are the symplectic eigenvalues of Σλ, defined as following
Ref. [2]

2ν2
± := Tr[A2]±

√
(Tr[A2])

2 − 16 det[A], (3)

with the matrix A given by A := iΩTΣλT
ᵀ, Ω :=

antidiag(12,−12), and Tij := δj+4,2i + δj,2i−1 is the
matrix that changes the basis to the quadrature basis
(x̂th

1 , x̂S
1, x̂th

2 , x̂S
2, p̂th

1 , p̂S
1, p̂th

2 , p̂S
2)ᵀ. As mentioned above, this
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value of the QFI is obtained when an optimal measurement is
performed. In Ref. [34] and references therein it was proven
that the qCR bound is saturated by

Ôλ = λ1 + L̂λ/H(λ), (4)

where 1 is the identity operator and L̂λ is a symmetric log-
arithmic derivative (SLD) fulfilling the equation {L̂λ, ρλ} =
2∂λρλ, where {·, ·} denotes the anticommutator. Assuming
that the estimator λ̃ is constructed using maximum likelihood
methods so that the qCR bound is asymptotically achieved,
the optimal observable is the one with the lowest possible
variance, saturating the qCR inequality and yielding an op-
timal estimator after classically processing the measurement
outcomes. For a Gaussian state

(
Σλ, ~dλ

)
written in the com-

plex basis, the symmetric logarithmic derivative given in Ref.
[36] is

L̂λ = ∆
~̂
A†Aλ∆

~̂
A− Tr[ΣλAλ]/2 + 2∆

~̂
A†Σ−1

λ ∂λ~dλ, (5)

where ∆
~̂
A :=

~̂
A − ~dλ, ~̂

A the complex basis vector of
bosonic operators, Aλ := M−1∂λ ~dλ, where M = Σ̄λ ⊗
Σλ − K ⊗ K, where the bar denotes complex conjugate,
and K := diag (12,−12). Note that when λ → 0 we have
Ôλ=0 ≡ Ô = L̂λ=0/H(λ = 0), since both limits exist inde-
pendently. This limit is of our interest because we work in a
neighbourhood of λ ∼ 0, i.e. the measured value of the pa-
rameter is expected to be small. In the next section, we apply
the formulas to the case of a two-mode squeezed vacuum state
probe.

Two-mode squeezed vacuum state. The TMSV state is the
continuous-variable equivalent of the Bell state, being the
Gaussian state that optimally transforms classical resources
(light, or photons) into quantum correlations. The TMSV state
is a cornerstone in experiments with quantum microwaves
[40–42]. In our case, we are interested in states produced via
nondegenerate parametric amplification, in order to have two
distinguishable frequencies. The state can be formally writ-
ten as: |ψ〉TMSV := (cosh r)−1

∑∞
n=0

(
−eiφ tanh r

)n |n,n〉,
where r ∈ R≥0 is the squeezing parameter . For simplicity
we take φ = 0. The total initial (real) covariance matrix –
written in the real basis (x̂th

1 , p̂th
1 , x̂S

1, p̂S
1, x̂th

2 , p̂th
2 , x̂S

2, p̂S
2)ᵀ– is

given by

Σ =


Σth 0 0 0
0 Σr 0 εr
0 0 Σth 0
0 εᵀr 0 Σr

 , (6)

where Σth = (1 + 2Nth)12 is the real covariance matrix
of a thermal state, Σr = cosh(2r)12 corresponds to the
diagonal part of one of the modes in a TMSV state, and
εr = sinh(2r)σZ is the correlation between the two modes,
where σZ is the Z Pauli matrix. We rewrite the covariance ma-
trix in terms of the mean photon number NS ≡ 〈â†S1

âS1
〉 =

〈â†S2
âS2〉, using the relation

√
NS = sinh r [43]. This gives

sinh(2r) = 2
√

2NS(1 + 2NS) and cosh(2r) = 1 + 4NS.
The displacement vector of a TMSV state is identically zero
~dTMSV = ~0, so the last term of Eq. (2) vanishes. Under the
assumption that the object does not entangle the two modes,
we have that the symplectic transformation is S(η1, η2) =
SBS(η1)⊕ SBS(η2) [44], where

SBS(x) =

[ √
x12

√
1− x12

−
√

1− x12
√
x12

]
(7)

is the real symplectic transformation associated with a beam
splitter of reflectivity x. We define the parameter of interest
as λ ≡ η2 − η1. With this, S(η1, η2) becomes a function of
λ. For simplicity, we define Sλ := S(η1, η1 + λ). The full
state after the signals get mixed with the thermal noise is given
by Σ̃λ ≡ SλΣSᵀ

λ . In covariance matrix formalism, partial
traces are implemented by removing the corresponding rows
and columns [1]; in our case the rows and columns 1, 2, 5, and
6. The resulting received covariance matrix reads as follows

Σλ =

[
a1 bσZ
bσZ cλ1

]
, (8)

with a ≡ 1 + 2Nth + 2η1(2NS − Nth), b ≡
2
√

2
√
η1

√
NS(2NS + 1)

√
η1 + λ, and cλ ≡ 1 + 2Nth +

2(η1 +λ)(2NS−Nth). For this state, the symplectic eigenval-
ues ν± defined in Eq. (3) are strictly larger than one for any
value of the parameters NS, Nth and η1, so there is no need of
any regularization scheme [2]. In what follows, we work in a
neighborhood of λ ∼ 0 – which can be implemented by taking
the limit λ → 0 in the derived expressions. This is a physi-
cal assumption, since we are interested in probing regions of
η(ω) that do not change drastically, i.e. that are well approxi-
mated by a linear function with either no slope or a small one.
We obtain the function HQ = HQ(η1,NS,Nth) from Eq. (2).
An explicit expression can be found in [37]. In the following
section, we compute the QFI of a classical probe.

Classical probe. Here we use a pair of coherent states as
probe: |ψ〉 = |α〉 ⊗ |α〉. The total expected photon number
in this state is 2NC := 2

∣∣α2
∣∣. For simplicity we take α ∈ R.

The symplectic eigenvalues are always larger than one in this
case, so no regularization is required. The initial displacement
vector in the real basis is ~dᵀ0 = (0, 0,

√
2α, 0, 0, 0,

√
2α, 0)

which leads –after the interaction and the trace of the losses–
to ~dᵀ = α(

√
2η1, 0,

√
2(η1 + λ)). Inserting these in Eq. (2),

and taking the limit λ → 0, we find that the QFI for the co-
herent state is

HC =
4N2

th

(
(1 + 2Nthτ1)2 + 1

)
(1 + 2Nthτ1)4 − 1

+
NS

η1 + 2Nthτ1η1
, (9)

where τ1 = 1 − η1 is the transmittivity, and we have set the
resources

∣∣α2
∣∣ = NS for a fair comparison with the TMSV

state. Having computed both the quantum and the classical
QFIs, in the next section we analyse their ratio HQ/HC , a
quantifier for the quantum enhancement.
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Quantum advantage. We analyze the ratio between the
TMSV state’s QFI (HQ) and the coherent pair’s QFI (HC)
for different situations. Finding values of (η1,Nth,NS) such
that the ratio HQ/HC is larger than one means that one can
extract more information about parameter λ using a TMSV
than using a coherent pair, provided an optimal measurement
is performed in both cases. We plot the results for various
values of η1 (see FIG. 2). We can immediately see that the
ratio gets larger for large values of η1, i.e. for highly reflective
materials. In particular, we find the high-reflectivity limit:

lim
η1→1

HQ

HC
=
N2

S (8Nth(Nth + 1) + 4) + 4NSN
2
th +N2

th

Nth (NS(4Nth + 2) +Nth)
(10)

which converges to 1 + 8N2
S /(4NS + 1) in the highly noisy

scenario Nth � 1. In the next sections we explicitly compute
the observables that lead to an optimal extraction of λ’s value
for both the classical and the quantum probes.

Optimal observable for the TMSV state probe. Computing
the SLD in Eq. (2) and inserting it in Eq. (4) we find ÔQ =

L11â
†
1â1 + L22â

†
2â2 + L12

(
â†1â
†
2 + â1â2

)
+ L0112, where

the general expressions for the coefficients can be found in
[37]. Here we focus on the high-reflectivity target, where the
maximum quantum enhancement is expected. Moreover, it is
illustrative to study the noiseless case, since this captures the
essence of what is being measured:

lim
Nth→0
η1→1

ÔQ = −µ2â†1â1 − â†2â2

+ µ
(
â†1â
†
2 + â1â2

)
− ν112,

(11)

where µ2 ≡ (1 + 1/2NS) and ν ≡ (1 + 1/4NS). We can
rewrite this observable as b̂†b̂ − 1, i.e. implementing photon-
counting on the operator b̂ ≡ −i

(
â†2 − µâ1

)
. A detailed

construction of these operators employing usual resources in
superconducting circuit technology, such as Josephson para-
metric amplifiers [46, 47] is provided in [37].

Optimal observable for the coherent state probe. The op-
timal observable in this case is given by ÔC = 2A1(1) ⊗[(
â†2 − η1

√
α
)(

â2 − η1
√
α
)

+ 1
2

]
, where A = 1/2(η1 −

1)(1−Nth(η1−1)) and 1(1) is the absence of active measure-
ment of mode 1. The interpretation is simple: because η1 is
known (it serves as a reference), there is nothing to be gained
by measuring the first mode in the absence of entanglement.
Moreover, the observable is separable, as one should ex-
pect, and the experimental implementation is straightforward:
photon-counting in the –locally displaced– second mode. As
discussed in the Supplemental Material [37], implementations
of these observables in microwave technology implies hav-
ing both efficient photon-counters [48] and good digital filters
[49].

Conclusions. Quantum metrology in the presence of losses
is a highly relevant subject for realistic applications, with only
a handful of known protocols exhibiting quantum enhance-

ment. Here, we have developed a method for achieving a
quantum enhancement in the decision problem of whether a
target’s reflectivity depends or not on the electromagnetic fre-
quency, using only a bi-frequency, entangled probe, and in
the presence of both noise and losses. Such measurement can
be used to extract information about the electromagnetic re-
sponse of a reflective object to changes in frequency, and,
consequently, it can be applied to a wide spectrum of situa-
tions. It is important to stress that although our results are gen-
eral and platform-independent, the atmospheric transparency
window in the microwaves regime, together with the natu-
rally noisy character of open-air, makes applications in quan-
tum microwaves our first choice [38, 48, 50–53]. Namely,
our results could find applications in radar physics, where the
protocol could be understood as complementary to quantum
illumination: quantum signals can enhance the precision of
measurement without increasing the intensity, something very
convenient when the emitter does not want to be detected.
Entanglement is thus seen as a resource in practical quan-
tum metrology. Moreover, accurate medical imaging with
non-ionizing radiation is a permanent goal in medicine. Mi-
crowaves, however, when applied in intense ways, can dam-
age the sample. Resorting to methods that increase the pre-
cision and/or resolution while keeping a low intensity of ra-
diation is thus crucial for non-invasive imaging technologies.
Our results suggest that this quantum advantage will be more
significant in the high reflectivity regime, which could prove
useful for contrast imaging of tissues with a low penetration
depth. The theoretical methods used are not unique to our
protocol, and we hope our results can boost efforts in the di-
rection of lossy Gaussian quantum estimation: these are pow-
erful tools that allow us not only to find quantum-enhanced
protocols, but also to explicitly find the optimal observables,
making the transition to actual experimental proposals quite
direct. Using these techniques, we have proved that the scal-
ing of the quantum Fisher information (QFI) when using en-
tanglement is faster than when only classical (coherent) states
are used. We have derived analytic expressions for the optimal
observables, which are the ones that allow the extraction of the
maximum available information of the parameter of interest,
constructing an optimal estimator after appropriate classical
data processing. Our work paves the way to extensions of the
protocol to accommodate both presence of thermal effects in
the input modes, and continuous-variable frequency entangle-
ment [54], where a more realistic model for a beam contain-
ing a given distribution of frequencies could be used instead
of sharp, ideal bi-frequency states.

The authors thank Vahid Salari and Gonçalo Frazão for
useful discussions and comments, and acknowledge the sup-
port from the EU H2020 Quantum Flagship project QMiCS
(820505). MC acknowledges support from the DP-PMI and
FCT (Portugal) through scholarship PD/BD/135186/2017.
MC and YO thank the support from Fundação para a
Ciência e a Tecnologia (Portugal), namely through project
UIDB/50008/2020, as well as from project TheBlinQC sup-
ported by the EU H2020 QuantERA ERA-NET Cofund in



5

FIG. 2. Values, represented by a non-linear color grading, of the quantum enhancement given by the ratio HQ/HC of the quantum Fisher
information of the two-mode squeezed vacuum state probeHQ by the quantum Fisher information of the coherent states probeHQ as a function
of the photon numbers of the signal (NS) and of the thermal bath (Nth), for a reflectivity η1 of a) 0.75, b) 0.90, and c) 0.95. Equivalently, scales
of squeezing, r, given by

√
NS = sinh r, and temperature T in Kelvin, are provided. The relation between temperature and mean thermal

photon number is obtained via the usual Bose-Einstein distribution Nth = 1/(exp(E/kBT ) − 1) when the energy is set to E = ~ω = hν,
which requires a choice of the frequency ν. We have taken ν = 5 GHz, a typical frequency of microwaves. White represents no quantum
enhancement, i.e. HQ/HC = 1. We clearly see that as η1 grows, the quantum advantage becomes not only more significant, but also easier to
achieve with less signal photons. Importantly, as the reference reflectivity η1 grows, the protocol becomes more resilient to thermal noise. For
the full range η1 ∈ [0, 1] see the Supplemental Material [37].
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Supplemental Material for Bi-frequency illumination: a quantum-enhanced protocol

QUANTUM FISHER INFORMATION: TWO-MODE SQUEEZED VACUUM STATE

The real covariance matrix of the two-mode squeezed vacuum (TMSV) state, written in the quadrature basis (x̂1, p̂1, x̂2, p̂2)
is

ΣTMSV =


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 , (S1)

where r ∈ R≥0 is the squeezing parameter. For convenience, we rewrite this in terms of the expected photon number in either
of the two modes NS = 〈â†1â1〉 = 〈â†2â2〉:

4NS + 1 0 2
√

2NS(2NS + 1) 0

0 4NS + 1 0 −2
√

2NS(2NS + 1)

2
√

2NS(2NS + 1) 0 4NS + 1 0

0 −2
√

2NS(2NS + 1) 0 4NS + 1

 . (S2)

Assuming an equal expected thermal photon number for the two noisy environments, the corresponding covariance matrix is
Σth ⊕ Σth, where

Σth =

[
2Nth + 1 0

0 2Nth + 1

]
(S3)

is the covariance matrix of one thermal mode. The assumption of equal thermal photon number is accurate as long as the
frequency difference ω2−ω1 is sufficiently small. To make this statement more quantitative, let us assume two different thermal
photon densities, N1 and N2. The Bose-Einstein distribution for photons is Ni ∝ 1/eβωi−1 where β ≡ ~/kBT is a function of
the temperature T . Then,

N1

N2
=
eβω1−1

eβω2−1
=

1

1 + β∆ωeβω1

eβω1−1

, (S4)

where ∆ω ≡ ω2 − ω1. Up to first order in β∆ω, the last expression reduces to 1 − ∆ω/ω1. This means that N1 ≈ N2 if
∆ω/ω1 � 1. In particular, for T = 300 K and ω1/2π = 5 GHz the expected thermal photon number is roughly 1250. It is
straightforward to check that for these frequencies and temperatures, the above approximations are good (i.e. ∼ 4% of relative
error) for frequency differences up to 20%.

To construct the whole initial (real) covariance matrix we will rearrange the Hilbert subspaces by frequencies, in the following
way: “bath + signal + bath + signal”. This is convenient because the interaction is by assumption frequency non-mixing. The
total covariance matrix of the input mode is then

Σth 0 0 0

0 (4NS + 1)12 0 2
√

2NS(2NS + 1)σZ
0 0 Σth 0

0 2
√

2NS(2NS + 1)σZ 0 (4NS + 1)12

 , (S5)

where σZ is the Pauli Z matrix and 1n is the n× n identity matrix.

If the interaction with the object is frequency non-mixing, each mode in the bi-frequency state sees a beam splitter with
reflectivity η(ωi) with i = 1, 2 defining the two frequencies. In the symplectic formalism, the total interaction is thus obtained
by the direct sum of each beam-splitter transformation: ST = SBS(η1)⊕ SBS(η2), where

SBS(ηi) :=

[ √
ηi12

√
1− ηi12

−
√

1− ηi12
√
ηi12

]
. (S6)
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The full, transformed state is finally characterised by the covariance matrix

STΣTMSVS
ᵀ
T =


A(η1)12 B(η1)12 f(1− η1, 1− η2)σZ f(1− η1, η2)σZ
B(η1)12 C(η1)12 f(η1, 1− η2)σZ f(η1, η2)σZ

f(1− η1, 1− η2)σZ f(η1, 1− η2)σZ A(η2)12 B(η2)12

f(1− η1, η2)σZ f(η1, η2)σZ B(η2)12 C(η2)12

 , (S7)

where

f(x, y) = 2
√

2NS(2NS + 1)xy

A(x) = 2x(Nth − 2NS) + 4NS + 1

B(x) = 2
√

(1− x)x(2NS −Nth)

C(x) = 2x(2NS −Nth) + 2Nth + 1

and σZ is the fourth Pauli matrix. The received state is obtained by partial tracing the losses, which in our construction correspond
to the first and third modes. In the symplectic formalism, partial traces are performed by removing the corresponding rows and
columns [S1]. We are thus left with the following state:[

C(η1)12 f(η1, η2)σZ
f(η1, η2)σZ C(η2)12

]
. (S8)

The reparametrization of the state in terms of λ = η2 − η1 is simply

Σλ =

[
C(η1)12 f(η1, η1 + λ)σZ

f(η1, η1 + λ)σZ C(η1 + λ)12

]
. (S9)

Note that, in the absence of beam splitter, i.e., when η1 = 0 = λ we have that the received state is a pair of thermal modes, each
with its corresponding frequency: C(0) = 1 + 2Nth and f(0, 0) = 0. This is what should be expected, since the received state
is precisely the reflected part of the signal. To compute the quantum Fisher information we follow [S2]:

H(λ) =
1

2(det[A]− 1)

[
det[A] Tr

[
(A−1∂λA)2

]
+
√

det[12 +A2] Tr
[(

(12 +A2)−1
)2]

− 4
(
ν2

+ − ν2
−
)( (∂λν+)2

ν4
+ − 1

− (∂λν−)2

ν4
− − 1

)
+ 2∂λ~d

†
Σ−1
λ ∂λ ~d

]
,

(S10)

where the symplectic eigenvalues of Σλ are defined by

ν± :=
1

2

√
Tr[A2]±

√
(Tr[A2])

2 − 16 det[A], (S11)

where the matrixA is given byA := iΩTΣλT
ᵀ and Tij := δj+4,2i+δj,2i−1 is the matrix that changes the basis to the quadrature

basis (x̂th
1 , x̂S

1, x̂th
2 , x̂S

2, p̂th
1 , p̂S

1, p̂th
2 , p̂S

2)ᵀ, and

Ω :=

[
0 12

−12 0

]
.

We have that

A = i


0 0 C(η1) −f(η1, η1 + λ)
0 0 −f(η1, η1 + λ) C(η1 + λ)

−C(η1) −f(η1, η1 + λ) 0 0
−f(η1, η1 + λ) −C(η1 + λ) 0 0

 , (S12)
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and the symplectic eigenvalues

ν2
±

2λ(Nth − 2NS)
=
√

4λ2N2
S + 4NS(λ− 2η1(η1 + λ− 1))− 2Nth(2η1 + λ− 2)(2NS(2η1 + λ) + 1) +N2

th(2η1 + λ− 2)2 + 1

− 8η2
1NS + 8η1NS − 2λ

(
2(2η1 − 1)NS(2Nth + 1)− 2(η1 − 1)N2

th +Nth
)

− 4(η1 − 1)Nth(4η1NS + 1) + 2λ2(Nth − 2NS)2 + 4(η1 − 1)2N2
th + 1.

(S13)

The symplectic eigenvalues are both larger than one for every Nth, NS and η1, so there is no need to use any regularization
procedure. Indeed, this is due to the mixedness of the received state: regularization is only needed for pure states. The two-sided
limit of the QFI when the parameter λ goes to zero is

HQ = k−1
[
8τ1η1N

3
S (2Nth + 1) + 4N2

S

(
−η1 + (η1 + 3η1Nth)2 − η1Nth(10Nth + 7) + 3Nth(Nth + 1) + 1

)
− 2NSNth(−η1 +Nth(η1(3η1 − 8) + 4τ1(τ1 − η1)Nth + 3) + 1)

+ N2
th(2τ1Nth(τ1Nth + 1) + 1)

]
,

(S14)

where

k = τ1(Nth(4NSη1 +Nthτ1 + 1) + 2NSη1)
(
2Nthτ1(4NSη1 + 1) + 4NSη1τ1 + 2N2

thτ
2
1 + 1

)
, (S15)

and τ1 := 1− η1.

QUANTUM FISHER INFORMATION: COHERENT STATES

We reproduce the same calculations for the coherent pair now. Noting that every coherent state, following our conventions,
has a covariance matrix given by the identity, the real covariance matrix in the quadrature basis is

Σth 0 0 0
0 12 0 0
0 0 Σth 0
0 0 0 12

 , (S16)

while the displacement vector is ~dᵀ =
[
0, 0,
√

2α, 0, 0, 0,
√

2α, 0
]
, where |α|2 = NS. The transformed displacement vector is

then

ST ~d =
[
α
√

2τ1, 0,α
√

2η1, 0,α
√

2
√
τ1 − λ, 0,α

√
2
√
η1 + λ, 0

]ᵀ
(S17)

The transformed, and already reduced covariance matrix is (i.e. after partial tracing the losses)[
(1 + 2τ1Nth)12 0

0 1− 2Nth(λ− τ1)12

]
(S18)

The matrix A is

A = i


0 0 1 + 2Nthτ1 0
0 0 0 1− 2Nth(λ− τ1)

−1− 2Nthτ1 0 0 0
0 −1 + 2Nth(λ− τ1) 0 0

 (S19)

The symplectic eigenvalues are

ν± =

√
±2
√
λ2N2

th(Nth(λ+ η1 − τ1)− 1)2 + 2Nth (−λ+Nth (λ2 − 2λτ1) + 2τ2
1 )− 2η1 + 2) + 1. (S20)
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FIG. S1. Quantum Fisher information ratioHQ/HC as a function of the noise factor β := NS/Nth and the reflectivity η1 for an experimentally
reasonable two-mode squeezing of NS ∼ 0.76. As in previous diagrams, white represents no gain. The protocol becomes more noise-resilient
in the highly reflective region, i.e. for smaller β.

Again, the symplectic eigenvalues are always larger than one in the coherent case, so no regularization of the QFI is needed. The
QFI in the limit when λ→ 0 is

HC =
α2

η1(1 + 2Nthτ1)
+

Nth

τ1(τ1Nth + 1)
. (S21)

In the following we take α =
√
NS. The ratio of the two QFIs converges to the following

lim
λ→0
η1→1

HQ/HC =
N2

S (8Nth(Nth + 1) + 4) + 4NSN
2
th +N2

th

Nth(NS(4Nth + 2) +Nth)
(S22)

In particular, in the noise-dominated regime Nth � 1 the above expression converges to

1 +
8N2

S

1 + 4NS
. (S23)

When NS = 0 the ratio converges to one, meaning there is no advantage in entanglement if there is nothing to entangle. The
protocol is then safe from any shadow-effect.

OPTIMAL OBSERVABLE: TWO-MODE SQUEEZED VACUUM STATE

In the main text we obtained an expression for the optimal quantum observable, ÔQ = L11â
†
1â1 + L22â

†
2â2 +

L12

(
â†1â
†
2 + â1â2

)
+ L0112, and gave only the coefficient values in the high reflectivity and noiseless case. Here we give
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the general expressions:

L11 = −
2η1NS

(
2NS + 1

) (
2Nth + 1

)
−A + B − C +D

L22 =
4η1 (2η1 − 1)N2

S
(
2Nth + 1

)
+ 2NS

(
η1 − 2Nth

(
(η1 − 3) η1 + (η1 − 1) (3η1 − 1)Nth + 1

)
− 1

)
+ Nth

(
2 (η1 − 1)Nth

(
(η1 − 1)Nth − 1

)
+ 1

)
A − B + C −D

L12 = −

√
2
√
NS

(
2NS + 1

) (
η21

(
NS

(
4Nth + 2

)
− N2

th

)
+ Nth

(
Nth + 1

))
A − B + C −D

L0 = −
4η31

(
N2

th − 2NS
(
2Nth + 1

)) 2 − 2η21
(
6Nth + 5

)
F
(
NS

(
4Nth + 2

)
− N2

th

)
+ 4η1

(
Nth + 1

) (
N2

S
(
8Nth + 4

)
− 2NS

(
Nth

(
6Nth + 5

)
+ 1

)
+ N2

th
(
3Nth + 2

))
+
(
2Nth + 3

)
GF

E − 4η1
(
2Nth + 1

)
F
(
−4NSNth + NS

(
2NS − 1

)
+ N2

th

)
− 8N2

S
(
3Nth

(
Nth + 1

)
+ 1

)
+ 4NSNth

(
Nth

(
4Nth + 3

)
+ 1

)
− 2N2

thG
,

where

A ≡ 8 (η1 − 1) η1N
3
S (2Nth + 1)

B ≡ 4N2
S

(
−η1 + (η1 + 3η1Nth) 2 − η1Nth (10Nth + 7) + 3Nth (Nth + 1) + 1

)
C ≡ 2NSNth (−η1 +Nth (η1 (3η1 − 8) + 4 (η1 − 1) (2η1 − 1)Nth + 3) + 1)

D ≡ N2
th (2 (η1 − 1)Nth ((η1 − 1)Nth − 1) + 1)

E ≡ 4η2
1

(
−4NSNth +NS (2NS − 1) +N2

th

) (
NS (4Nth + 2)−N2

th

)
F ≡ 2NS −Nth

G ≡ 2Nth (Nth + 1) + 1

In the high reflectivity case η1 → 1 we find:

lim
η1→1

L11 = − 2NS(2NS+1)(2Nth+1)
N2

S (8Nth(Nth+1)+4)+4NSN2
th+N2

th

lim
η1→1

L22 = − 4NS(2NSNth+NS+Nth)+Nth

N2
S (8Nth(Nth+1)+4)+4NSN2

th+N2
th

lim
η1→1

L12 =
2
√

2
√
NS(2NS+1)(NS(4Nth+2)+Nth)

N2
S (8Nth(Nth+1)+4)+4NSN2

th+N2
th

lim
η1→1

L0 = −2NS(NS(8Nth+4)+6Nth+1)−3Nth

8N2
S (2Nth(Nth+1)+1)+8NSN2

th+2N2
th

Additionally, as shown in the main text, in the noiseless case we get

lim
Nth→0
η1→1

ÔQ = −µ2â†1â1 − â†2â2 + µ
(
â†1â
†
2 + â1â2

)
− ν112

≡ b̂†1b̂1 − 1,

where µ2 ≡ (1 + 1/2NS) and ν ≡ (1 + 1/4NS) and

b̂1 ≡ −i
(
â†2 − µâ1

)
. (S24)

An scheme of the implementation of this observable can be seen in FIG. S2. After the first beam splitter we have

â′1 = cosϕâ1 + sinϕâ2

â′2 = − sinϕâ1 + cosϕâ2,
(S25)

then the Josephson parametric amplifiers (JPA) ideally are squeezing operators, acting as

â′′i = S(ri, θi)
†â′iS(ri, θi) (S26)

where S(ri, θi) is the squeezing operator, acting as

S(ri, θi)
†â′iS(ri, θi) = cosh riâ

′
i − eiθi sinh riâ

†
i

S(ri, θi)
†â′†i S(ri, θi) = cosh riâ

′†
i − e

−iθi sinh riâi.
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FIG. S2. Schematic circuit for the generation of mode b̂1, needed to correctly implement the optimal observable in the two-mode squeezed
vacuum (TMSV) state. The original âi modes mix at a ϕ beam splitter, and the outputs go through a single-mode squeezing operator –
Josephson parametric amplifier (JPA) in microwaves, with parameters ri and θi corresponding to squeezing and phase. Then they mix at a
second beam splitter θ. A phase shift φ is applied at the end, to cancel undesired terms.

Assuming that the phase shifter φ acts as ĉ 7→ e−iφĉ we find the following output modes

eiφb̂1 = cos θ
(

cosh r1â
′
1 − eiθ1 sinh r1â

†
1

)
+ sin θ

(
cosh r2â

′
2 − eiθ2 sinh r2â

†
2

)
b̂2 = − sin θ

(
cosh r1â

′
1 − eiθ1 sinh r1â

†
1

)
+ cos θ

(
cosh r2â

′
2 − eiθ2 sinh r2â

†
2

)
.

We insert (S25) in the last expression and regroup, finding

eiφb̂1 = cos θ
(

cosh r1(cosϕâ1 + sinϕâ2)− eiθ1 sinh r1â
†
1

)
+ sin θ

(
cosh r2(− sinϕâ1 + cosϕâ2)− eiθ2 sinh r2â

†
2

)
= â1 (cos θ cosϕ cosh r1 − sin θ sinϕ cosh r2)

+ â2 (cos θ sinϕ cosh r1 + sin θ cosϕ cosh r2)

+ â†1
(
−eiθ1 cos θ cosϕ sinh r1 + eiθ2 sin θ sinϕ sinh r2

)
+ â†2

(
−eiθ1 cos θ sinϕ sinh r1 − eiθ2 sin θ cosϕ sinh r2

)
Because we want to perform photon-counting over the operator in Eq. (S24), we identify:

iµ = cos θ cosϕ cosh r1 − sin θ sinϕ cosh r2 (S27)

i = eiθ1 cos θ sinϕ sinh r1 + eiθ2 sin θ cosϕ sinh r2. (S28)

OPTIMAL OBSERVABLE: COHERENT STATES

The optimal observable in this case is given by

ÔC = A1(1) ⊗
(

2â†2â2 − 2η1

√
α(â2 + â†2) + 1 + 2η2

1α
)

, (S29)

where A = 1/2(η1 − 1)(1 − Nth(η1 − 1)) and 1(1) is the absence of active measurement of mode 1. This expression can

be rearranged as ÔC = 2A1(1) ⊗
[(
â†2 − η1

√
α
)(

â2 − η1
√
α
)

+ 1
2

]
. This operator can be experimentally performed with a

displacement D(−η1
√
α) and photon-counting in the resulting mode.

Test of the methods: Quantum Illumination As a test of the methods, we reproduce known results from quantum illumination
[S3], providing some new insight. In quantum illumination, an entangled bipartite state is generated in the lab, and one of the
parts (the signal) is sent towards a noisy region where there may be a slightly reflective target. The other part (the idler) is
kept for future reference. The (possibly) reflected signal, mixed with the environmental thermal noise is collected back, and
a joint measurement of this reflected signal together with the idler is performed. It has been shown, both theoretically and
experimentally, that this approach achieves sensitivities which are impossible to get in the classical world, i.e. when one does
not use entanglement. One way to show this quantum enhancement is by computing the quantum Fisher information for both
cases, and analyzing their ratio, provided that the same amount of energy is sent towards the target. If, for example, one uses a
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two-mode squeezed vacuum state for quantum illumination, the number of photons in the classical state should be equal to half
of the total photon number in the TMSV state. An important remark is that one has to compare with the best classical protocol.
It has been shown that this corresponds to illumination with coherent states.

We shall proceed to prove these results with our approach. The initial (real) covariance matrix is

ΣTMSV =



2Nth + 1 0 0 0 0 0
0 2Nth + 1 0 0 0 0

0 0 2NS + 1 0 2
√
NS(NS + 1) 0

0 0 0 2NS + 1 0 −2
√
NS(NS + 1)

0 0 2
√
NS(NS + 1) 0 2NS + 1 0

0 0 0 −2
√
NS(NS + 1) 0 2NS + 1

 , (S30)

where we have ordered the modes as: thermal state, signal, and idler. Here NS is the signal photon number: NS := 〈â†SâS〉.

The symplectic transformation of quantum illumination is S = S
(B, S)
BS (η) ⊕ 1

(I), i.e., a beam splitter of reflectivity η mixing
bath and signal, and no interaction for the idler mode. In matrix form, this transformation reads

S(η) =



√
η 0

√
1− η 0 0 0

0
√
η 0

√
1− η 0 0

−
√

1− η 0
√
η 0 0 0

0 −
√

1− η 0
√
η 0 0

0 0 0 0 1 0
0 0 0 0 0 1

 , (S31)

meaning that the first two modes (thermal and signal) get mixed at a beam splitter, and the idler remains intact. The total,
transformed state is (−2(η − 1)NS + 2ηNth + 1)1 2

√
(1− η)η(NS −Nth)1 2

√
1− η

√
NS(NS + 1)σZ

2
√

(1− η)η(NS −Nth)1 (2ηNS − 2(η − 1)Nth + 1)1 2
√
η
√
NS(NS + 1)σZ

2
√

1− η
√
NS(NS + 1)σZ 2

√
η
√
NS(NS + 1)σZ (2NS + 1)1

 (S32)

After tracing out the losses, we receive the state:

Ση =


2ηNS − 2(η − 1)Nth + 1 0 2

√
η
√
NS(NS + 1) 0

0 2ηNS − 2(η − 1)Nth + 1 0 −2
√
η
√
NS(NS + 1)

2
√
η
√
NS(NS + 1) 0 2NS + 1 0

0 −2
√
η
√
NS(NS + 1) 0 2NS + 1

 (S33)

We can check this is correct since for η = 0 we simply get two thermal states with zero quantum correlations.

In order to agree with the original formulation of the problem, we will substitute η → η2 in what follows. Therefore, the
matrix A , defined as A := iΩTΣη2T

ᵀ, where and Ω := antidiag(12,−12), and Tij := δj+4,2i + δj,2i−1 is the matrix that
changes the basis to the quadrature basis, results in

A = i


0 0 2η2(NS −Nth) + 2Nth + 1 −2η

√
NS(NS + 1)

0 0 −2η
√
NS(NS + 1) 2NS + 1

2η2(Nth −NS)− 2Nth − 1 −2η
√
NS(NS + 1) 0 0

−2η
√
NS(NS + 1) −2NS − 1 0 0

 (S34)

ν2
±

2 (η2 − 1) |NS −Nth|
=
√
−2η2 (N2

S +NS +N2
th +Nth) + η4(NS −Nth)2 + (NS +Nth + 1)2

− 2η2
(
2N2

S − 2NSNth +NS + 2N2
th +Nth

)
+ 2η4(NS −Nth)2 + 2NS(NS + 1) + 2Nth(Nth + 1) + 1

(S35)
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FIG. S3. Two views of the same quantum Fisher information ratio HQ/HC for the problem of quantum illumination in the case of a low
reflective object. The red plane represents HQ = 2HC , which is asymptotically achieved in the highly noisy, and dim signal scenario, i.e.
when Nth →∞ and NS → 0.

Using this in equation (S10) and taking the limit η → 0 we find

lim
η→0

HQ(η) ≡ HQ =
4NS(NS + 1)

2NSNth +NS +Nth + 1
(S36)

confirming previously obtained analytical results. In the coherent probe case, using equation (S10) we find

HC(η) =
4NS

1− 2Nth(η − 1)
+

4Nthη
2

(η2 − 1) (Nth (η2 − 1)− 1)
, (S37)

taking the limit of low reflectivity η → 1 we find HC(η = 0) ≡ HC = 4Ns/(1 + 2Nth). Computing the ratio of Eqs. (S36)
and (S37) we obtain:

HQ

HC
=

(NS + 1)(2Nth + 1)

2NSNth +NS +Nth + 1
. (S38)

These results match the ones obtained in Ref. [S3], which serves as a confirmation that the methods are powerful (no diagonali-
sation was needed, for instance).
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