
Quantum speedup for track reconstruction in particle accelerators

D. Magano,1, 2 A. Kumar,1, 3 M. Kālis,4 A. Locāns,4 A. Glos,5 S. Pratapsi,1, 2 G. Quinta,1

M. Dimitrijevs,4 A. Rivošs,4 P. Bargassa,1, 6 J. Seixas,2, 7 A. Ambainis,4 and Y. Omar1, 2

1Physics of Information and Quantum Technologies Group, Instituto de Telecomunicações, Portugal
2Instituto Superior Técnico, Universidade de Lisboa, Portugal

3Department of Mathematics, Clarkson University, USA
4Center for Quantum Computer Science, Faculty of Computing, University of Latvia, Latvia

5Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Poland
6Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas, Portugal

7Center for Physics and Engineering of Advanced Materials, Portugal
(Dated: September 7, 2021)

To investigate the fundamental nature of matter and its interactions, particles are accelerated
to very high energies and collided inside detectors, producing a multitude of other particles that
are scattered in all directions. As charged particles traverse the detector, they leave signals of
their passage. The problem of track reconstruction is to recover the original trajectories from these
signals. This challenging data analysis task will become even more demanding as the luminosity
of future accelerators increases, leading to collision events with a more complex structure. We
identify four fundamental routines present in every local tracking method and analyse how they
scale in the context of a standard tracking algorithm. We show that for some of these routines we
can reach a lower computational complexity with quantum search algorithms. To the best of our
knowledge, this constitutes the first theoretical proof of a quantum advantage for a state-of-the-art
track reconstruction method.

I. INTRODUCTION

Most of our understanding about fundamental inter-
actions and the sub-nuclear structure of matter comes
from exploring the results of colliding highly energetic
particles in accelerator machines. These collisions pro-
duce a myriad of secondary particles, which must be de-
tected and their trajectories subsequently reconstructed.
The search for new Physics beyond the Standard Model
depends on being able to detect and process extremely
rare events among vasts amounts of data. Experimental
High-Energy Physics (HEP), especially the Large Hadron
Collider (LHC) programme at CERN, is for this reason
one of the most computationally demanding activities in
the world [1]. Moreover, this demand is expected to
grow dramatically after 2026 with the upcoming High-
Luminosity phase of the LHC [2], and even more so in
future machines, such as the Future Circular Collider [3].
As such, processing the raw data obtained in the particle
detectors into useful information that can be analysed
by high-energy physicists will become such a formidable
task that it will likely require completely new technolog-
ical paradigms. Quantum computing, promising signif-
icant speedups or reduced computational and energetic
resources for specific problems, may play a key role in
overcoming these challenges.

In recent years, quantum solutions have been proposed
for specific tasks in HEP data processing and analysis.
These include track reconstruction [4–10], event selec-
tion [11–18], and event simulation [19]. These promising
proposals were typically conceived already with a quan-
tum framework in mind, and were tested with very small
problem instances due to the present quantum hardware
limitations. Therefore, it remained an open question

whether one could prove a quantum speedup for a rel-
evant task meeting the large-scale requirements of mod-
ern HEP data processing. One route towards this goal
is to consider the computational complexity of standard
HEP algorithms and whether quantum computers could
be used to improve it. In [20], for example, the classi-
cal and quantum computational scaling of a well-known
jet clustering algorithm is studied: a quantum algorithm
with speedup is found, as well as an alternative classi-
cal algorithm that matches the quantum performance,
therefore establishing no quantum advantage.

In this article, we consider the problem of track recon-
struction (also known as tracking) from a computational
complexity perspective. In particle physics experiments,
bunches of accelerated particles are collided inside track-
ing detectors. At these collisions, new particles are cre-
ated and scattered in all directions. As charged particles
cross the detector’s multiple layers, they leave signals of
their passage, which are converted into three-dimensional
points called hits. The collection of hits that are left by
such a particle is called that particle’s track. The event
record of an experiment consists of the totality of signals
from all particles of an interaction (or possibly several
interactions) after one full readout of the detector. The
goal of tracking is to reconstruct the particles’ tracks from
the event record – see Figure 1 for an illustration of the
problem. Given that in real experiments an event can
contain several thousand hits, most combinations of hits
(track candidates) will not correspond to an actual par-
ticle. Therefore, we need efficient algorithms to be able
to reconstruct the tracks in a reasonable time.

The current tracking methods can be broadly classified
into local and global methods [21]. Global methods treat
all hit information in an equal and unbiased way and are

ar
X

iv
:2

10
4.

11
58

3v
2

 [
qu

an
t-

ph
]

 3
 S

ep
 2

02
1

2

(a) Input. (b) Output.

FIG. 1. Illustration of track reconstruction. Transverse view of a tracking detector with cylindrical layers (dashed grey lines).
The input to tracking is a set of hits (red circles) corresponding to detections of the particles’ passage (a). We recover the
original trajectories (blue lines) by grouping hits that belong to the same particle, i.e., by reconstructing the particles’ tracks
(b).

essentially clustering algorithms in some feature space.
All the quantum approaches so far were based on global
methods. However, because these methods can be very
inefficient in terms of speed, local methods are still the
standard at several reconstruction programmes in high-
energy physics [22–24]. For this reason, they will be the
focus of this article.

We identify four fundamental computational routines
that are present in every local tracking method: seed-
ing, track building, cleaning, and selection. In the first
stage, seeding, we form initial rudimentary track candi-
dates, called seeds, using just a few hits. Then, in the
track building stage, we extrapolate the seeds’ trajecto-
ries along the expected path of the particle and build
track candidates by adding compatible hits from succes-
sive detector layers. This strategy may lead to multiple
track candidates describing the same particle. To avoid
such redundancies, we apply a cleaning process that re-
moves track candidates that are too similar. Finally, only
the track candidates that respect some quality criteria
(based on the quality of the fit between the trajectory
and the corresponding hits) are output from the recon-
struction process – this is called the selection stage. Fig-
ure 2 provides a summary of the four stages.

For each of these stages, we analyze the computational
scaling of the Combinatorial Track Finder (CTF) algo-
rithm [22], which was the basis of the tracking program
of the CMS collaboration during the 2016 LHC run [25].
While we focus on the CTF for concreteness, we point
out that the underlying structure is the same as for most
local track reconstruction methods, such as the ones used
in ATLAS [23] or Belle II [24]. For both the seeding and
track building stages, we show that we can reproduce
the same output (up to bounded error probability) with

lower quantum complexity by an adequate use of quan-
tum search routines. For the cleaning routine, we find
an alternative classical algorithm with improved scaling
that is optimal up to poly-logarithmic factors. The se-
lection stage is already trivially optimal from a complex-
ity perspective. We emphasize that the four tracking
routines are analyzed independently, adding flexibility
to our results. For example, the CMS collaboration re-
cently adopted a different seeding strategy [26], but the
structure of the other three stages remains unchanged.
Finally, we consider executing the entire reconstruction
coherently, where we do not register the outputs of the
individual stages, but are only interested in the final re-
constructed tracks. We show that this scenario can lead
to further quantum advantage. Our results are summa-
rized at the end of the article in Table I.

II. THE TRACKING PROBLEM

We present a simplified model of tracking, omitting
some details that do not significantly influence the com-
plexity analysis. In Appendix A we formalize further our
assumptions and discuss how they could be relaxed.

Let n denote the number of charged particles present
in the event record. Their trajectories originate from a
fixed interaction region, but not necessarily from a single
collision spot. As usual in tracking methods, we assume
the different trajectories to be uncorrelated. Since the de-
tector is immersed in a quasi-uniform co-axial magnetic
field, we expect the particles to follow helical trajectories
aligned with the field’s direction. The detector consists of
a set of L cylindrical sensor layers aligned with the beam
line. The layers are indexed from 0 to L−1 (the most in-

3

(a) Seeding. (b) Track Building.

(c) Cleaning. (d) Selection.

FIG. 2. Track reconstruction: the four stages. In these figures, the charged particles resulting from a collision travel from left
to right, recording hits (circles) as they cross the detector layers (dotted grey lines). (a) Seeding. Local track reconstruction
methods start by forming seeds, rudimentary track candidates with just a few hits. In this figure we highlight in green a
possible seed with three hits. (b) Track Building. The trajectory of each seed is extrapolated throughout the detector, building
track candidates by adding compatible hits layer by layer. (c) Cleaning. The found tracks are here represented in different
colours. During the cleaning stage, if two track candidates share too many hits one of them gets discarded. The pink track,
for example, is filtered at this stage because of the hits it shares with the green one. (d) Selection. Only the track candidates
that satisfy certain quality criteria are selected as the output of the reconstruction process.

ner layers having the smallest indices). We assume that
each particle traverses every layer exactly once. As a par-
ticle crosses a layer, it leaves a complex signal resulting
from the interaction with the sensor’s pixels. We treat
these signals simply as three-dimensional points, called
hits. Thus, we require the granularity of the sensors to
be high enough such that each detected hit can always
be differentiated from others. At every layer, we identify
the hits with labels from {0, . . . , n − 1}, using the nota-
tion ml,j for the coordinates of jth hit in layer l. It is
possible that some hits are not measured at all due to
sensor inefficiencies, that is, we do not necessarily have a
hit ml,j for every pair (l, j).

III. COMPUTATIONAL MODEL

The running time of any tracking algorithm is the re-
sult of different factors. Naturally, the larger the number

of recorded particles the more demanding track recon-
struction becomes. At the LHC, sophisticated compu-
tational architectures are employed to optimize the run-
ning time. Furthermore, the parameters of the tracking
software are carefully adjusted to achieve in useful time
a track reconstruction with the desired accuracy, under
some assumptions on the observed events.

In this work, we offer a different perspective on track-
ing, focusing on the computational complexity of the
problem. In other words, we are interested in under-
standing how it fundamentally scales with input size. As
is common in the theoretical analysis of algorithms, we
concern ourselves with the asymptotic limit of arbitrar-
ily large number of particles. We adopt the standard
“big O” notation for asymptotic upper bounds. For two
functions f and g from N to R we say that f = O(g)
if ∃C, x0 > 0 : ∀x, (x > x0 =⇒ f(x) < C · g(x)). We
write f = Ω(g) if g = O(f). We say that f = Θ(g) if
f = O(g) and g = O(f). By “constant time”, we mean

4

O(1).
For our complexity analysis we only consider the de-

pendence on the variable n, the number of particles. Evi-
dently, the data in the event record also depends on quan-
tities like the number of layers of the detector, the gran-
ularity of the sensors, or the efficiency of the detectors.
But these are fixed from the experimental hardware and
do not vary from event to event. On the other hand, we
expect the average n to grow as we increase the beam’s
instantaneous luminosity. Thus, we believe n to be an
appropriate measure of the size of the input to the track-
ing problem.

When considering the classical algorithms we assume
that, given (j, l), we can access ml,j in constant time.
Moreover, simple arithmetic operations on the hit’s co-
ordinates are counted as taking O(1) time. In the context
of the quantum algorithms, we work in the circuit model,
measuring time as the number of quantum gates used.
We assume access to a QRAM that is able to load clas-
sical data in coherent superposition in logarithmic time
in the number of memory cells [27, 28]. That is, we have
access to a unitary Q such that, given a superposition
|ψ〉 =

∑
l,j αl,j |l, j〉 |0〉, applying Q yields the state

Q |ψ〉 =
∑
l,j

αl,j |l, j〉 |ml,j〉 , (1)

where |ml,j〉 is a computational basis quantum state en-
coding the coordinates of the jth hit of layer l. If the
index j does not correspond to a hit (there may be fewer
than n detections per layer), then |ml,j〉 holds a flag in-
dicating so.

These choices represent the distinct standard practices
in classical/quantum algorithm analysis. To attenuate
the differences in the computational models, we present
the results in Õ notation, that is, omitting the poly-
logarithmic dependencies in the complexities.

Another difference between the classical and quantum
scenarios is that all the presented classical algorithms are
deterministic, meaning that for a given input they will
always output the same answer. On the other hand, our
quantum algorithms are probabilistic. That is, for a given
input, they output the correct answer with probability at
least 1− ε for some ε ∈ [0, 1[.

IV. FOUR STAGES IN TRACK
RECONSTRUCTION

A. On the density of hits

Naturally, the number of hits in the event record grows
proportionally to the number of particles. In fact, for
any fixed region of the detector we expect the number of
registered hits to grow linearly with n. In Appendix A
we rigorously establish the following Lemma, which will
become useful for the complexity analysis:

Lemma 1 For almost all events, the number of hits in
any fixed, open (non-empty) subset of any detector layer
grows as Θ(n).

B. Seeding

Local track reconstruction methods start by forming
rudimentary track candidates, known as track seeds, with
just a small number of hits from a specific region of the
detector (usually the innermost layers due to their higher
granularities). In the seeding scheme of [22], seeds are
formed with only three hits. But our analysis easily ex-
tends to seeds with c hits, so in what follows we consider
this more general scenario. We impose some constraints
on the trajectories defined by the seeds, namely a mini-
mum transverse momentum and a maximum transverse
and longitudinal distances to the presumed production
point of the particle. Any hit c-tuplet disobeying these
conditions is not considered a valid seed.

The CTF’s seeding routine first searches over the first
two seeding layers of the detector for pairs of hits that
are compatible with the seeding criteria. These pairs
are extended into hit triplets by searching over the third
layer for compatible hits (meaning that we want the hit
triplets to respect the imposed conditions on the seeds’
trajectories). These triplets are extended in a similar
way into hit quadruplets, then hit 5-tuplets, and so on
until the c-th layer is reached. In Appendix B we pro-
vide a pseudo-code representation of the seeding routine
(Algorithm 1).

Suppose, now, that we have carried this process until
the j-th layer (for some general j between 2 and c − 1).
Each hit j-tuplet determines a region in the (j + 1)-th
layer where we could find a hit continuation compatible
with the seeding constraints – see Figure 3 for an illustra-
tion of the j = 2 case. According to Lemma 1, we expect
to find Θ(n) hits in that region. So, the number of se-
lected tuplets grows by a multiplicative Θ(n) factor at
each layer (although the multiplicative constant shrinks
as j increases), resulting in Θ(nc) seeds.

Theorem 2 The CTF’s seeding algorithm, Algorithm 1
(classical), has complexity O(nc), where c is the number
of hits per seed.

In practice, the number of seeds may be much smaller
than nc. However, the result of Theorem 1 is indepen-
dent of how many seeds are actually formed. In con-
trast, it is simple to see that quantum computers can
reach a lower complexity if kseed, the number of seeds,
scales better than O(nc). Indeed, let Oseed be an opera-
tor that, given a state |j0, . . . , jc−1〉, applies a −1 phase
if (m0,j0 , . . . ,mc−1,jc−1

) corresponds to a valid seed, and
leaves it unmarked otherwise. Within the QRAM model
presented in Section III, we can implement Oseed with
a Õ(1)-sized circuit. Then, the idea is to use Grover’s
quantum search algorithm [29, 30] to find the good seeds.

5

FIG. 3. Searching for seeds. The dotted grey lines represent
the first three detector layers (transverse view). The yellow
region around the beam axis (the black dot) is the region
where we admit the collisions may occur. In this illustration,
we are forming a seed with the two hits from the inner layers
marked in red. For any hit in the third layer (orange circles)
to be considered compatible with this seed, it must lie in the
green region. This is the region where the trajectories that
respect the seeding criteria and that pass through the two red
hits cross. In blue we draw two trajectories originating from
the outer edge of the collision region.

Let

G := H · (2 |0〉 〈0| − I) ·H ·Oseed, (2)

where H is the Walsh-Hadamard transform [31]. Starting
with a uniform superposition over the hit c-tuplets, we
keep apply G

O

(√
nc

kseed

)
(3)

times to amplify the probability of sampling a good seed
to Ω(1). Repeating this Õ(kseed) times suffices to sample
all good seeds with high probability. We note that this
approach works even if kseed is a priori unknown since
it can be determined with quantum counting [32]. The
detailed steps are presented in Algorithm 2.

Theorem 3 Algorithm 2 (quantum) generates all
seeds with bounded-error probability in expected time
Õ
(√
kseed · nc

)
, where kseed is the total number of

generated seeds.

For the proofs Theorems 2 and 3 we refer the reader
to Appendix C.

C. Track building

The CTF’s track building phase is based on the com-
binatorial Kalman filter [33] method, which is an adapta-
tion of the Kalman filter [34] for tracking problems. We

build track candidates starting from the seeds by adding
new hits, layer by layer, until the end of the detector is
reached. The idea is that, at each step, we extrapolate
the candidate trajectory until it intersects the subsequent
layer. Then, to every hit on that layer we attribute a χ2

value, which essentially translates the distance between
the hit and the intersection point of the trajectory with
the layer (for detailed definition see Appendix D). We
add the hits with lowest χ2 value to the track candidate
and then update the trajectory’s parameters according
to the Kalman filter method.

Crucially, at each propagation step we may branch
each track candidate into new candidates if several con-
tinuation hits are consistent with the present knowledge
of track parameters. The possibility that the expected
hit is simply missing (for example, due to device ineffi-
ciencies) also gives rise to a new branch with no hit added
at that layer. Following an argument similar to that of
the previous Section (relying on Lemma 1), we would ex-
pect Θ(n) new branches to be formed per layer per track
candidate. However, to prevent a rapid increase in the
number of tracks the CTF algorithm imposes a limit of
five candidates retained at each step per starting seed,
selected based on the χ2 value.

In summary, for each track candidate, the propagation
step involves: extrapolating the trajectory onto the next
layer (O(1) time), selecting the five best branches (O(n)
time), and updating the trajectory parameters for each
branch (also O(1) time). For more details on the track
building stage, we refer the reader to Appendix D. For a
pseudo-code of the track building stage see Algorithm 3.

Theorem 4 Starting from kseed seeds, the CTF’s track
building algorithm, Algorithm 3 (classical), has complex-
ity O(kseed · n).

With access to a quantum computer, at each propa-
gation step we can prepare all new branches in super-
position. We propose using Dürr and Høyer’s quantum
minimum finding algorithm [35] to select the best five

ones in Õ(
√
n) time, circumventing the classical cost of

having to inspect the O(n) branches one-by-one. In more
detail, suppose that we have followed a track candidate
up to layer l−1. Calling the QRAM, we can build a quan-
tum circuit Ofind that, given a state |l, j〉 |q〉, applies a −1
phase if adding the hit (j, l) yields a new track candidate
with χ2 value smaller than y. We then perform quan-
tum search with Ofind as the oracle, setting some initial
y ← y0. If we find a hit with corresponding χ2 value
y′ < y0, we run the quantum search again with y ← y′

(see Algorithm 4 for the detailed steps). With high prob-

ability, in Õ(
√
n) this procedure will have converged to

the branch with highest quality score.

Theorem 5 Starting from kseed seeds, Algorithm 5
(quantum) performs track building with bounded-error

probability in Õ (kseed ·
√
n) time.

The full proofs of Theorems 4 and 5 are provided in
Appendix D.

6

D. Cleaning

The combinatorial Kalman filter method may yield
multiple tracks corresponding to the same particle, by
either starting from different seeds, or when a seed grows
into more than one track. To avoid this, the cleaning
stage calculates the fraction of shared hits between all
pairs of track candidates

Nhits
shared

min
(
Nhits

1 , Nhits
2

) , (4)

where Nhits
1 (Nhits

2) is the number of hits used in forming
the first (second) track and Nhits

shared is the number shared
hits between the two tracks. If for any pair this frac-
tion exceeds a fixed threshold value, the worst track gets
discarded – see Algorithm 6. This pairwise comparison
method leads to a quadratic scaling with the number of
track candidates.

Theorem 6 CTF’s cleaning algorithm, Algorithm 6
(classical), has complexity O

(
k2

cand

)
, where kcand is the

number of track candidates in the input.

Now consider, for simplicity, that all tracks have the
same number of hits, say L. We can find a more efficient
classical algorithm by observing that (a) there is an inte-
ger r (independent of n) such that two tracks exceed the
allowed fraction of shared hits if and only if they have r
hits in common and (b) each track only has

(
L
r

)
= O(1)

distinct r-tuples of hits. We start by sorting the can-
didate tracks by quality score, such that if we need to
discard one of two tracks we choose the one that is fur-
ther down the list. Evidently, the first track t1 is going
to be included in the output. We create a self-balancing
binary search tree T , like a red-black tree ([36], for ex-
ample), containing all of the r-tuples of hits of t1 (with
some induced order on the r-tuples). We then move to
the second track in the list t2. For every r-tuple of t2,
we search for a match in the tree T . If we do not find
any, we insert all of t2’s r-tuples into T and we add t2 to
the output. Otherwise, t2 is not included in the output
and we leave the tree unchanged. We repeat this pro-
cedure for the remaining tracks. In the end, the output
contains all the desired tracks. In Appendix E we extend
this method to the case of general track sizes, resulting
in Algorithm 7, and prove

Theorem 7 Algorithm 7 (classical) performs track

cleaning in Õ (kcand) time, where kcand is the number of
track candidates in the input.

E. Selection

To every track candidate we assign a quality score,
based on the quality of the fit between the trajectory
and the hits, plus a bonus for each valid hit. The selec-
tion routine filters out the track candidates whose quality

score falls bellow a specified threshold – see Algorithm 8.
Since the quality score of any track candidate is inde-
pendent of all the other tracks, this stage clearly scales
linearly with the number of track candidates.

Theorem 8 CTF’s selection algorithm, Algorithm 8
(classical), has complexity O(kcand), where kcand is the
number of track candidates in the input.

V. RECONSTRUCTING TRACKS IN
SUPERPOSITION

We have seen that the seeding stage may exhibit quan-
tum speedup if the number of seeds, kseed, is consider-
ably smaller than the total number of combinations of
c-tuplets, nc (Theorem 3). However, in general, the num-
ber of seeds will scale like Θ(nc), and the quantum com-
plexity will be the same as the classical one. In that case,
only the track building stage shows a proven lower com-
plexity: O(nc+1) classical (Theorem 4) versus O(nc+0.5)
quantum (Theorem 5). If the four stages are run sequen-
tially, the track building stage will dominate the CTF’s
complexity (both in the classical and quantum cases).

Now suppose that we are only interested in the final
reconstructed tracks. Instead of producing the output
of each stage before continuing with the next one, we
propose an algorithm, relying on quantum superposition
over all track candidates, that reconstructs the full tracks
one-by-one. This further improves the quantum advan-
tage provided that the number of reconstructed tracks
is O(n). Intuitively, this condition means that the CTF
can be applied in the asymptotic regime while keeping
a constant fraction of tracks that do not correspond to
a real charged particle. We point out that, in practice,
particle physicists empirically adjust the parameters of
the tracking software according to the luminosity regime
to obtain a reasonable fake track rate for most events.
Alternatively, one may think that we are only interested
in reconstructing the best O(n) tracks.

The promise that only O(n) tracks are to be found
among Θ(nc) track candidates suggests the use of quan-
tum search, as we did with seeding. This is complicated
for two reasons: (a) the track building routine forgets in-
formation by selecting only some track candidates in each
layer, i.e., it is not reversible, while quantum search relies
on (reversible) unitary transformations; (b) the cleaning
operation for each track candidate depends on informa-
tion about other tracks. To rectify point (a) we apply
the principle of deferred measurements [31] to create a
sequence of unitary transformations that mimic the CTF
algorithm. To rectify point (b) we adapt our improved
cleaning algorithm, coherently accessing the nodes of the
search tree via QRAM.

More concretely, after reconstructing the first i tracks,
we build a circuit Ui that prepares a superposition of
all Õ(nc) fully built tracks, flagging the ones that have
already been accepted as reconstructed tracks. This cir-
cuit only requires Õ(log nc ·

√
n) gates using our quantum

7

routine for track building (Section IV C). Then, we sam-
ple the best-scoring track candidate in that superposition
that does not overlap with any previously reconstructed
track candidates to form the (i + 1)th track in the out-
put. Using quantum minimum finding, this can be done
with O(

√
nc) calls to Ui. We repeat this procedure until

no new valid tracks are found – O(n) times due to the
promise. Our proposal is summarized in Algorithm 9.
For a detailed construction of the unitaries Ui we refer
to Appendix F.

Theorem 9 Suppose that the total number of recon-
structed tracks is O(n). Then, Algorithm 9 (quantum)
outputs the tracks reconstructed by the full CTF algo-
rithm (seeding, track building, cleaning, and selection)

with bounded-error probability in Õ
(
n(c+3)/2

)
time.

VI. CONCLUSIONS

We have identified four fundamental routines present
in local track reconstruction methods (seeding, track
building, cleaning, and selection), and analyzed how
each scales with the number of recorded hits, n, propos-
ing quantum algorithms where we could find advantage
(seeding and track building). The seeding stage, which
runs on O(nc) time classically (Theorem 2), has a quan-

tum computational complexity of Õ
(√
kseed · nc

)
(The-

orem 3), where c is the number of hits per seed and
kseed is the total number of generated seeds. Classical
track building has complexity O(kseed · n) (Theorem 4),
whereas we develop a quantum algorithm that scales as
Õ(kseed ·

√
n) (Theorem 5). These speedups are based

on quantum search routines. The Combinatorial Track
Finder’s version of the cleaning routine has complexity
O(k2

cand) (Theorem 6), where kcand is the number of pro-
cessed track candidates, and we show that this can be im-
proved to Õ(kcand) (Theorem 7) via a structured search
scheme. The selection stage was already optimal from the
complexity perspective (Theorem 8). If the four stages
are run sequentially, the track building routine dominates
the complexity of the reconstruction: O(nc+1) classically

and Õ(nc+0.5) quantumly. However, we show that, if the
number of reconstructed tracks is O(n), we can combine
all previous algorithms to perform track reconstruction
in Õ

(
n(c+3)/2

)
time (Theorem 9). These results are sum-

marized in Table I.
To the best of our knowledge, our work offers the

first theoretical proof of quantum speedup for relevant
HEP data processing tasks. Moreover, our comprehen-
sive analysis of the Combinatorial Track Finder algo-
rithm reveals that classical improvements to the compu-
tational complexity are also possible. And, even though
asymptotic results may be of limited use for practical
problems, and quantum hardware may still be far from
being able to address big data problems, we hope our
original approach to tracking can motivate further in-
vestigations on the potential of quantum computation to

tackle the increasingly challenging, and potentially in-
tractable classically, High-Energy Physics data analysis
problems.

ACKNOWLEDGMENTS

The authors would like to thank Felice Pantaleo
for precious discussions about the classical Combina-
torial Track Finder algorithm. Furthermore, the au-
thors acknowledge project QuantHEP – Quantum Com-
puting Solutions for High-Energy Physics, supported
by the EU H2020 QuantERA ERA-NET Cofund in
Quantum Technologies, and FCT – Fundação para a
Ciência e a Tecnologia (QuantERA/0001/2019). DM,
AK, SP, GQ, PB, JS, YO thank the support from
FCT, namely through project UIDB/50008/2020. DM
acknowledges the support from FCT through schol-
arship 2020.04677.BD. MK thanks MikroTik for the
scholarship administrated by the UL Foundation. AG
has been partially supported by National Science
Center under grant agreement 2019/32/T/ST6/00158
and 2019/33/B/ST6/02011. SP thanks the support
from the la Caixa foundation through scholarship
LCF/BQ/DR20/11790030. GQ thanks the support from
FCT through project CEECIND/02474/2018.

Appendix A: More on the tracking problem

The work presented in the main text is based on a
simplified model of the problem of track reconstruction.
Here we describe in more detail the assumptions behind
that model.

Assumptions about the particles’ trajectories. Let n de-
note the number of charged particles present in the event
record. Their trajectories originate from a fixed interac-
tion region, but we do not assume that they come from a
single collision spot. The detector is immersed in a quasi-
uniform co-axial magnetic field, so we expect the parti-
cles to follow helical trajectories aligned with the field’s
direction. These trajectories can be described by five pa-
rameters [37]. Let P ⊂ R5 be the five-dimensional cuboid
corresponding to the trajectories’ parameter space. Each
experiment that produces a sequence of particle trajec-
tories is governed by a physical process that implicitly
selects these parameters for each trajectory; in the forth-
coming, we call this procedure an event. We model this
formally as a random variable π : Ω → P that selects a
parameter with respect to a probability space (Ω,F , P)
that accounts for various physical parameters, such as
noise, etc.. We make the mild assumption that π follows
a probability distribution pπ on P that is strictly posi-
tive. With our model, an event is generated by drawing
n random samples π1, . . . , πn, each following pπ (that is,
we treat them as i.i.d. random variables).

Assumptions about the detector’s layers. The detector
has a fixed geometry with a discrete set of sensor layers.

8

Tracking stages Input size Output size Classical complexity Quantum complexity

Seeding O(n) kseed
O (nc)

(Theorem 2)

Õ
(√
kseed · nc

)
(Theorem 3)

Track Building kseed +O(n) kcand
O(kseed · n)

(Theorem 4)

Õ (kseed ·
√
n)

(Theorem 5)

Cleaning (original) kcand O(kcand)
O(k2cand)

(Theorem 6)
–

Cleaning (improved) kcand O(kcand)
Õ(kcand)

(Theorem 7)
–

Selection O(kcand) O(kcand)
O(kcand)

(Theorem 8)
–

Full Reconstruction n O(nc)
O
(
nc+1

)
(Theorems 2, 4, 7, 8)

Õ
(
nc+0.5

)
(Theorems 3, 5, 7, 8)

Full Reconstruction with

O(n) reconstructed tracks
n O(n)

O
(
nc+1

)
(Theorems 2, 4, 7, 8)

Õ
(
n(c+3)/2

)
(Theorem 9)

TABLE I. Summary of the results. We present the complexity of the algorithms for each of the track reconstruction stages,
both the classical and quantum versions. n is the number of charged particles present in the event record, c is the number of
hits used to form the seeds, kseed is the number of seeds generated, and kcand is the number of built candidate tracks. The two
rows for the track cleaning stage refer to the original version of [22] and to the one we propose. On the quantum side some
entries are marked as “–” where we did not propose/expect a quantum algorithm with advantage over the classical one. In the
penultimate row we write the complexity of the full track reconstruction, assuming the four stages are executed sequentially.
We combine Theorems 2–8 using kseed = O(nc) and kcand = O(kseed). The final row shows that the quantum advantage can be
further improved provided that the number of reconstructed tracks is O(n).

We consider that the detector has L cylindrical layers
aligned with the beam line. The layers are indexed from
0 to L− 1 (the most inner layers having the smallest in-
dices). We assume that each particle traverses every layer
and that they never return to a previously visited layer.
We assume the layers to be continuous two-dimensional
surfaces Cl, l ∈ {0, . . . , L− 1}.

Assumptions about the hits’ data. As a particle tra-
verses a layer, it leaves a complex signal resulting from
the interaction with the sensor’s pixels. We treat these
signals simply as three-dimensional points, called hits.
We assume that the granularity of the sensors is high
enough such that each detected hit can be differentiated
from other hits. Since each trajectory leaves a unique
hit on each layer l, formally we have a continuous map
Hl : P → Cl, relating each trajectory to its point of in-
tersection with layer l. At every layer, we identify the
hits by labels from {0, . . . , n − 1}. We use the notation
ml,j for the coordinates of jth hit in layer l. It is possi-
ble that some hits are not measured at all due to sensor
inefficiencies. That is, we do not necessarily have a hit
ml,j for every pair (l, j). This means that we may not be
able to tell the exact value of n directly from the event
record, as it is possible that there is no layer registering
all particles. In that case, we would be indexing the hits

with labels from {0, . . . , n∗ − 1}, where n∗ is the largest
number of hits measured in any layer. We consider that
n∗ = n for simplicity, but every result in this paper would
hold the same as long as n∗ = Θ(n).

Under these assumptions, we expect the number of
measured hits per layer to grow proportionally to n.
Moreover, we can establish the following useful lemma:

Proof of Lemma 1. The trajectories are determined
by the parameters in P. If S ⊂ Cl is open and non-
empty, then US := H−1

l (S) ∈ P is open and non-empty
and by assumption, the probability that a trajectory has
parameters in US is pS := pπ(US) > 0. If π1, . . . , πn
are n random samples of parameters drawn without re-
placement and following pπ, then the strong law of large
numbers implies that almost surely, the number of pa-
rameters sampled from US grows as Θ(n). Applying Hl

to this gives the growth of the number of hits in S. �
In our model we have omitted some details that, de-

spite being a crucial part of real particle physics experi-
ments, do not significantly influence our complexity anal-
ysis. We now comment on how some of these assumptions
could be relaxed in the context of our analysis.

First, we should note that most local tracking algo-
rithms, including the CTF, reconstruct tracks by multi-
ple iterations. That is, the sequence of the four computa-

9

tional routines (seeding, track building, cleaning, and se-
lection) is called several times for the same event record.
The idea of this iterative tracking is that the initial iter-
ations search for the tracks that are easiest to find (high
transverse momentum, and produced near the interac-
tion region). After each iteration, the hits associated to
the reconstructed tracks are removed, thereby simplify-
ing the subsequent iterations. As far as our complexity
analysis is concerned, the most significant modification
from iteration to iteration is the number of hits used to
form seeds. In [22], the first iteration forms seeds with
hit triplets. But in some subsequent iterations seeds are
formed by picking just two hits, as we can use the re-
sults of the previous iteration to reconstruct the collision
vertices, which serve as the “third hit”. In our work, we
have analysed the general case of forming seeds with c
hits.

Regarding our model for the generation of the trajec-
tories, we assumed that the probability distribution pπ
on parameter space P was strictly positive. This was not
deduced from explicit particle physics calculations, but is
a rather lax assumption that includes the seemingly rea-
sonable assumption that no scattering direction is forbid-
den. We’ve also assumed that an event is generated by
drawing n random samples π1, . . . πn, each following pπ.
Underlying this there is the physical assumption that the
trajectories of the charged particles are treated as uncor-
related.

Another of our assumptions was that the layers were
continuous surfaces, as this made the description of the
algorithm clearer (especially for the track building stage).
In reality, the layers are formed by overlapping sensor
modules. This means that it is possible for a particle to
leave more than one detection per layer. To accommo-
date this possibility, at each layer the CTF selects com-
patible modules, which are the ones whose boundaries
are up to a given distance from the predicted measure-
ment. These modules are divided into module groups
in such a way that no two modules in the same group
overlap. Only the best measurement from each group is
considered to integrate the track candidate. Again, we
only allow up to five new track candidates per step. At
each iteration there are O(1) module groups, each with
O(n) hits, so the claimed complexity remains the same.

Furthermore, we assumed that the detector was a col-
lection of L = O(1) cylindrical layers. This is simpli-
fied description of real detectors. For example, the CMS
tracker has a barrel-like shape, with thirteen cylindrical
layers aligned with the beam line and fourteen disk layers
in the transverse plane. We did not include the detailed
geometry of the detector in our discussion in order to
simplify the exposition. In fact, our analysis holds for
any disposition of layers as long as we assume that each
particle only traverses one layer at a time and that their
trajectories do not return to a previously visited layer.

We have considered that the hit data is given in the
form of three-dimensional points. Actually, as a charged
particle traverses a layer, it activates multiple sensor pix-

els. Then, the signals in neighbouring pixels are grouped
together to form three-dimensional clusters. The cen-
troid of each cluster determines a hit’s position. But
the cluster shape also carries information. In particular,
in some cases it is possible to exclude a hit from a given
track based on the incompatibility between the hit’s clus-
ter shape and the track’s trajectory. We may see this as a
motivation to think about the case where kseed = O(na)
with a < c – even though the cluster shape information
does not provide a mean to find the good seeds faster, it
guarantees that we can recognize them.

In summary, we see that several of our simplifying as-
sumptions could be lifted without changing our conclu-
sions. Arguably, the strongest assumption was ignoring
the hits’ cluster shape information, as that might be used
to exclude kseed = O(nc) as a worst-case scenario.

Appendix B: Pseudo-codes

Algorithm 1: Seeding (classical)

input : event record
output: seeds

1 seed list ← {m0,0,m0,1, . . . ,m0,n−1};
2 foreach layer l from 1 to c− 1 do
3 foreach seed in seed list do
4 foreach hit ml,j in layer l do
5 if ml,j is a valid continuation for seed then
6 new seed ← seed ∪ ml,j ;
7 add new seed to seed list;

8 remove seed from seed list;

9 output seed list;

Algorithm 2: Seeding with quantum search

input : event record
output: seeds

1 k̃ ← quantum counting estimation of kseed;

2 m←
⌊
π

/
4 arcsin

(√
kseed
nc

)⌋
;

3 while we have not found k̃ good seeds do
4 prepare and measure state

Gm ·

 1√
nc

n−1∑
j0,...,jc−1=0

|j0, . . . , jc−1〉

 ;

5 if outcome j0, . . . , jc−1 corresponds to a good seed
then

6 add (m0,j0 ,m1,j1 ,m2,j2) to output;

10

Algorithm 3: Track building (classical)

input : seeds, generated by Algorithm 1; event record
output: candidate tracks

1 foreach seed do
2 initialize empty list candidate tracks;
3 estimate initial state vector pc−1|c−1 and quality

factor qc−1 for seed;
4 add (seed, pc−1|c−1, qc−1) to candidate tracks;
5 foreach layer l from c to L− 1 do
6 foreach (track, pl−1|l−1, ql−1) in

candidate tracks do
7 evaluate predicted measurement ml|l−1;
8 foreach hit ml,j in layer l do
9 if χ2

l|l−1(ml,j) < χ2
0 then

10 new track ← track + ml,j ;
11 form new candidate track for seed

with ml,j ;
12 evaluate pl|l and quality factor ql

for new track;
13 add (new track, pl|l, ql) to

candidate tracks;

14 if there is no hit ml,j in layer l such that

χ2
l|l−1(ml,j) < χ2

0 then
15 new track ← track + ml|l−1 evaluate

pl|l and quality factor ql for new track;
16 add (new track, pl|l, ql) to

candidate tracks;

17 remove (track, pl−1|l−1, ql−1) from
candidate tracks;

18 select the best λ tracks of candidate tracks

19 add elements of candidate tracks to output;
// note: this description uses notation

from Appendix D

Algorithm 4: Quantum minimum finding

input : prediction of track’s state vector at layer l− 1
output: j such that ml,j that minimizes χ2

l|l−1

1 initialize j0 ← empty;

2 set y ← χ2
0;

3 while Ofind has been called less than 22.5
√
n times

do
4 apply quantum exponential searching algorithm of

[30] with initial state
(

1√
n

∑n
j=0 |l, j〉

)
· |y〉 and

with Ofind as oracle;

5 if we find an state |l, j〉 such that χ2
l|l−1(ml,j) < y

then
6 set j0 ← j;

7 set y ← χ2
l|l−1(ml,j);

8 if j0 is not empty then
9 return ml,j0

10 else
11 return “no good measurement”

Algorithm 5: Track building with quantum
minimum finding

input : seeds, generated by Algorithm 1; event record
output: candidate tracks

1 foreach seed do
2 initialize empty list candidate tracks;
3 estimate initial state vector pc−1|c−1 and quality

factor qc−1 for seed;
4 add (seed, pc−1|c−1, qc−1) to candidate tracks;
5 foreach layer l from c to L− 1 do
6 foreach (track, pl−1|l−1, ql−1) in

candidate tracks do
7 evaluate predicted measurement ml|l−1;
8 for i from 1 to λ do
9 run quantum minimum finding

(Algorithm 4) log
(
3Lλ2nc

)
times

(increasing the χ2 value of already
used hits so not to find them again) ;

10 from the samples of step 9, select the

measurement ml,j with lowest χ2
l|l−1 ;

11 if χ2
l|l−1(ml,j) < χ2

0 then
12 new track ← track + ml,j ;
13 form new candidate track for seed

with ml,j ;
14 evaluate pl|l and quality factor ql

for new track;
15 add (new track, pl|l, ql) to

candidate tracks;

16 if no new candidate track was formed then
17 new track ← track + ml|l−1;
18 evaluate pl|l and quality factor ql for

new track;
19 add (new track, pl|l, ql) to

candidate tracks;

20 remove (track, pl−1|l−1, ql−1) from
candidate tracks;

21 select the best λ tracks of candidate tracks;

22 add elements of candidate tracks to output;

Algorithm 6: Cleaning (original)

input : candidate tracks, generated by Algorithm 3
output: cleaned candidate tracks

1 foreach track1 in candidate tracks do
2 foreach track2 (different from track1) in candidate

tracks do
3 if track1 and track2 share more than allowed

fraction of hits then
4 remove the one with lowest quality score

from the set of candidate tracks;

5 output remaining candidate tracks;

11

Algorithm 7: Cleaning (improved)

input : candidate tracks, generated by Algorithm 3
output: cleaned candidate tracks

1 sort candidate tracks by quality score;
2 set R = dfLe;
3 initialize empty trees Ti,j for i, j ∈ {1, . . . , R};
4 foreach track in candidate track do
5 set r = dfLe, where L is number of hits of track;
6 for r′ from 1 to r do
7 foreach r′-tuple of track do
8 if r′-tuple is in Tr′,r′ then
9 remove track from set of candidate

tracks;

10 for r′ from r to R do
11 foreach r-tuple of track do
12 if r-tuple is in Tr,r′ then
13 remove track from set of candidate

tracks;

14 if track has not been removed then
15 for r′ from 1 to r do
16 foreach r′-tuple of track do
17 insert r′-tuple into tree Tr′,r;

18 output remaining candidate tracks;

Algorithm 8: Selection (classical)

input : candidate tracks, cleaned by Algorithm 6
output: final reconstructed tracks

1 foreach track in candidate tracks do
2 calculate quality score of track;
3 if quality score of track < threshold then
4 remove track from the set of candidate tracks;

5 output remaining candidate tracks;

Appendix C: The seeding algorithms

1. Classical

The purpose of the seeding stage is to provide initial
track candidates, formed by c hits, and their trajectory
parameters. The CTF algorithm [22] generates seeds by
selecting c-tuplets of hits from the c most inner layers.

We now describe this process in detail. First, we search
over the first two seeding layers of the detector for pairs of
hits that are compatible with the seeding criteria. These
criteria include:

1. Minimum transverse momentum. We impose a
minimum value on the transverse component of the
particle’s momentum with respect to the direction
of the magnetic field. Geometrically, this means
that we only accept trajectories with a minimum
radius.

2. Maximum transverse and longitudinal distance of

Algorithm 9: Track reconstruction in
superposition

input : event record
output: reconstructed tracks

1 initialize empty self-balancing binary tree T ;
2 initialize i← 0;
3 repeat
4 for j from 1 to dlog(2λnc)e do
5 trackj ← output of the quantum minimum

finding algorithm minimizing Qi(ψ) – the
score encoded in the second register of Ui |0〉
(F1);

6 track ← arg minj Qi(trackj);
7 if track passes CTF criteria and none of its

r-tuples are in T then
8 foreach r-tuple of track do
9 insert r-tuple into tree T ;

10 add track to output;
11 i← i+ 1;

12 else
13 stop;

// note: this description uses notation from

Appendix F

closest approach to the beam-spot. The beam-spot
is the point where we expect that the collisions
takes place. It does not mean that all trajecto-
ries originate from that exact point, but we disre-
gard trajectories that are far away from it. More
precisely, we enforce that all trajectories cross a
cylinder centered at the beam spot defined by some
maximum transverse and longitudinal distances.

For each pair of hits (m0,j0 ,m1,j1) that we formed, we
search over the third layer for hits compatible with the
seeding constraints. That is, we select a hit m2,j2 if
the trajectory defined by (m0,j0 ,m1,j1 ,m2,j2) satisfies
the conditions of (1) and (2) above. Then, for each hit
triplet (m0,j0 ,m1,j1 ,m2,j2), we search over the fourth
layer for hits m3,j3 such that the trajectory that best
fits (m0,j0 ,m1,j1 ,m2,j2 ,m3,j3) satisfies the seeding con-
straints. This process is repeated until the cth layer is
reached. For a for a pseudocode representation see Algo-
rithm 1 in Appendix B.

Proof of Theorem 2. Suppose that we have built a
seed up to layer l ∈ 1, . . . c− 2. Selecting the hits in the
(l+ 1)th layer that constitute valid continuations for the
seed takes O(n) time: there are O(n) candidate hits and,
for each (l+ 1)-tuplet, verifying if it satisfies the seeding
criteria takes O(1) time. So, if there are Nl seeds at layer
l, iterating over to layer l + 1 takes O(Nl · n) time.

We now estimate Nl. For each seed that we have built
at layer l, the seeding constraints define a (non-empty)
region over the (l + 1)−th layer where any hit could be
used to continue that seed – see Figure 3 of the main text.
According to Lemma 1, in that region we expect there
to be Θ(n) hits. So, the number of formed seeds will

12

increase by a multiplicative factor of Θ(n) when going
from layer l to layer l+1. As we start we n seeds at layer
0, we end up with Nl = O(nl+1).

So, the complexity of the algorithm is

n+

c−1∑
l=1

Nl−1 ·O (n) = O(nc). (C1)

�
We point out that during the proof of Theorem 2 we

have also established that Algorithm 1 forms at most
Θ(nc) seeds.

We recall that the version of the CTF presented in [22]
forms seeds with just three hits. Theorem 2 applies to
that case by making c = 3. We are trying to fit the
tracks into helices aligned with the detector axis. So,
we could not fix the five parameters defining such helices
with fewer than three points without critically relying
on the estimate for the beam-spot. Actually, in general
three points determine a countable family of such helices.
If we assume that the trajectories do not realize “a full
turn” between these points, this degeneracy is broken.
However, then we do not have the guarantee that there
is an helix passing exactly through the three points. In
practice, as there are experimental uncertainties about
the hits’ positions, this is not a concern.

The seeding strategy that we have described was used
at tracking programme of the CMS collaboration during
the 2016 LHC run [25]. Meanwhile, CMS has adopted a
different seeding method [26], based on the concept of cel-
lular automata. This more sophisticated algorithm yields
seeds of various sizes, and already includes a cleaning and
selection phases. Perhaps more importantly, its design is
extremely parallelizable. This means that it can become
very efficient in terms of speed, scaling better than the
corresponding computational complexity.

2. Quantum

Consider a unitary transformation Useed that recog-
nizes if a hit c-tuplet forms a valid seed. That is, given a
state

∣∣m0,j0 , . . . ,mc−1,jc−1

〉
, Useed applies a −1 phase if

(m0,j0 , . . . ,mc−1,jc−1
) passes the seeding stage, and oth-

erwise the state is left unchanged. Since any classical
computation can be simulated by a quantum computer
[31], this is clearly possible. Moreover, because we can
recognize if a hit c-tuplet constitutes a valid seed with a
O(1)-sized circuit, we can also build a quantum circuit for
Useed using O(1) gates. Using Useed and Q, it is straight-
forward to form a unitary transformation Oseed acting
on {|0〉 , |1〉}⊗3 logn (possibly along some ancillary qubits)
that marks the state |j0, . . . , jc−1〉 with a −1 phase if the
corresponding hit c-tuplet constitutes a good seed. If
any of the pairs of indices (0, j0), . . . , (c, jc−1) does not
correspond to a hit, we assume that Oseed leaves the
state |j0, . . . , jc−1〉 unchanged. We can run the circuit
for Oseed in O(log(n)) time.

We start by preparing all c-tuplets in superposition.
For simplicity, we assume that n is a power of two. Start-
ing from the all-zero state, we can do this by applying
c log n parallel single-qubit Hadamard gates (also known
as the Walsh-Hadamard transform, H). Now define θ
and m as

θ = arcsin

(√
kseed

nc

)
, m =

⌊ π
4θ

⌋
. (C2)

From Grover’s algorithm,

Theorem 10 (Quantum search [29, 30]) Let m and
G be defined as in (C2) and (2), respectively. Then, if
we measure the state

Gm ·

 1√
nc

n−1∑
j0,...,jc−1=0

|j0, . . . , jc−1〉

 (C3)

in the computational basis we will find a good seed (i.e.,
a c-tuplet (j0, . . . , jc−1) such that (m0,j0 , . . . , mc−1,jc−1

)
passes the seeding stage) with probability at least 1/2.

Preparing the state (C3) involves calling the operator

G m = O(
√
nc/kseed) times, representing a complex-

ity advantage over what we could do classically. Note,
however, that applying Grover’s algorithm requires de-
termining m, which we cannot do since we do not know
a priori what is the value of kseed. For that purpose,
we can use the quantum counting algorithm of Brassard,
Høyer, and Tapp [32]:

Theorem 11 (Quantum counting [32]) There is a
quantum algorithm that outputs kseed with probability at
least 3/4, using an expected number of O(

√
nckseed) calls

to G.

Combining these techniques, we propose performing
seeding with Algorithm 2.

Proof of Theorem 3. Assume that quantum counting
succeeds, that is, we have correctly estimated k̃ = kseed in
step 1 in Õ(

√
nckseed) time. The probability of sampling

a new good seed in step 4 after having already found k
of them is (Theorem 10)

1

2

kseed − k
kseed

. (C4)

Then, determining the expected time to find all good
seeds is equivalent to the coupon collector’s problem. In
particular, the probability that we run step 4 more than
10kseed log kseed times is less than 1/4. That is, with

probability at least 3/4 we spend Õ(
√
nc · kseed) time on

loop 3-6. Since quantum counting succeeds with prob-
ability at least 3/4 (Theorem 11), Algorithm 2 outputs

all seeds in Õ(
√
nc · kseed) time with probability no less

than 1/2. �
If kseed = O(na), then we can perform seed generation
up to bounded error with complexity

Õ
(
n

c+a
2

)
. (C5)

13

In the worst-case scenario, this shows no advantage over
the classical algorithm (as is expected from Lemma 1).
But for any a < c we reach a lower complexity than the
classical seeding (Theorem 2).

Appendix D: The track building algorithms

1. Classical

The track building stage extrapolates the seeds’ trajec-
tories along the expected path of the particle and builds
track candidates by adding compatible hits from suc-
cessive detector layers, updating the parameters at each
layer. More precisely, the track building strategy is based
on the combinatorial Kalman filter [33], which in turn is
an adaptation of the Kalman filter [34] for tracking prob-
lems. We now describe this method.

Say that a trajectory at layer l − 1 is described by a
five vector pl−1. The propagated state vector pl at next
layer is modelled by the system equation

pl = Flpl−1 + wl. (D1)

Fl, known as the process matrix, describes the propaga-
tion of a charged particle in a uniform magnetic field from
layer l − 1 to l. wl is a random variable called process
noise. A measurement ml at layer l is given by

ml = Hlpl−1 + el, (D2)

where Hl is the measurement matrix and el is the mea-
surement noise. We assume that we know the covariance
matrices for the process and measurement noises. Note
that, in general, we could replace equations (D1) and
(D2) by non-linear relations. But the linear model usu-
ally suits the purpose of track reconstruction.

Suppose that we have built a track up to layer l−1 with
the measurements (i.e., hits) m0,j0 ,m1,j1 , . . . , ml−1,jl−1

.
With this information, we describe our prediction of the
trajectory at this layer by a state vector pl−1|l−1 and cor-
responding covariance matrix. Without knowing which
hit from layer l belongs to this track, we predict that the
state vector at layer l is

pl|l−1 = Flpl−1|l−1. (D3)

We say that the predicted measurement at layer l is

ml|l−1 = Hlpl|l−1. (D4)

This would be the location of the lth hit if we had per-
fect knowledge of the trajectory and there were no pro-
cess/measurement errors. In reality, we do not expect
to find any hit exactly at this predicted measurement.
When considering an actual measurement ml,j , we say
that the predicted residual is

rl|l−1 (ml,j) = ml,j −ml|l−1 (D5)

The predicted χ2 value is defined as

χ2
l|l−1 (ml,j) = rl|l−1 (ml,j)

T
R−1
l|l−1rl|l−1 (ml,j) , (D6)

where Rl|l−1 is the covariance matrix of the predicted

residual. Intuitively, a high χ2 value tells us that the
measurement is unlikely to belong to the track. Then,
when evaluating which hit to add to the track, only the
ones whose predicted χ2 value is below some fixed thresh-
old χ2

0 pass to the filtering phase. Suppose that ml,j

satisfies this criterion. Based on this measurement, we
update the state vector prediction to

pl|l = pl|l−1 + Klrl|l−1 (ml,j) , (D7)

where Kl is the Kalman gain matrix, which is calcu-
lated based on the covariance matrices of state vector,
the process noise and the measurement noise (see [33] for
explicit expression). We say that the filtered residual for
this measurement is

rl|l (ml,j) = ml,j −Hlpl|l. (D8)

The filtered χ2 value is

χ2
l|l (ml,j) = rl|l (ml,j)

T
R−1
l|l rl|l (ml,j) , (D9)

Rl|l being the covariance matrix of the filtered residual.

One can show that the predicted and filtered χ2 values
are actually identical (see [33]), that is,

χ2
l|l−1 (ml) = χ2

l|l (ml) ,∀ml ∈ R3. (D10)

This means that we can determine the filtered χ2 value
without explicitly updating the trajectory. The total χ2

value of the track at layer l is the sum of the filtered (or
predicted) χ2 values from all previously visited layers

χ2
≤l(m0,j0 , . . . ,ml,jl) =

l∑
i=0

χ2
i|i(mi,ji). (D11)

In general, we may have several hits passing to the fil-
tering phase. As we are not sure which one truly belongs
to the track, we form new candidate tracks each including
a different hit. These tracks are then followed indepen-
dently. Also, to accommodate the possibility of detection
inefficiencies the CTF permits adding a “ghost hit” if no
suitable hit is found. However, to avoid a rapid increase
in the number of tracks, we impose a limit of λ tracks re-
tained at each step (the default in [22] being λ = 5). If at
any point this limit is surpassed, we abandon the worst
tracks. To decide this, each track candidate is attributed
a quality score ql of the form

ql = l −mghost − ω · χ2
≤l, (D12)

where mghost is the number of ghost hits included in the
track and ω is some configurable weight (we omitted the
dependence on the measurements). At any step we can

14

discard a candidate track if it contains too many ghost
hits or the total χ2 value exceeds a given threshold. Oth-
erwise, the procedure is continued until the end of the
detector is reached (that is, we arrive at l = L− 1). The
quality score (D12) at that point is said to be the qual-
ity score of the track candidate. The tracks that reach
this step are accepted for the next stage of the CTF al-
gorithm. The steps of the track building stage are sum-
marized in Algorithm 3.

Before proving Theorem 4, it is important to under-
stand how many candidate hits pass to the filtering
phase. The space of points with acceptable predicted
χ2 value (equation (D6))

{ml ∈ R3 : χ2
l|l−1 (ml) < χ2

0} (D13)

is an ellipsoid around the predicted measurement. The
intersection of this ellipsoid with the layer’s surface yields
a region in that layer whose area is independent of n. By
Lemma 1, we may find Θ(n) hits in that region. There-
fore,

Lemma 12 The filtering step takes O(n) time.

Proof of Theorem 4. Starting from a single seed, we
only propagate up to λ = O(1) tracks from layer to layer.
For each of these, the analytical continuation of the tra-
jectory from one layer to another (equations (D3) and
(D4)) is performed in O(1) time. As we have seen with
Lemma 12, performing filtering requires O(n) time per
track candidate. Finally, in O(n) time we can determine
the λ tracks with best quality score (D12) that are prop-
agated to the next layer. The number of layers L is O(1).
Combining everything, we reach the find a complexity of
O(kseed · n). �

2. Quantum

We have seen that, at each step of the track building
stage, O(n) hits undergo the filtering step, while only
at most λ = O(1) of them form new track candidates.
Our idea is to use quantum search to perform filtering,
reducing its complexity from O(n) (Lemma 12)to Õ(

√
n).

Suppose that we have followed a track up to layer l−1
according to the track building method described in Sec-
tion D 1. In particular, we have evaluated the predicted
state vector and corresponding covariance matrix. Based
on this information, we can calculate predicted χ2 value
(equation (D6)) for any measurement in layer l in O(1)
time. Let Oχ be a unitary transformation that, given
the index of a measurement, calculates the predicted χ2

value of adding that measurement to the track:

Oχ |l, j〉 |x〉 = |l, j〉
∣∣∣x⊕ χ2

l|l−1(ml,j)
〉
. (D14)

Like in the seeding algorithm, we can build a quantum
circuit for Oχ using the classical circuit to compute the
predicted χ2 value and the QRAM operator Q, requir-
ing a total of O(log n) gates. Using Oχ we can build

a quantum circuit Ofind that marks a state |l, j〉 |y〉 if
χ2
l|l−1(ml,j) is smaller than the threshold y

Ofind |l, j〉 |y〉 =

{
− |l, j〉 |y〉 , if χ2

l|l−1(ml,j) < y

+ |l, j〉 |y〉 , otherwise.

(D15)
By the quantum minimum finding algorithm of Dürr and
Høyer [35], we can find the measurement ml,j that min-
imizes χ2

l|l−1 with O(
√
n) calls to Ofind:

Theorem 13 (Quantum minimum finding [30]) If
there is a measurement ml,j such that χ2

l|l−1(ml,j) < χ2
0,

Algorithm 4 finds the measurement that minimizes χ2
l|l−1

with probability at least 1/2 in Õ(
√
n) time.

With this result, our strategy for track building be-
comes the following. Starting from a single seed, we do
track finding by propagating up to λ tracks from layer to
layer. For each of these tracks, we apply quantum min-
imum finding λ times to find the λ measurements with
lowest predicted χ2 value (after we have found a mini-
mum of χ2

l|l−1 we can arbitrarily increase the χ2 value of

that measurement to ensure that we do not find it again
in the following run of quantum minimum finding). Out
of the up to λ2 resulting track candidates, we select the
λ ones with best quality score and continue propagating
those. Note that this implies applying quantum mini-
mum finding up to Lλ2nc times, which means that the
probability of correctly reproducing the result of the clas-
sical track building decreases with n. Fortunately, we can
make the probability of success bounded by always re-
peating the quantum minimum finding routine O(log n)
times. We propose doing track building as in Algorithm
5.

Proof of Theorem 5. In Algorithm 5, instead of loop-
ing over the candidate measurements at each layer (line
8 in Algorithm 3), we find the best measurements with
a quantum minimum finding routine. We stop after hav-
ing selected λ measurements per candidate track as we
know that only up to λ tracks are kept at each layer
(per seed). Each run of quantum minimum finding takes

Õ(
√
n) time – Theorem 13. So, the result holds as long

as we show that the probability of success is bounded
by 1/2. The probability that we fail to select the best
available measurement in steps 9-10 is upper bounded by

1

3Lλ2nc
. (D16)

Then, the probability that we do not fail any of the Lλ2n3

times we run steps 9-10 is lower bounded by

(
1− 1

3Lλ2nc

)Lλ2nc

≥ 2

3
. (D17)

�

15

FIG. 4. Cleaning with r-tuples tree. For this example, the first three elements of the sorted list of track vectors are t1 =
(0, 1, 2, 1), t2 = (2, 0, 3, 0), and t3 = (0, 1, 3, 3). Suppose we want to exclude tracks that share two or more hits. We have build
a red-black tree with the 2-tuples of t1 and t2 (blue and green circles, respectively). The line of the circles is red or black
according to the colour of the corresponding node (see [36] for construction of red-black trees). In this illustration, we are
searching for 2-tuples of t3 in the tree. We see that 2-tuple (0, 1, ,) is already present in the tree – the path with orange leads
to a node with that 2-tuple. So, t3 is not going to be included in the output.

Appendix E: The cleaning algorithms

CTF’s cleaning algorithm compares every pair of
tracks coming from the finding stage. This approach
does not take into account any structure of the tracks.
Indeed, it would work the same if instead of calculating
the fraction of shared hits we were calling a black box
that outputted “clean/not clean” when given two tracks.
We now present a different way to perform cleaning that
takes better advantage of the structure of the problem.

We begin by reviewing the case where all the candidate
tracks have L hits, that is, each candidate track contains
exactly one hit per layer. Then, each candidate track can
be uniquely identified with a vector in {0, . . . , n − 1}L.
As an example, if L = 4 and a given track t contains
the zeroth hit from the first layer, the second hit from
the second layer, the fourth hit from the third layer, and
the fourth hit from the fourth layer, its corresponding
track vector is (0, 2, 4, 4). With f being the maximum
allowed fraction of shared hits, define r = dfLe. We say
a vector of length L is an r-tuple of a track if it is equal
to the track vector at r entries and contains the symbol
“ ” at the others. For example, (0, 2, ,) and (0, , 4,)
are 2-tuples of the track t mentioned above. Note that
there are

(
L
r

)
= O(1) such r-tuples. Two tracks exceed

the allowed fraction of shared hits if and only if they
have (at least) r hits in common, that is, if they have a
matching r-tuple.

The algorithm starts by sorting the candidate tracks
by quality score. This way, if we need to discard one of
two tracks we choose the one that is further down the
list. We then iterate over the sorted tracks. Evidently,

the first track t1 is going to be included in the output.
We create a self-balancing binary search tree T (like a
red-black tree – see, for example, [36]) containing all of
the r-tuples of t1 (with some induced order on the r-
tuples). We then move to the second track in the list t2.
For every r-tuple of t2, we search for a match in the tree
T . If we do not find any, we insert all of t2’s r-tuples
into T and we add t2 to the output. Otherwise, t2 is not
included in the output and we leave the tree unchanged.
We repeat this procedure for the remaining tracks. In
the end, the output contains all the desired tracks. See
Figure 4 for an illustration of the algorithm.

With each accepted track only
(
L
r

)
= O(1) elements

are inserted in T . Since kcand candidate tracks reach
the cleaning stage, the size of the tree never exceeds
O(kcand). So, we guarantee O(log kcand) complexity for
the search and insertion tasks. This means that we only
spend O(log kcand) time per candidate track. Overall, our
cleaning algorithm has complexity O(kcand log kcand).

To generalize this to the case of varied number of hits
per track, note that we can only find up to L = O(1) dif-
ferent track sizes. Let R = dfLe. We initialize R2 empty
balanced binary search trees Ti,j for i, j ∈ {1, 2, . . . , R}.
The first track t1 is immediately included in the output.
Say it has L1 hits and let r1 = dfL1e. We insert all of the
r-tuples of t1 for r ≤ r1 into Tr,r1 . Let the second track
t2 have size L2 and r2 = dfm2e. There are two cases
to consider when two tracks share more than min(r1, r2)
hits:

(a) r1 ≤ r2: the overlapping tuples are represented in
Tr1,r1 . Searching all trees Tr,r for r ≤ r2 will reveal
the overlap.

16

(b) r1 > r2: the overlapping tuples are represented in
Tr2,r1 . Searching all trees Tr2,r for r > r2 will reveal
the overlap.

If we do not find any match, we insert all of the r-tuples
of t2 for r ≤ r2 into Tr,r2 and add t2 to the output.
Repeating this for all tracks will guarantee that there are
no two tracks ti and tj in the output sharing more than
min(ri, rj) hits. We write down our improved version of
cleaning in Algorithm 7.

Proof of Theorem 7. The reasoning is essentially the
same as for constant-sized tracks. For each accepted can-
didate track the number of tuples inserted into the cor-
responding search tree s bounded by

(
L
r

)
= O(1). There-

fore, no tree will contain more than O(kcand) elements,
and the search and insert operations can always be per-
formed in O(log kcand) time. Since there are R2 = O(1)
trees, we spend O(log kcand) per track candidate. �

Appendix F: More on reconstructing tracks in
superposition

We start by slightly adjusting the steps in the clas-
sical CTF track building algorithm (Algorithm 3). For
a given seed, CTF selects up to λ track candidates in
each layer to propagate to the next layer. If fewer track
candidates have acceptable χ2 value, fewer than λ track
candidates are formed. Here we form exactly λ new track
candidates for every given track candidate. If there is at
least one hit with χ2

l (ml,j) < χ2
0, we use λ hits with the

lowest χ2 values to build the new track candidates. If
there is no such hit, we use one ghost hit and λ− 1 hits
with the lowest χ2 values. We also build tracks for all
triplets in the seeding layer. This would add substantial
unnecessary work in the classical case, but does not add
complexity if performed in quantum superposition. As
in other sections, we can add placeholder hits to ensure
that each layer has exactly n hits and all tracks traverse
through all L layers. Thus at the end of the track finding
phase we have exactly λLnc track candidates.

Based on this modified algorithm we construct a fam-
ily of unitary transformations Ui that perform seed-
ing, track finding, cleaning and selection in superposition
with the following effect:

Ui |0〉 =

√
1− ε
λLnc

(
ki−1∑
j=0

|ψj〉 |−qL−1,j〉+

+

λLnc−1∑
j=ki

|ψj〉 |+∞〉

)
+
√
ε |ψε〉 |+∞〉 . (F1)

Here |ψ0〉 , |ψ1〉 , . . . , |ψki−1〉 are the computational ba-
sis states encoding track candidates that

(a) the classical CTF algorithm would output after the
track building stage,

(b) do not share too many hits with the i tracks already
added to the output.

qL−1,j is the quality score (D12) at the last layer of the
track encoded in ψj . We consider −qL−1,j to formulate
the task as a minimization problem. The computational
basis states |ψki〉 , |ψki+1〉 , . . . , |ψλLnc−1〉 encode some
track candidates that do not pass (a) or (b). Note that
the tracks that were previously sampled belong to this
set of states. “+∞” is a large positive value, so the mini-
mum finding gives answers only in the useful subset of the
entangled computational basis states. |ψε〉 is some arbi-
trary quantum state, and ε is the error probability of Ui,
i.e., the probability that the measurement of Ui |0〉 would
produce a result other than one of ψ0, ψ1, . . . , ψλLnc−1.

Next we show that such a family of unitary transfor-
mations can indeed be constructed. We first consider
the track building (Lemma 14) and cleaning (Lemma 15)
sub-procedures. Track building prepares an equal su-
perposition over the λLnc track candidates with an ad-
ditional arbitrary quantum state (F2) representing the
error probability of the algorithm. Selecting the track
candidates of the original CTF after track building step
is subsumed by the selection stage (Theorem 16).

Lemma 14 (Track building in superposition)
There exists a unitary transformation Ubuild (F2) that

performs track building in Õ(
√
n) time in superposition.

Ubuild |0〉 =

√
1− ε
λLnc

λLnc−1∑
j=0

|ψj〉+
√
ε |ψε〉 (F2)

Proof. Preparing an equal superposition over all the
possible seed c-tuplets, i.e., seeding (implicit in Ubuild),

can be done in Õ(1) time with the Walsh-Hadamard
transform. We have seen that we can perform track
building for one seed in Õ(

√
n) time with constant prob-

ability. However, both quantum minimum finding and
its sub-procedure – quantum exponential searching algo-
rithm – use measurements. While we cannot use mea-
surements in our unitary transformations Ubuild, we can
apply the principle of deferred measurements [31]. When-
ever the Algorithm 4 performs a measurement, we can in-
stead perform CNOT operations on an ancillary register.
When the algorithm conditions a quantum operation on
a measurement result, we can perform a controlled op-
eration with the ancillary register as the control. The
probability (1 − ε) to get the desired result based on
measurements during the procedure or by deferring the
measurement is the same. We can replicate the random-
ness in the quantum exponential searching algorithm [30]
by conditioning operations on the equal superposition of
the allowed values {0, 1, . . . ,m}, where m is an arbitrary
integer. By conditioning on the digits of the binary rep-
resentation of these values, as in quantum counting [32],
we can ensure that we only need O(m) such operations

17

and the asymptotic computational complexity of quan-
tum exponential searching algorithm remains unchanged
(up to constant factors).

One issue with this approach is that both the num-
ber of iterations of the outer loop of the quantum min-
imum finding (Algorithm 4) and the time complexity of
its sub-procedure – quantum exponential searching [30]
– may be proportional to

√
n. In the classical algorithm,

if the quantum exponential searching takes more time,
we can limit the number of iterations of the outer loop
to ensure running time Õ(

√
n). In the quantum circuit

we need to account for the worst case number of itera-
tions in the main loop and the worst-case running time
in the sub-procedure. This requires more than Õ(

√
n)

gates. However, we can set a hard limit on the number
of iterations of the main loop. Since the expected size
of the search space decreases by more than a half with
each iteration of the outer loop, the expected number of
iterations to reach the minimum is less than log n + 1.
If we limit the number of iterations of the outer loop
to γ(log n + 1) for some constant γ, then by Markov’s
inequality the probability that we have not reached the
minimum is less than 1/γ. Since it is still upper-bounded
by a constant, the rest of the analysis does not change.
The limit on the number of iterations also implies a limit
on the number of measurements and the required number
of ancillary registers to account for the measurements in
the quantum procedure.

�

Lemma 15 (Cleaning in superposition) There ex-

ists a unitary transformation that runs in Õ(1) time and
marks the track candidates that do not share any r-tuple
of hits with any track already added to the output.

Proof. We have assumed that all particles traverse
all layers, so all tracks are of length L and are allowed
to share up to exactly r hits for some value of r. As
with Algorithm 7, we can generalize it to variable length
tracks with a constant factor increase in complexity. Like
in the classical case, we can test whether an r-tuple has
already been added to the tree T with O(log n) queries to
QRAM storing the values of the nodes of tree T . Thus
each track can be associated with a list of

(
L
r

)
binary

values indicating if an r-tuple has already been added to
the output in Õ(1) time. Testing whether any of these
values is equal to 1 requires O(1) gates. Hence the total
time required to mark the necessary track candidates is
Õ(1). �

Lemma 16 Each unitary transformation Ui (F1) can be

built to run in time Õ(
√
n).

Proof. We already saw that track building requires
Õ(
√
n) time (Lemma 14) and testing whether a track

overlaps with any already added to the output takes Õ(1)
time (Lemma 15). Procedures necessary for the track se-
lection – marking the tracks that pass the track building

stage in CTF, refitting, recalculating the score and com-
paring to a threshold value – depend on a constant num-
ber of fixed-precision numbers, and hence can be done in
Õ(1) time. So the time complexity of Ui is dominated

by the track building and is Õ(
√
n). �

We will now describe how we can use transformations
Ui with quantum minimum finding to reconstruct the
tracks one-by-one (Algorithm 9). We will search for ψ∗i =
arg minQi(ψ), where Qi(ψ) is the score encoded in the
second register of Ui |0〉 (F1). The time complexity of
the quantum minimum finding [35] remains the same (up
to constant factors) if instead of quantum exponential
searching [30] we use amplitude amplification (Theorem
17).

Theorem 17 (Amplitude amplification [38]) Let A
be any quantum algorithm that uses no measurements,
and let a denote the initial success probability of A. There
exists a quantum algorithm that finds a good solution us-
ing an expected number of applications of A and A−1

which are in Θ(1/
√
a) if a > 0, and otherwise runs for-

ever.

Let a be the probability to find ψ∗i (or any spe-
cific track encoded in {ψ0, ψ1, . . . , ψki−1}) by measur-
ing Ui |0〉. Then a = (1− ε)/(λLnc) and the expected
number of calls to Ui by the quantum minimum finding
algorithm for a constant probability of error is

O

(√
(λLnc)/(1− ε)

)
= O

(√
nc
)
. (F3)

As with Algorithm 5, repeating the quantum minimum
finding algorithm O(log n) times allows us to reduce the
error probability to O(1/n) so that sampling O(n) tracks
has a constant probability of error. In particular, since
one application of the quantum minimum finding algo-
rithm ensures failure probability smaller than 1/2 and
there cannot be more than λnc tracks, the probability to
not find the minimum in any of the iterations (if there are
any valid tracks remaining) after repeating the algorithm
dlog 2λnce times is below 1/2.

Once we have found the best track, we can build a self-
balancing binary tree T to be used in track selection for
the next track. More generally – suppose that we have
found the j best tracks tracks that the CTF algorithm
outputs. Each time we find a new track, we insert it in
T . This tree never exceeds O(n) size, and so the inser-
tion operation cost is O(log n). Ui queries T to mark
as invalid those tracks that have an overlap with the i
tracks already added to output.

Proof of Theorem 9. Each iteration of the main
loop in Algorithm 9 takes Õ(

√
nc maxi TUi

) time, where

maxi TUi
= Õ(

√
n) (Lemma 16). There are O(n) iter-

ations to reconstruct O(n) tracks. Thus the total time
complexity of Algorithm 9 is

Õ
(
n ·
√
nc ·
√
n
)

= Õ
(
n

c+3
2

)
. (F4)

�

18

We note that for the special case where tracks are not
allowed to share any hits, the approach described in this
section allows the complete removal of the cleaning stage.

Once the best track is found, all the points that belong
to it can be masked (removed) and the algorithm is run
again to find the best track on the remaining points.

[1] J. Albrecht et al. (HEP Software Foundation), Comput-
ing and Software for Big Science 3, 7 (2019).

[2] G. Apollinari, I. Béjar Alonso, O. Brüning, P. Fessia,
M. Lamont, L. Rossi, and L. Tavian, High-Luminosity
Large Hadron Collider (HL-LHC): Technical Design Re-
port V. 0.1 , Tech. Rep. (CERN-2017-007-M, 2017).

[3] A. Abada et al. (FCC), Eur. Phys. J. C 79, 474 (2019).
[4] F. Bapst, W. Bhimji, P. Calafiura, H. Gray, W. Lavrijsen,

L. Linder, and A. Smith, Computing and Software for
Big Science 4, 1 (2020).

[5] A. Zlokapa, A. Anand, J.-R. Vlimant, J. M. Duarte,
J. Job, D. Lidar, and M. Spiropulu, “Charged Particle
Tracking with Quantum Annealing-Inspired Optimiza-
tion,” (2019), arXiv:1908.04475 [quant-ph].

[6] S. Das, A. J. Wildridge, S. B. Vaidya, and A. Jung,
“Track clustering with a quantum annealer for pri-
mary vertex reconstruction at hadron colliders,” (2019),
arXiv:1903.08879 [hep-ex].

[7] C. Tüysüz, F. Carminati, B. Demirköz, D. Dobos, F. Fra-
cas, K. Novotny, K. Potamianos, S. Vallecorsa, and J.-R.
Vlimant, “Particle track reconstruction with quantum al-
gorithms,” (2020), arXiv:2003.08126 [quant-ph].

[8] C. Tüysüz, F. Carminati, B. Demirköz, D. Dobos, F. Fra-
cas, K. Novotny, K. Potamianos, S. Vallecorsa, and J.-R.
Vlimant, “A quantum graph neural network approach to
particle track reconstruction,” (2020), arXiv:2007.06868
[quant-ph].

[9] C. Tüysüz, K. Novotny, C. Rieger, F. Carminati,
B. Demirköz, D. Dobos, F. Fracas, K. Potamianos,
S. Vallecorsa, and J.-R. Vlimant, “Performance of Parti-
cle Tracking Using a Quantum Graph Neural Network,”
(2020), arXiv:2012.01379 [quant-ph].

[10] W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi,
S. Vallecorsa, and J.-R. Vlimant, Machine Learning: Sci-
ence and Technology 2, 011003 (2021).

[11] A. Mott, J. Job, J. R. Vlimant, D. Lidar, and M. Spirop-
ulu, Nature 550 (2017), 10.1038/nature24047.

[12] K. Terashi, M. Kaneda, T. Kishimoto, M. Saito,
R. Sawada, and J. Tanaka, “Event classification with
quantum machine learning in high-energy physics,”
(2020), arXiv:2002.09935 [physics.comp-ph].

[13] S. L. Wu, J. Chan, W. Guan, S. Sun, A. Wang, C. Zhou,
M. Livny, F. Carminati, A. Di Meglio, A. C. Y. Li,
J. Lykken, P. Spentzouris, S. Y.-C. Chen, S. Yoo, and
T.-C. Wei, “Application of Quantum Machine Learn-
ing using the Quantum Variational Classifier Method to
High Energy Physics Analysis at the LHC on IBM Quan-
tum Computer Simulator and Hardware with 10 qubits,”
(2020), arXiv:2012.11560 [quanth-ph].

[14] J. Heredge, C. Hill, L. Hollenberg, and M. Sevior,
“Quantum Support Vector Machines for Continuum Sup-
pression in B Meson Decays,” (2021), arXiv:2103.12257
[quanth-ph].

[15] V. Belis, S. González-Castillo, C. Reissel, S. Val-
lecorsa, E. F. Combarro, G. Dissertori, and F. Re-
iter, “Higgs analysis with quantum classifiers,” (2021),

arXiv:2104.07692 [quanth-ph].
[16] A. E. Armenakas and O. K. Baker, “Application of a

quantum search algorithm to high- energy physics data
at the large hadron collider,” (2020), arXiv:2010.00649
[quant-ph].

[17] D. Pires, Y. Omar, and J. Seixas, “Adiabatic Quan-
tum Algorithm for Multijet Clustering in High Energy
Physics,” (2020), arXiv:2012.14514 [quanth-ph].

[18] D. Pires, P. Bargassa, Y. Omar, and J. Seixas, “A Digital
Quantum Algorithm for Jet Clustering in High-Energy
Physics,” (2021), arXiv:2101.05618 [quanth-ph].

[19] S. Y. Chang, S. Vallecorsa, E. F. Combarro, and
F. Carminati, “Quantum Generative Adversarial Net-
works in a Continuous-Variable Architecture to Sim-
ulate High Energy Physics Detectors,” (2021),
arXiv:2101.11132 [quanth-ph].

[20] A. Y. Wei, P. Naik, A. W. Harrow, and J. Thaler, Phys.
Rev. D 101, 094015 (2020).

[21] R. Mankel, Reports on Progress in Physics 67, 553
(2004).

[22] T. C. Collaboration, Journal of Instrumentation 9, 10009
(2014).

[23] T. A. Collaboration, European Physical Jour-
nal C 77 (2017), 10.1140/epjc/s10052-017-5225-7,
arXiv:1704.07983v2.

[24] N. Braun, Combinatorial Kalman Filter and High
Level Trigger Reconstruction for the Belle II Experi-
ment , Springer Theses (Springer International Publish-
ing, Cham, 2019).

[25] G. Sguazzoni, Nuclear and Particle Physics Proceedings
273-275, 2497 (2016).

[26] A. Bocci, V. Innocente, M. Kortelainen, F. Pantaleo, and
M. Rovere, Frontiers in Big Data 3, 49 (2020).

[27] V. Giovannetti, S. Lloyd, and L. Maccone, Physical Re-
view Letters 100, 160501 (2008).

[28] V. Giovannetti, S. Lloyd, and L. Maccone, Physical Re-
view A 78, 052310 (2008).

[29] L. Grover, Phys. Rev. Lett. 79, 325 (1997).
[30] M. Boyer, G. Brassard, P. Høyer, and A. Tapp,

Fortschritte der Physik 46, 493 (1998).
[31] M. Nielsen and I. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press,
2010).

[32] G. Brassard, P. Høyer, and A. Tapp, Lecture Notes in
Computer Science 1443, 820 (1998).

[33] R. Frühwirth, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 262, 444 (1987).

[34] R. Kalman, Transactions of the ASME–Journal of Basic
Engineering 82, 36 (1960).

[35] C. Durr and P. Hoyer, “A Quantum Algorithm for Find-
ing the Minimum,” (1996), arXiv:quant-ph/9607014
[quant-ph].

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms (MIT Press, 2010).

[37] T. Miao, H. Wenzel, F. Yumiceva, and N. Leioatts,

https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/ 10.23731/CYRM-2017-004
https://doi.org/ 10.23731/CYRM-2017-004
https://doi.org/ 10.23731/CYRM-2017-004
https://doi.org/ 10.1140/epjc/s10052-019-6904-3
https://doi.org/ 10.1007/s41781-019-0032-5
https://doi.org/ 10.1007/s41781-019-0032-5
http://arxiv.org/abs/1908.04475
http://arxiv.org/abs/1903.08879
http://arxiv.org/abs/2003.08126
http://arxiv.org/abs/2007.06868
http://arxiv.org/abs/2007.06868
http://arxiv.org/abs/2012.01379
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/ 10.1038/nature24047
http://arxiv.org/abs/2002.09935
http://arxiv.org/abs/2012.11560
http://arxiv.org/abs/2103.12257
http://arxiv.org/abs/2103.12257
http://arxiv.org/abs/2104.07692
http://arxiv.org/abs/2010.00649
http://arxiv.org/abs/2010.00649
http://arxiv.org/abs/2012.14514
http://arxiv.org/abs/2101.05618
http://arxiv.org/abs/2101.11132
https://doi.org/ 10.1103/PhysRevD.101.094015
https://doi.org/ 10.1103/PhysRevD.101.094015
https://doi.org/10.1088/0034-4885/67/4/r03
https://doi.org/10.1088/0034-4885/67/4/r03
https://doi.org/10.1088/1748-0221/9/10/P10009
https://doi.org/10.1088/1748-0221/9/10/P10009
https://doi.org/10.1140/epjc/s10052-017-5225-7
https://doi.org/10.1140/epjc/s10052-017-5225-7
http://arxiv.org/abs/arXiv:1704.07983v2
https://doi.org/10.1007/978-3-030-24997-7
https://doi.org/10.1007/978-3-030-24997-7
https://doi.org/10.1007/978-3-030-24997-7
https://doi.org/10.1016/j.nuclphysbps.2015.09.437
https://doi.org/10.1016/j.nuclphysbps.2015.09.437
https://doi.org/ 10.3389/fdata.2020.601728
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevA.78.052310
https://doi.org/10.1103/PhysRevA.78.052310
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/ 10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/bfb0055105
https://doi.org/10.1007/bfb0055105
https://doi.org/ https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/ https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/ https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
http://arxiv.org/abs/quant-ph/9607014
http://arxiv.org/abs/quant-ph/9607014

19

“Beam position determination using tracks,” (2007),
CERN-CMS-NOTE:2007-021, FERMILAB-FN-0816-E.

[38] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quan-
tum Computation and Information 305, 53 (2002).

http://arxiv.org/abs/2007-021, FERMILAB-FN-0816-E
https://doi.org/ 10.1090/conm/305
https://doi.org/ 10.1090/conm/305

	Quantum speedup for track reconstruction in particle accelerators
	Abstract
	I Introduction
	II The tracking problem
	III Computational Model
	IV Four stages in track reconstruction
	A On the density of hits
	B Seeding
	C Track building
	D Cleaning
	E Selection

	V Reconstructing Tracks in Superposition
	VI Conclusions
	 Acknowledgments
	A More on the tracking problem
	B Pseudo-codes
	C The seeding algorithms
	1 Classical
	2 Quantum

	D The track building algorithms
	1 Classical
	2 Quantum

	E The cleaning algorithms
	F More on reconstructing tracks in superposition
	 References

