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Some of the biggest achievements of the modern era of particle physics, such as the discovery of
the Higgs boson, have been made possible by the tremendous effort in building and operating large-
scale experiments like the Large Hadron Collider or the Tevatron. In these facilities, the ultimate
theory to describe matter at the most fundamental level is constantly probed and verified. These
experiments often produce large amounts of data that require storing, processing, and analysis
techniques that often push the limits of traditional information processing schemes. Thus, the
High-Energy Physics (HEP) field has benefited from advancements in information processing and
the development of algorithms and tools for large datasets. More recently, quantum computing
applications have been investigated in an effort to understand how the community can benefit from
the advantages of quantum information science. In this manuscript, we provide an overview of the
state-of-the-art applications of quantum computing to data analysis in HEP, discuss the challenges
and opportunities in integrating these novel analysis techniques into a day-to-day analysis workflow,
and whether there is potential for a quantum advantage.
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I. INTRODUCTION

Particle physics has the ambitious goal of uncover-
ing the most fundamental constituents of the Universe
and deciphering the rules that mediate their interac-
tions. Vast and complex accelerators are being devel-
oped to elucidate the dynamical basis of these fundamen-
tal constituents of matter. At these large-scale facilities,
high-performance data storage and processing systems
are needed to store, access, retrieve, distribute, and pro-
cess experimental data. Experiments like the ones at the
Large Hadron Collider (LHC) are incredibly complex, in-
volving thousands of detector elements that produce raw
experimental data at rates over a Tb/sec, resulting in the
annual production of datasets in the scale of hundreds of
Terabytes to Petabytes. Beyond collider physics, a sig-
nificant amount of data is also expected from upcoming
neutrino experiments, e.g. DUNE or IceCube-Gen2, and
cosmological surveys, e.g. DESI. In addition, manipulat-
ing these complex datasets into summaries suitable for
the extraction of physics parameters and model compar-
ison is a time-consuming and challenging task.

The high-energy physics (HEP) community has a long
history of working with large datasets and applying ad-
vanced statistical techniques to analyze experimental
data in the energy, intensity, and cosmic frontiers. With
the ever-increasing volume of data generated by HEP
experiments, the community needs a significant break-
through in the information processing systems to con-
tinue its successful journey into understanding the fun-
damental components of our universe. Tools developed
in quantum information science (QIS) could provide a
viable solution. Recently, alternative methods for de-
tector simulation and data analysis tasks have been ex-
plored, like machine learning applications and QIS. QIS
is a rapidly developing field focused on understanding
information analysis, processing, and transmission using
quantum mechanical principles and computational tech-
niques. QIS can address the conventional computing gap
associated with HEP-related problems, specifically those
computational tasks that challenge CPUs and GPUs,
such as efficient and accurate classification and simula-
tion schemes. In addition, quantum computing offers
unique advantages over classical computing in machine
learning and optimization. Nonetheless, adapting these
new technologies to the analysis of HEP data requires
developing domain-specific tools and algorithms, such as
quantum machine learning (QML) algorithms tailored to
HEP applications. In References [1, 2], a review focusing
on QML applications to HEP data analysis is presented.
Nonetheless, the scope of this manuscript is broader, to
include optimization algorithms.

In the following, we discuss the status and prospects
for quantum computing for data analysis in HEP. The
emphasis is on prospects, starting from a thorough re-
view of the current results and the related literature,
thus illustrating the current status in each of the pre-
sented categories. The aim is to underline the challenges

faced and to highlight possible directions for future stud-
ies. The manuscript is divided into sections covering
a particular application and diving into the algorithms
and models used. We start with a short introduction
to the most common physical realization of quantum
computing in Section II. The subsequent sections deal
with applications of quantum computing to typical HEP
tasks such as object reconstruction (Section III), classi-
fication (Section IV), and data generation or augmen-
tation (Section V). In Section VI, we present a discus-
sion of quantum-inspired algorithms. In Section VII, we
provide a comprehensive list including the challenges en-
countered in the application of quantum computing to
classical data from HEP experiments. Finally, in Sec-
tion VIII, we present our views on the future of advancing
HEP with quantum computing.

II. QUANTUM COMPUTING

Quantum computing involves using the quantum me-
chanical properties of matter, such as entanglement and
superposition, to process information. Furthermore, it is
based on the qubit, or quantum bit, instead of the clas-
sical two-state binary bits. Unlike bits, qubits can be
in a superposition of both states, “1” and “0”, leading
to an exponential increase in the amount of information
encoded into these fundamental information processing
units. For this reason, the information processing capac-
ity of quantum computing is significantly superior to tra-
ditional computational technologies, allowing (in theory)
for the reduction in execution time for specific comput-
ing tasks. Current-day quantum processors are prone to
noise and small in scale, limiting the number of applica-
tions these devices can be used. In what follows, a short
description of the leading quantum technologies available
to domain scientists is presented.

A. Quantum Circuit Model

In the early 1980s, Richard Feynmann introduced the
concept of quantum computing as a universal quantum
simulator [3]. The materialization of this idea did not
happen until 1985 when the concept of a quantum Tur-
ing machine was coined by David Deutsch [4]. This for-
mal definition of quantum computing is based on what
we know today as a universal quantum computer, based
on qubits and unitary transformations or quantum gates.
In this model, we begin in an initial “zero” state, apply a
sequence of quantum gates chosen from a set of allowed
gates, each acting on one or two qubits at a time, and
finally output the outcome of a measurement in the com-
putational basis.
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FIG. 1. Schematic diagram of the effect of applying a mag-
netic field to a system initially prepared in superposition. Af-
ter the magnetic field is modified, the energy diagram of the
single-qubit system is tilted towards state “1”, resulting into a
higher probability of the system collapsing to state “1” after
a measurement.

B. Quantum Annealing

Another paradigm of quantum computing is quantum
annealing (QA) [5, 6]. QA is a technique to solve combi-
natorial optimization problems by encoding the solution
as the ground state of some Hamiltonian. The ground
state solution is reached by initializing the quantum sys-
tem in the ground state of another known, and easy to
control, Hamiltonian. We then let the system evolve by
slowly changing the Hamiltonian to the target one. The
quantum adiabatic theorem [7] guarantees that there is
a minimum evolution time for which the final state is as
close to the solution state as we desire; this time depends
on the smallest energy gap attained between the ground
state and the first excited state of the slowly changing
Hamiltonian.

C. Continuous-Variable Quantum Computing

Most of the quantum computing applications to data
analysis in HEP reviewed in this manuscript focus on
implementations in quantum annealers or gate-based
models. While these models are very successful, an-
other scheme explored much less than the other two QC
paradigms is the continuous-variable (CV) model [8]. CV
differs from its use of qumodes over qubits. The qumodes
constitute an infinite-dimensional object instead of dis-
crete qubits and constitute a more natural choice to simu-
late bosonic and continuous systems. Programming pho-
tonic quantum devices proceed in a very similar way to
qubit-based devices, with both allowing the construction
of circuits from quantum gates.

III. OBJECT RECONSTRUCTION

As mentioned in Section I, experimental HEP deals
with the analysis of large amounts of experimental data
produced at HEP experiments. One of the main tasks
in any HEP data analysis workflow is the construction
of physics objects amenable to analysis from the signals
produced in a particle detector - i.e., how to translate
the raw detector data into an object whose properties
reflect the kinematics of the initial interaction (a p−p or
a heavy-ion collision, or a neutrino event).

A. Tracking

Hadron colliders, such as the LHC, accelerate counter-
rotating beams of hadrons in tightly packed bunches.
These hadron bunches cross at designated interaction
regions surrounded by tracking detectors. At each
bunch crossing, several hadron-hadron collisions take
place along the direction of the beam axis. Every hadron
collision produces a myriad of secondary particles scat-
tered in all directions. As the produced charged particles
cross the detector’s multiple layers of sensors, they leave
signals of their passage, known as hits. The collection of
the hits left by a particle is called that particle’s track.
The tracking problem is to recover the tracks from a set
of hits. It constitutes a key task in the analysis of accel-
erator experiments, essential to studying the underlying
physics.

At the LHC, the proton bunches cross with an interval
of twenty-five nanoseconds [9]. In the conditions of the
Run2 of the LHC, there are around thirty-five proton-
proton collisions at each bunch crossing, and each colli-
sion may produce a few thousand hits. As a result, vast
amounts of data are generated, making its analysis one of
the most computationally demanding activities in exper-
imental HEP [10]. Moreover, this demand is expected
to grow dramatically after 2026 with the upcoming high-
luminosity phase of the LHC [11] (HC-LHC), when we
will typically have around two hundred proton-proton
collisions per bunch crossing, and even more so in fu-
ture accelerator machines, such as the Future Circular
Collider [12].

Therefore, it is crucial to develop efficient tracking
methods, possibly requiring completely novel technolog-
ical paradigms. In this section, we review the existing
proposals for track reconstructions based on quantum
computing.

1. Tracking with Amplitude Amplification

The Combinatorial Kalman Filter method is at the
base of several reconstruction programs in high-energy
physics [9, 13, 14]. Ref. [15] analyzed this technique from
a computational complexity perspective, identifying four
fundamental routines: seeding, track building, cleaning,
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and selection. The seeding stage forms initial rudimen-
tary track candidates, known as seeds, with just a few
hits. Then, the track building stage extrapolates the
seeds’ trajectories along the expected path of the parti-
cles, forming track candidates by adding compatible hits
from successive detector layers. To avoid having multiple
tracks describing the same particle, a cleaning process is
applied to remove the ones that are too similar. Finally,
we select only the tracks that respect some quality crite-
ria based on the quality of the fit between the trajectory
and the corresponding hits.

Ref. [15] proposes a quantum implementation of the
Combinatorial Kalman Filter, relying on a fundamental
quantum routine known as amplitude amplification [16]
(a generalization of Grover’s algorithm [17]), which al-
lows for polynomial speedups for certain unstructured
search problems. The general idea is that we can use
this technique to find the seeds or hits that satisfy spe-
cific properties faster than what would be possible with
classical brute-force search. For both the seeding and
track building stages, it is possible to reproduce the
same output as the Combinatorial Track Finder (up to
bounded error probability) with lower quantum compu-
tational complexity. Ref. [15] further shows that if we do
not register the outputs of the individual stages, but are
only interested in the final reconstructed tracks, then an
even stronger quantum advantage can be reached.

Ref. [15] provides a rigorous proof of quantum speedup
for HEP data analysis. However, its results refer to the
asymptotic regime of infinitely-many hits, which may be
of limited interest for real instances of track reconstruc-
tion. Moreover, this proposal depends on the availabil-
ity of a quantum random access machine (QRAM) [18]
that allows coherent access to the hits’ data. Although
there have been proposals of physical architectures for
QRAM [19], there are still significant challenges to over-
come before such a device can be realized in practice. Fi-
nally, the reached speedups have been found to be mild;
quantitatively, O(n4) classically versus O(n3) quantumly
under certain assumptions, where n denotes the number
of recorded hits.

As the algorithms proposed in [15] require fault-
tolerant computing, it has not been possible to test them
in real quantum hardware. Therefore, it remains unclear
at which scales the complexity advantage may actually
yield an advantage in processing time. In general, fault-
tolerance and QRAMs lie beyond the NISQ era, so it is
hard to estimate when this type of strategy might have
a practical impact in HEP.

2. Tracking with Quantum Annealing

The work of Ref. [15] consists of a direct “quantiza-
tion” of a classical algorithm (the Combinatorial Kalman
Filter), which might not be the best path to establishing
a significant advantage in quantum computing for HEP
problems. Instead, a more successful approach could be

FIG. 2. Illustration of the tracking problem. Transverse view
of a tracking detector with cylindrical layers (dashed grey
lines). The input to tracking is a set of hits (red circles) cor-
responding to detections of the particles’ passage. We recover
the original trajectories (black lines) by grouping hits that be-
long to the same particle, i.e., by reconstructing the particles’
tracks.

obtained by breaking the direct correspondence with the
classical setting and designing completely new tracking
algorithms that inherently take advantage of the features
of quantum processors. Some of the first attempts in this
direction [20–23] were conceived within the quantum an-
nealing model.

In particular, Ref. [20] and Ref. [21] have formulated
track reconstruction as a quadratic unconstrained binary
optimization (QUBO) problem, which can be naturally
mapped to a quantum annealer. In Ref. [20], the QUBO
variables correspond to all possible edges between hits.
The idea is that, in the optimal solution, the variables
assigned with +1 connect hits that are left by the same
particle. For this purpose, Ref. [20] adapts the energy
function of the Denby-Peterson network method [24, 25]
to HL-LHC configuration. In contrast, in Ref. [21] the
binary variables correspond to hit triplets and introduce
a compatibility measure between hit triplets to define the
QUBO problem. The use of hit triplets instead of dou-
blets comes with a greater classical pre-processing cost
while possibly increasing the performance of the recon-
struction.

With both approaches, there are polynomially many
coupling coefficients that need to be classically pre-
processed to form the QUBO Hamiltonian – O(n3) for
Ref. [20] and O(n5) for Ref. [21], where n is the num-
ber of hits. Moreover, the annealing time is likely to
scale exponentially with respect to the number of hits.
Hence, it remains unclear whether these methods could
exhibit quantum speedup over the classical counterpart
(i.e., simulated annealing). Nevertheless, the simulations
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done at the D-Wave’s machines [26] show competitive ef-
ficiency and purity for some toy datasets.

Ref. [22] addresses the problem of track clustering, not
track reconstruction per se. This is the first step in re-
constructing the positions of hadronic interactions, also
known as primary vertices. The algorithm takes as input
a set of positions zi, where i is the track index, along the
beam axis corresponding to the points where the recon-
structed tracks approach it most closely. The goal is to
associate each track with an element of a list of possible
primary vertices. In the algorithm of Ref. [22], the an-
nealing variables are the entries of a binary association
matrix between the tracks and the candidate vertices,
and the annealing Hamiltonian penalizes assignments of
tracks i and j to the same vertex if |zi−zj | is large. In to-
tal, one needs to pre-compute O(nvnt(nv +nt)) coupling
coefficients, where nv is the number of candidate vertices
and nt is the number of tracks. As in Ref. [20, 21], there
is no guarantee on scaling the required annealing sched-
ule. Ref. [22] tests their algorithm with small datasets
on a D-Wave’s quantum computer, reporting clustering
precisions close to the results obtained with simulated
annealing.

In contrast, Ref. [23] studies the problem of track clas-
sification, that is, the problem of distinguishing between
signal and background events from the hits’ data. This
seeks to accelerate track reconstruction by isolating the
signals of interest. For this purpose, Ref. [23] utilizes
both associative memory models and content address-
able memory models in conjunction with quantum an-
nealing. In this setting, a collision event is characterized
by a detection pattern – the detector is divided into dis-
crete positional segments and we record the number of
hits in segment. Given a history of detection patterns,
the QUBO coefficients are assigned based on a specified
learning rule. The computational complexity of training
the model scales as O(N3p2), where N is the length of
the patterns and p is the number of training patterns.
Again, it is difficult to estimate how the annealing time
scales with the model parameters. The performance of
the memory recall is dependent on N and p, as well as
on the noise levels and the efficiency of the detections.
Running simulations on D-Wave’s quantum hardware,
Ref. [23] report that, for small problem instances, these
models can reach accurate classification results.

In summary, none of these proposals based on quan-
tum annealing manage to conclusively establish a quan-
tum advantage for track reconstruction over the classi-
cal counterparts. However, the simulations on currently
available quantum hardware, particularly on D-Wave’s
annealing machines, already reveal competitive results,
as long as one is restricted to small problem sizes. A
complete characterization of the performance and scal-
ing of these annealing-based solutions will require larger
programmable quantum annealers.

3. Tracking with Neural Networks

Ref. [27] seeks to leverage the sparse nature of the
tracking data with hybrid quantum-classical neural net-
works. As a pre-processing step, they generate a graph
from the detector’s data, where the particle’s hits become
the nodes, and the possible track segments between hits
become the links. Then, a neural network model takes
this graph as input and gives as output the probabil-
ity of each edge linking two consecutive hits left by the
same particle. This neural network combines both clas-
sical and quantum layers, the latter realized in the form
of parametrized quantum circuits.

Evidently, the reconstruction performance depends on
the number of hidden classical nC and quantum nQ di-
mensions, and on the number of training iterations nI .
For small values of nC , nQ, and nI , Ref. [27] shows that
the hybrid networks closely match the results of the clas-
sical model, at least for the simplified datasets that were
considered. Given the current limitations in quantum
hardware, it is difficult to assess whether increasing the
size of the network (nC , nQ, and nI) would significantly
improve the results. It also remains unclear whether neu-
ral network algorithms will ever achieve the precision of
the Combinatorial Kalman Filter methods.

Finally, the complexity of the algorithm depends on
the network parameters, and as such these, become hy-
perparameters in the optimization scheme. A further dis-
cussion on this topic can be found in Section IVB.

B. Jets

In collider particle physics, a jet is a collection of par-
ticles collimated into a roughly cone-shaped region. Jets
arise from the fragmentation of quarks and gluons pro-
duced in high-energy collisions. During the collision,
the QCD confinement the quarks and gluons are sub-
jected to, is broken, yielding a spray of color-neutral
particles that can be experimentally measured in par-
ticle detectors. Jet clustering algorithms are employed
to estimate the kinematics of the particle that initi-
ated the jet. These clustering schemes combine the ob-
served particles into a collective jet object for further
study. In electron-positron collisions, the dominant event
topology involves two back-to-back jets resulting from
the fragmentation of a quark and an anti-quark. This
motivates the partitioning of the event particles into
two hemisphere jets, which can be accomplished using
event shapes like thrust [28, 29]. The calculation of
thrust can be very expensive computationally, scaling like
O(N3) [30] for an event with N particles, though using a
method introduced in Ref. [31], it is possible to improve
this to O(N2 logN). On a universal quantum computer,
thrust can be computed in O(N2) [32] using a strategy
based on Grover search. Alternatively, Ref. [32] showed
how thrust can be phrased as a QUBO problem suitable
for quantum annealing.
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FIG. 3. Schematic diagram of a particle jet. A collision be-
tween two highly energetic particles (gray circles) results in
a spray of color neutral hadrons (orange arrows) collimated
into a roughly cone-shaped region.

In Ref. [33], the thrust-based quantum annealing for jet
clustering is benchmarked on the D-Wave Advantage 1.1
QPU. Algorithmic improvements like reverse annealing
showed promise on this problem, but the most significant
gains came from tuning the annealing parameters such as
annealing time, the number of anneals, and relative chain
strength. The QPU performance was also compared to
hybrid and classical solving strategies, with simulated
annealing always performing the best. Nonetheless, for
event sizes smaller than 22 particles, the classical and
quantum annealing solvers display a similar performance.
These results hint at the limitations of current quantum
annealing devices in terms of connectivity. Problems in-
volving many spin variables and all-to-all connectivity,
like the thrust problem, perform poorly on this device.

Based on the quantum annealing-based algorithm pro-
posed in [32], an extension to the QUBO formulation for
thrust calculation is presented in Ref. [34]. This exten-
sion is based on the angular distance between two par-
ticles in a given event, penalizing the assignment of two
particles located on the same hemisphere of the true par-
tition. This approach displays a better performance when
tested on the D-Wave’s QPU and when compared to the
original formulation in Ref. [32]. It should be noted that
these benchmark studies were limited to a low number of
annealing runs due to limited access to the QPU.

On the other hand, algorithms based on digital quan-
tum computing have also been proposed in Refs. [32, 35],
but are not suitable for implementation on NISQ devices
due to the need for a QRAM architecture to access the
information about the particles on the event for further

processing.
As a summary for this section, track reconstruction

and jet clustering tasks in HEP deal with the cluster-
ing of detector information into higher-level objects that
contain information about the interaction that triggered
the detector response. The main challenge is the num-
ber of elements to be clustered. Quantum computing
applications to the problems of track reconstruction and
jet clustering are limited by the size and connectivity of
currently available devices. Notably, these tasks require
either a quantum annealer with all-to-all connectivity or
a QRAM-like protocol for accessing the information of
individual elements in the clustering sample in coherent
superposition.

IV. CLASSIFICATION

Once detector data has been processed and higher-
level objects have been constructed, the next step in a
HEP analysis is using statistical techniques to extract
the signal of interest and suppress background as much
as possible. Thus, efficient classification tools are crucial
in HEP data analyses. Classification algorithms are not
limited to the discrimination events of interest (signal)
from other processes (background). In addition, recon-
structed particles also undergo a process of classification
to be assigned a label or identification according to their
type and kinematic properties. Jets need to be classified
according to their origin.

Classification tasks are usually addressed with Mul-
tivariate Analysis Techniques (MVA). Current physics
analyses employ analytic methods like the Matrix-
Element Method [36], as well as Boosted Decision Trees
(BDTs) and Neural Networks (NN). In this section,
new approaches to classification tasks based on different
quantum computing architectures and algorithms are re-
viewed, which may yield better performance than their
classical counterparts.

A. Quantum annealing applications

One of the main and first quantum computing models
used for classification in HEP is quantum annealing. In
this binary approach, each discriminating variable xi is
transformed into a weak classifier ci, and has an associ-
ated spin si. A strong classifier is then built, which is the
linear combination of all weak classifiers and spins. The
classification is then expressed in terms of the optimal set
of spins minimizing the energy of a fully connected Ising
Hamiltonian. This set of spins is found after an iterative
annealing process where qubits are strongly coupled in
a chain to represent a spin si. Correlations among the
discriminating variables are possible via the ci · cj cou-
pling terms in the Hamiltonian, and are rendered further
present via operations among them, which are then trans-
formed in weak classifiers. Fixing variable scheme and a
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cutoff on the coupling terms are used to reduce the size of
the Ising model to be encoded on the annealer. This ap-
proach is followed in Ref. [37] where the signal from Higgs
boson decays is separated from the background. In this
work, quantum annealing achieves a better result for a
small number of training events but is outperformed by
classical machine learning (ML) tools for a large number
of events. The basic approach of quantum annealing for
classification [37] is further enhanced in Ref. [38], where
the procedures of zooming and augmentation are applied.
While the zooming shifts and narrows the region of search
in the space of spins, the augmentation multiplies the
number of binary weak classifiers ci based on the shape
of each variable xi, effectively providing better discrimi-
nation. These two steps significantly improve the result
of the Higgs classification problem; however, they are still
outperformed by classical ML approaches. The principle
of zoomed and augmented annealing is applied to the
new classification problem of supersymmetric top quark
versus SM events [39]. Here, the choice of the discrim-
inating variables is based on a metric incorporating the
full statistical and systematic uncertainties of a counting
experiment in HEP. This results in a relatively reduced
(only 17) but well-performing set of discriminating vari-
ables. Different such sets of variables are tested with dif-
ferent augmentation schemes. Finally, in order to place
the quantum-based classifier on a footing as equal as pos-
sible to the classical Boosted Decision Trees (BDT), the
discriminating variables are decorrelated by being passed
through a principal component analysis before being fed
to the quantum annealer. The study of Ref. [39] achieves
a classification that is at least as good as the best-known
classical ML tool, here the BDT. It has to be noted that
this result is attained for a rather large number of events
in the training sample (5 · 104), which is the typical size
of samples used in HEP, and for which the first quan-
tum based classifications are outperformed by classical
approaches. The results of Ref. [37–39] are all obtained
with the Chimera graph of D-Wave. If a chain is bro-
ken within this device, the measure of the qubit chain
is performed through a majority vote, which can lead to
the selection of non-optimal sets of spins, and therefore
to a possible loss of discriminating information. This is
a limitation of these first-generation quantum annealers.
A larger number of couplers in future machines will ren-
der each chain more stable and less prone to be broken,
which will, in turn, allow more effective use of the dis-
criminating information.

Quantum annealing can also be used to identify the
topology of a signal event, where there is no hypothesis
about the latter and where the mass of the new particles
is inferred from their decay products. Ref. [40] looks at
cases where two new objects would be produced at an
LHC collision, with each decaying in a number of known
particles. The problem to solve is combinatorial, where
the correct association of two groups of observed particles
has to be made to reconstruct the invariant mass of the
new particles. The spin si indicates whether a particle i

is the decay product of one or the other new particle. The
kinematic constraints of the new particles are formulated
in the Ising Hamiltonian, which is encoded on a Pegasus
graph of D-Wave, and whose energy is minimized. The
energy landscape of such a problem is complicated, and
classical annealing will have a local minimum problem.
The combinatorial problem solved by quantum anneal-
ing reaches an accuracy higher than a classical algorithm
for three different processes, thus indicating a quantum
advantage.

The study in Ref.[41] also uses an Ising Hamiltonian-
based approach to perform a model-independent search
for physics beyond the SM. The kinematic space is par-
titioned in bins i, where the difference between the simu-
lated SM prediction and observed data is measured, and
where each spin si can either be aligned (i.e. of the same
sign) or anti-aligned with the measured difference. The
Hamiltonian is expressed such that the ground state en-
ergy of the system is a measure of the goodness-of-fit.
Linear spin terms in the Hamiltonian are only sensitive
to the difference mentioned above in each bin i. On the
other hand, si · sj terms capture the interaction between
neighboring bins, therefore being sensitive to spatial cor-
relations between different kinematic regions, which in
turn helps to differentiate between random noise and new
physics signals. This work relies on simulated annealing
as a method for minimizing the energy of the Hamilto-
nian. Toy experiments are generated where signal-plus-
background and background hypotheses are tested. The
goodness-of-fit of different approaches is tested in terms
of true- versus false-positive rates. Both with one- and
two-dimensional toy experiments, the goodness-of-fit test
statistic based on this quantum algorithm performs bet-
ter than classical methods. It has to be noted that this
improved capacity to detect an anomaly versus an ex-
pectation is free on any assumption on the signal, and is
thus model-independent.

The work presented in Ref. [42] explores a classification
application of importance in cosmology, a galaxy mor-
phology classification by training Restricted Boltzmann
Machines (RBMs) in a quantum annealing device. RBMs
are, generally speaking, generative models and will be
discussed in this context in Section VA. In the classical
setting, an RBM is a stochastic neural network that can
learn a probability distribution over its set of inputs. The
study in Ref. [42] found that for small datasets and lim-
ited numbers in training repetitions, quantum annealing-
based RBMs performed very well and outperformed the
alternative classical algorithms studied, namely logistic
regression and gradient boosted trees. However, outside
of these rather special training scenarios, RBMs (regard-
less of the classical or quantum nature of the training
algorithm) did not outperform the gradient boosted tree
algorithm.
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B. Variational quantum circuits

Variational Quantum Circuits (VQCs) are hy-
brid quantum-classical algorithms aiming to harness
the strength and scalability of both computational
paradigms. In this architecture, classical computers are
used for optimization and quantum computers for spe-
cific complicated tasks, such as calculating expectation
values.

A VQC can be viewed as a Quantum Neural Network
(QNN) where the encoded quantum state goes through
a circuit with different layers of gates that depend on
parameters that will minimize a loss function through
training. In a VQC, once an initial state has been pre-
pared through the encoding of classical data into a quan-
tum state, a series of unitary transformations are applied
through a circuit with layers that depend on trainable pa-
rameters ~θ and act serially, mimicking the forward pass
of a neural network, as first noted in [43]. As a classi-
fier, a VQC can be trained from labeled data to classify
new samples or, in a generative setting, to model corre-
lations in the input data. Recent studies have reported
the application of variational architectures in the field of
classification [44], function approximation [45], genera-
tive machine learning [46, 47], metric learning [48], deep-
reinforcement learning [49] and sequential learning [50].

In the gate-based quantum computing model, varia-
tional algorithms are implemented using quantum cir-
cuits composed of a network of single and two-qubit op-
erations, with rotation angles serving as variational pa-
rameters. The implementation of a VQC usually takes
place in three steps:

1. First, an initial state is prepared using a feature
map or unitary transformation Uφ(~x) to encode the
classical input data ~x, into a quantum state. The
input feature vectors become the rotational gates’
arguments and remain fixed during the circuit eval-
uation. Some standard techniques include angle
and amplitude encoding; see Ref. [51] for more com-
plex approaches.

2. The second block of unitaries is a parameterized
quantum circuit or variational form. It is given by
U(~θ) parameterized by gate angles θ and includes
alternating layers of entangling and rotation gates.
Each layer consists of a sub-circuit that depends
on trainable parameters and an entanglement sub-
circuit. The learnable parameters ~θ will be opti-
mized through gradient-based methods. For exam-
ple, the commonly used gradient-based optimizer is
Adam [52].

3. Then, a quantum measurement is performed on a
subset (or all) of qubits to retrieve the informa-
tion. If we run the circuit once and perform a sin-
gle quantum measurement, it will yield a binary
string, and it generally differs from what we will

FIG. 4. Schematic diagram of the main component in a Vari-
ational Quantum Circuit (VQC): (1) An encoding unitary
𝑈𝜑(�⃗�), (2) a parameterized circuit with variational parame-
ters with alternating layers of rotational (𝑈𝑟𝑜𝑡( ⟨0|𝜃|0⟩)) and
entangling (𝑈𝑒𝑛𝑡) gates, repeated l times, and, (3) a measure-
ment and post-processing section.

get if we prepare the circuit again and perform an-
other quantum measurement due to the stochastic
nature of quantum systems. However, if we prepare
the same circuit and perform the quantum mea-
surement several times, we will get the expectation
values on each qubit. Furthermore, different bases
can be used for the measurement. In most cases,
the expectation value of the σZ Pauli operator is
used to obtain measurements on the computational
basis.

In most cases, as we will see in some of the HEP appli-
cations discussed below, the VQC performance is evalu-
ated by looking at the Receiver Operating Characteristics
(ROC) curve and the Area Under the Curve (AUC). In
what follows, applications of VQCs to the classification
of HEP experimental datasets will be discussed.

The work in Ref. [53] studies the classification of
chargino-pair production via a Higgs boson versus the SM
background. In this study, two circuit designs or Ansatz
are tested to demonstrate the feasibility of QML for the
event classification task in HEP data analysis. The first
choice is the circuit proposed in Ref. [45] and constructed
using a time-evolution gate, denoted as e−iHT , with the
Hamiltonian H of an Ising model with random coeffi-
cients and the series of RX , RZ and RX gates, whose
rotational parameters are updated during training. This
layout is repeated three times after applying a unitary
that encodes the classical input data as rotational pa-
rameters in the RY and RZ gates. The second choice
of VQC is based on the circuit proposed in Ref. [54],
which uses a layer of Hadamard and RZ gates to prepare
the input state, followed by an entangling layer sand-
wiched between two layers of rotational RY and RZ gates
with trainable parameters. Measurement is performed on
the first two and all the qubits using the Pauli Z opera-
tors for the first and second circuit designs, respectively.
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The VQC is trained by minimizing the cross-entropy cost
function as implemented in the scikit-learn package
[55] and using the COBYLA optimization algorithm [56].

The performance of the proposed VQCs is bench-
marked against two classical ML algorithms: a BDT,
as implemented on the Keras package [57], and a Deep
Neural Network model based on a fully-connected feed-
forward network composed of 2-6 hidden layers with 16-
256 nodes each, implemented using the Tensorflow pack-
age [58]. The hyperparameters in the classical models are
chosen to match the capabilities of the quantum mod-
els, and both methods are applied to the same task and
dataset size. It has to be noted that this classification
is based on a small number of discriminating variables.
The total number of internal parameters is 12, 20, and 28
for the 3-, 5-, and 7-variable classification, respectively.
Concerning benchmarking on hardware, only the circuit
design based on single and two-qubit gates is tested on
a quantum backend. The VQC is run on the 20-qubit
IBM Q Network quantum computer. It is noteworthy
that this VQC, in the present stage, does not perform
better with a larger number of features.

In Ref. [59], a VQC approach is applied for the classi-
fication of ttH where a pair of top quarks are produced
with a Higgs boson. In this study, two Auto-Encoder
NNs (see Section VA) are used to reduce the dimension
of the feature space, and thus, ease the classical input
feature encoding into quantum states. This compressed
representation is the input for the hybrid architectures in-
troduced and the benchmark against non-quantum tech-
niques.

A data re-uploading technique, introduced in Ref. [60],
is used in an effort to reduce the number of quantum reg-
isters needed to encode the classical data into a quantum
state. In this approach, the quantum classification cir-
cuit comprises several repetitions of the traditional VQC
scheme, each with its own classical inputs in the fea-
ture map and trainable parameters. This study is imple-
mented in circuits comprising different number of qubits.
Using the data re-uploading technique, the feature map
based on one and two-qubit gates is applied to load the
classical variables. Finally, the qubits are measured and
used to classify the input.

The study in Ref. [61] is a VQC approach to classify tt
events versus the rest of the SM processes, using only two
kinematic features. An angle encoding scheme is used to
prepare the two-qubit initial state. The trainable block of
the VQC consists of two layers of single rotation gates,
followed by two CNOT gates, entangling the qubits in
the circuit. Finally, a Pauli Z operator is applied on the
first qubit, where the expectation value is taken. The
circuit is run repeatedly to obtain an estimate of the lat-
ter, where the size of the training sample is relatively
small (1500 events). Two different instantiations of the
VQC are tested, where a classical and a quantum gra-
dient descent are run and compared to the performance
of NN with a gradient descent. The quantum gradient
optimization shows a faster convergence than the tra-

ditional gradient descent optimization and the classical
neural network. In terms of classification, the VQC is
observed to perform better than the NN in high purity
regimes, i.e. when cutting on high values of the classi-
fier’s output. The VQC with a quantum gradient descent
performs slightly better than the one with the classical
descent, always in the high regimes.

In Ref. [62], a VQC is applied to the analysis of Higgs
boson production in association with a top-quark pair
and a Higgs boson decay to two muons. The goal is to
train a supervised learning model able to discriminate
between two processes, the signal events, H → µ+µ−

and the background events; namely, a Z/γ∗ → µ+µ−

interaction. A VQC-type model is proposed and trained
based on thirteen kinematic variables associated with the
process of interest. A pre-processing step to reduce the
feature space dimensionality is employed using the Prin-
cipal Component Analysis (PCA) method. A ten-qubit
quantum circuit is set up using the variational circuit de-
sign in Ref. [54]. Only half of the qubits are measured to
reduce the potential errors associated with measurement.
The circuit is trained through the noisy simulation of a
ten-qubit system using the IBM’s qasm_simulator. An
error mitigation scheme is applied to correct measure-
ment errors through a relation matrix between the ideal
and noisy results, and applied to the noisy results. The
loss function is defined by the error probability of incor-
rect assignment compared to the exact solutions avail-
able for the training dataset. During the training, the
loss function is minimized to penalize missasignment and
to optimize variational parameters using the SPSA op-
timizer. The VQC performance is benchmarked against
classical ML models, including a Support Vector Machine
(SVM) constructed using the scikit-learn package and a
BDT set up using the XGBoost package [63]. A hyper-
parameter tuning was performed on the classical models.
The authors report an agreement between the results ob-
tained when training on hardware and noisy simulation
setups when error mitigation techniques are applied. Fur-
thermore, a similar performance is observed on models
trained on simulated noisy settings, combined with error
mitigation techniques and classical ML models.

In Ref. [64], a VQC approach has been used to identify
the flavour of jets produced in proton-proton collisions at
the LHCb experiment. The identification of jets plays an
important role in physics at hadron colliders, and the
ability to distinguish the flavour of the quark generating
a jet is fundamental in order to search for New Physics
processes and find possible deviations from the Standard
Model. In this paper, jets initiated by b or b̄ quarks are
identified using a VQC, and its performance is compared
with an exclusive algorithm used so far at LHCb, the
so-called muon tagging algorithm, which infers the jet
flavour by means of the charge of the muon found inside
the jet, and a standard Deep Neural Network (DNN).
LHCb simulated data are analysed, and jet substructure
information is used as input features for the classifiers;
for each jet, five types of particles (muon, kaon, electron,
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pion, and proton) with the greatest pT inside the jet are
chosen. For each type of particle, three variables are con-
sidered: the transverse momentum with respect to the jet
axis (prel

T ), the distance in the pseudorapidity-azimuthal
plane to the jet axis (∆R) and the charge of the particle
(q); a global variable, the weighted charge of the jet (Q),
is also considered, accounting for a total of 16 variables.
Two circuit geometries have been studied: the Angle Em-
bedding geometry, where n input features are mapped to
angles θ of rotational gates applied to n different qubits,
thus resulting in a n-qubit circuit, and the Amplitude
Embedding geometry, where input features are embed-
ded in the amplitudes of a state vector of a dlog2 ne-qubit
state. The complexity of the circuit depends on the num-
ber of strongly entangling layers, consisting of general ro-
tational gates and CNOT entangling gates, chosen in the
variational part of the circuit. In order to understand the
impact of the considered variables in the classification,
two versions of the dataset have been used: the muon
dataset, where only variables coming from the muon in-
side the jet plus the jet charge Q are used, and the com-
plete dataset, which uses all variables. In this way, for
the muon dataset the Angle Embedding (Amplitude Em-
bedding) geometry is a circuit of 4 (2) qubits, while for
the complete dataset the Angle Embedding (Amplitude
Embedding) geometry uses 16 (4) qubits. Results show
that the Angle Embedding geometry works better than
the Amplitude Embedding geometry, reaching the same
performance of the DNN for the muon dataset while for
the complete dataset the Angle Embedding classifier has
slightly worse performance than the DNN. The study also
shows that by increasing the number of strongly entan-
gling layers, the classification accuracy increases up to
a certain value where there is no further improvement,
giving interesting suggestions on the optimal number of
strongly entangling layers. Analysis of the number of
training events shows that the quantum classifiers per-
form better than the DNN when using fewer training
events while reaching similar performance when increas-
ing the number of training events. Finally, the impact of
noise on the circuit geometries has been considered using
simulations that account for circuit noise contribution:
no evident degradation in performance is found, suggest-
ing that these circuits are rather robust and, in principle,
can run on hardware.

1. Support vector machine

Quantum Support Vector Machines (QSVMs) [65]
share many similarities with VQCs. Both systems encode
the classical input states in a Hilbert space by applying
unitary designs tailored to the application. While this
encoding is conceptually equivalent in both approaches,
the two models differ in how the quantum state is han-
dled once it is prepared. VQCs can be formulated as
quantum kernel methods [66].

The SVM algorithm maps ~x into a higher dimen-

sional feature space, where it measures the similarity be-
tween any two data instances, denoted as “kernel entries,”
k(~xi, ~xj). The SVM algorithm then optimizes a hyper-
plane that separates data points into two categories. A
main limitation of the classical SVM algorithm is that
evaluating kernel entries in a large feature space can be
computationally expensive. Thus, the QSVM is expected
to leverage the quantum state space as a direct represen-
tation of the feature space, giving rise to kernel functions
that are hard to evaluate classically. From this founda-
tion, quantum feature maps can be designed and tested
on practical datasets, potentially leading to better clas-
sification results than classical feature maps and kernels.
Once a suitable quantum feature map is chosen, the ker-
nel matrix element is constructed by sampling the prob-
ability of measuring |0〉:

k(~xi, ~xj) = |〈0⊗n|U†(~xi)U( ~xj)|0⊗n〉|2. (1)

Another main difference with VQCs is that the loss func-
tion of a QSVM depends on the inner product of the
feature vectors, i.e., the goal is to maximize

L(c1...cn) =

n∑
i=1

ci −
1

2

n∑
i=1

n∑
j=1

yici(~xi · ~xj)yjcj , (2)

subject to
∑n
i=1 ciyi = 0, and 0 ≤ ci ≤ 1

2nλ ≡ C for all
i. Here, ci are the independent variables of the loss, ~xi
and ~xj are feature vectors of a given pair of data points,
i and j and yi, yj their corresponding labels. Finally, n
is the number of encoded features, and λ is a regular-
ization parameter that tunes the trade-off between mis-
classification and width of the SVM margin.

Furthermore, in QSVM-like circuit designs, all quan-
tum registers need to be measured to construct the quan-
tum kernel, whereas in VQCs this is not a requirement.

The Higgs classification problem of Ref. [59] also stud-
ied a classification scheme based on the implementation
of a QSVM. Again, auto-encoders are used to reduce the
dimension of the feature space, as explained in Sec. IVB.
In terms of feature maps, two data embedding circuits are
tested: 1. An amplitude encoding circuit with N qubits,
capable of encoding 2N features, for a 4-qubit and 6-
qubit architecture; 2. An 8-qubit architecture, which is
more suitable for an implementation on a NISQ device.
The 4- and 8-qubit models have a similar performance
to a classical SVM with a radial base function kernel.
Likewise, the 6-qubit QSVM with amplitude encoding
performs similar to an SVM with a linear kernel.

In Ref. [67], a QSVM model is used again for the dis-
crimination of ttH events in the H → γγ decay channel
from non-resonant two-photon production events. Three
classical kernels are considered to benchmark the classi-
cal SVM method: the linear kernel, the polynomial ker-
nel, and the radial basis function (RBF) kernel. Both
quantum and classical SVM models are trained using 15
kinematic variables resulting from the compression of the
original 23 kinematic variables available in the dataset,
by using a PCA method. The 20-qubit model is trained
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on a noise-less simulator and showed similar performance
compared to the classical SVM. When deployed on hard-
ware, the system size is reduced to 15 qubits, and the au-
thors report similar performance compared to the noise-
less simulation.

Another implementation of a QSVM algorithm for
classification is described in Ref. [68]. Here, the authors
designed and implemented a QSVM approach for the
signal-background classification task in B meson decays.
Three different encodings were tested to study the impact
of the choice of feature map in the classification perfor-
mance. In particular, the Bloch encoding circuit, which
the authors designed for encoding particle data, outper-
formed the other two and used fewer resources for the
same task. When using a limited number of inputs, the
QSVM outperformed classical methods in simulations.

In Ref. [69], an extension to the method of machine
learning based on quantum kernel methods is extended
up to 17 hardware qubits requiring only nearest-neighbor
connectivity. This circuit structure is used to prepare a
kernel matrix for a classical SVM to learn patterns in 67-
dimensional supernova data for which competitive clas-
sical classifiers fail to achieve 100% accuracy. Further-
more, the circuit design is justified based on its ability
to produce large kernel magnitudes that can be sampled
to high-statistical certainty with relatively short experi-
mental runs. This experiment is, by far, the largest clas-
sification model deployed on hardware and demonstrates
similar performance to non-quantum techniques for the
classification of a HEP dataset.

2. Quantum Convolutional Neural Networks

In Section IVB, we introduced the concept of VQCs
and compared the tunable parameters to the weights in
a classical neural network. We now introduce the con-
cept of quantum convolutional neural network (QCNN).
QCNN is the framework that uses VQCs to perform the
convolutional operations in a classical CNN. Convolu-
tional filters or kernels are replaced with VQCs to harvest
the expressive power granted by quantum entanglements.
The quantum convolutional kernels will sweep through
the input data and transform them into a representation
vector of lower dimensions by performing measurements.
A stack of VQCs will ensure features of varied length
scales that are captured in different layers. In Ref. [70],
a QCNN framework for the classification of HEP events
from the simulated data from the DUNE experiment is
proposed. Based on the success of classical CNNs for
the classification of images, a QCNN is proposed for the
classification of neutrino events as detected in a Liquid
Argon Time Projection Chamber (LArTPC). This tech-
nology allows for detecting neutrino events through high-
resolution images of particle interactions within the de-
tector volume as the ionized electrons drift towards the
multiple sensing wire planes. The goal of the QCNN is
to predict the types of different particles by analogy with

those performed via classical CNN. The target labels cor-
respond to the four possible particle types to be detected,
an electron, a muon, a pion, or a proton. The authors re-
port that the quantum model can learn faster and reach
better testing accuracy with fewer training epochs, when
using a similar number of parameters in the classical and
quantum CNN benchmarks on noiseless simulations.

In Ref. [71], a QCNN based technique aimed at under-
standing how QML models can provide advantages over
classical models when dealing with sparse data, which is
common in scientific data. This work introduces a hy-
brid quantum-classical graph convolutional neural net-
work (QGCNN) framework applied to the same classi-
fication problem in Ref. [70]. This study compares the
performance of a QGCNN to a classical multilayer per-
ceptron and CNNs and reports that the 10-qubit quan-
tum model requires fewer parameters to achieve compa-
rable performance as the classical models. Furthermore,
they compare the QGCNN model to the QCNN model
proposed in Ref. [70]. Both quantum models can achieve
similar performance, but the QGCNN requires half the
number of parameters used in the QCNN, highlighting
the importance of models tailored for sparse datasets.

3. Anomaly detection models

The search for new physics depends on our ability to
separate Standard Model events from the background’s
much rarer and complex signal events. A new approach
for finding events consistent with beyond-the-standard-
model physics is through data-driven search, where no as-
sumptions on the new physics scenario are made. While
this allows for a search on a broader phase space, it
requires a classification technique that can successfully
learn and identify the important features in the back-
ground data to discriminate them from rare signal events
which do not share the same properties. In classical ML,
autoencoder architectures have been designed for this
purpose [72]. Autoencoder architectures consist of an en-
coder step that compresses the feature space into a latent
space with reduced dimensionality. Subsequently, the la-
tent space is decoded into an output of the same dimen-
sionality as the input feature space. The entire network is
then trained such that the loss function, which evaluates
how well the output resembles the input, is minimized.
Because quantum mechanics can generate patterns with
properties beyond classical physics, a quantum computer
should be able to recognize patterns beyond the capabil-
ities of classical machine learning. Thus, the motivation
for a quantum autoencoder is that such a model would
allow us to efficiently perform the dimension reduction of
quantum data. In classical architectures, the necessary
compression and expansion of data in the encoding and
decoding steps are manifestly non-unitary, which has to
be addressed by the QAE using entanglement operations
and reference states which disallow information to flow
from the encoder to the decoder. A model capable of ef-
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fectively reducing the dimension of a quantum state was
initially proposed in Ref. [73]. In the context of anomaly
detection, the assumption is that the minimal dimen-
sion of the latent space for which the input features can
still be reconstructed corresponds to the dimensionality
of the information space required to describe the training
sample, here, the SM background processes. If the sig-
nal is kinematically sufficiently different from the back-
ground samples, the loss function or reconstruction error
will be larger for signal than for background events. In
Ref. [74], an alternative approach based on continuous-
variable quantum computing is proposed. The authors
use gaussian boson sampling to embed classical data
into a feature vector and use an autoencoder scheme for
model-independent searches through anomaly detection
techniques. A continuous variable alternative to the clas-
sical k-means clustering algorithm is devised and denom-
inated Q-means clustering, potentially scaling to large
feature vectors more efficiently. The Q-means algorithm
has a complexity in the order of log(N), with respect
to the size N of the feature vector. This represents an
improvement from the classical k-means algorithm with
a complexity in the order of N . The model is yet to
be deployed in a continuous variable architecture, and
the authors limit their implementation to discrete qubit
quantum computing. In Ref. [75], the authors study
quantum autoencoders based on VQCs for the problem
of anomaly detection at the LHC. For a QCD tt̄ back-
ground and a resonant heavy Higgs signal, they find that
a simple quantum autoencoder outperforms dense classi-
cal autoencoders for the same input space. In Sec. VA,
QVAEs are discussed in the context of generative tasks,
although no application in HEP has been reported.

V. DATA GENERATION/AUGMENTATION

A crucial element of any analysis in HEP involves the
simulation of the physical processes and interactions tak-
ing place at HEP facilities to develop new theories and
models to explain experimental data and characterize
background, study detector response, and plan for detec-
tor upgrades. The corresponding simulations start with
a Lagrangian, compute the hard scattering in perturba-
tive QCD, the parton shower in resummed QCD, model
hadronization based on reliable precision measurements,
and finally, a full detector simulation. Technically, all of
the processes involved rely on Monte Carlo techniques.
These simulations are often computationally intensive,
taking up a significant fraction of the computational re-
sources available to physicists. The production of re-
liable and statistically significant samples represents a
huge computational footprint both in terms of CPU us-
age and disk space. Currently, the best estimates suggest
that the simulation of a single collider event already takes
several minutes [10], with O(109) events to be generated
(on average) for each simulation campaign in the LHC.

Generative models are trained to prepare a target

distribution that can accordingly be used to generate
new samples. This is more challenging than the dis-
criminative tasks described in Sec. IV since it requires
one to efficiently learn, represent, and sample from
high-dimensional probability distributions, but quan-
tum processors are well-suited for this task. Many
kinds of generative models used in classical machine
learning use neural networks and are parameterized by
weights and biases (e.g. Boltzmann Machines (BMs) [76]
and RBMs [77], autoencoders and variational autoen-
coders ((V)AEs) [78] and Generative Adversarial Net-
works (GANs) [79]). Training generative models can be
based on minimizing the energy of the model [76, 80],
minimizing the error when sampling from a target poste-
rior and the model posterior [78], or through adversarial
methods [79]. These neural network models have been
translated into quantum models (q(R)BMs, q(V)AEs,
qGANs) either as standalone VQCs (see Section IVB)
or as a component in a hybrid network [73]. Many of
the training workflows can be adapted as variational al-
gorithms. The training leverages classical methods and
hybrid workflows to optimize the parameterized quantum
models.

The ability of quantum information processors to rep-
resent vectors in N -dimensional spaces using log (N)
qubits, and to perform manipulations of sparse and low-
rank matrices in time O(poly(log(N))) [81] motivates the
exploration of quantum generative models as an alterna-
tive to classical generative models for generative tasks in
HEP. Quantum generative models are expected to exhibit
an advantage over classical generative models in runtime
and the number of parameters needed to learn data dis-
tributions due to their strong expressive power. Gener-
ative modeling has been used as near-term applications
for quantum processors [82], but as of yet not all models
have been used in HEP applications. In the remainder
of this section, we will overview the state-of-the-art re-
sults for two of the models above – the q(R)BM and the
q(V)AE. In separate follow-on sections, we provide an in-
depth discussion of two quantum generative models, the
qGAN and the quantum circuit Born machine (QCBM),
that have been used in HEP applications.

A. Quantum Generative Models

The (R)BM is a physically motivated neural network
capable of generating new samples similar to the training
data [76], which was previously introduced in Section IV.
A network of classical spins are connected by weighted
edges (wij) and on-site biases (bi), which are optimized
during training to find the ground state of the system’s
Hamiltonian

H(R)BM =
∑
i

bizi −
∑
〈i,j〉

wijzizj . (3)

BMs a natural fit for quantum annealing [83–85] and
quantum computing [86–88]; in the latter Ref. [88] shows
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FIG. 5. Classical generative models using neural network con-
structions with visible (blue) and hidden (orange) units (top
row): (a): Boltzmann machine, (b): Restricted Boltzmann
machine, (c):(Variational) Autoencoder. Quantum gener-
ative models using parameterized unitaries (𝑈)(·): (d): Pa-
rameterized unitary circuit (e): Parameterized unitary circuit
with partial measurements.

polynomial speed-ups relative to classical training. Start-
ing from a classical (R)BM, the neurons (or classical
spins) are replaced by qubits and the Hamiltonian is
translated into a unitary circuit or Ising model couplings.

VAEs [78] are artificial neural networks typically used
for generative modeling applications. The word autoen-
coder refers to the fact that its architecture, comprising
an encoder and a decoder, resembles a traditional au-
toencoder. Nonetheless, there are significant differences,
especially in the mathematical formulation.

The goal of an autoencoder [89] is learning to map some
input vector x to a compressed space vector z. In the
language of generative modeling, this compressed space
is known as the latent space. This latent space vector
is fed into another network that reconstructs the input.
The network that compresses the input vector x is known
as the encoder, whereas the network that maps the latent
vector z to the initial input x is the decoder. A figure of
merit for the loss function training is simply the error of
the reconstructed input state, which shall be minimized.

Notice, however, that there are no constraints on the
latent variables z. This is the main reason why tradi-
tional autoencoders are useful for compressing informa-
tion but lack a generative structure. Namely, the latent
variables z rarely capture relevant information, or this in-
formation is not organized. This is the precise issue that
VAEs tackle. To be specific, VAEs deal with the problem
of the latent space irregularities by making the encoder
return a simple distribution over the latent space, gen-
erally a Gaussian distribution, by adding extra terms in
the loss functions to ensure a better organization of the
latent space [90].

The encoder and decoder of a qVAE model are gates

which transform an underlying wavefunction. At any
point in the network, the wavefunction defines a distribu-
tion over a set of basis states meaning that non-Gaussian
distributions can be prepared in the latent space. In
Section it was discussed how qAEs have been used for
anomaly detection IV. Other applications for qAEs in-
clude quantum data compression [73] and qVAEs have
been used for generative modeling of classical data. In
Ref. [91] a quantum generative process is used to produce
handwritten digits, with competitive results on par with
other classical methods.

B. Quantum Generative Models for HEP

For HEP applications, two quantum generative models
have been used: the qGAN and the QCBM. There are
many GAN architectures. However, all of them contain
as basic components a generator, a discriminator, and an
adversarial training procedure as suggested in the initial
work of Ref. [92]. The qGAN follows the general struc-
ture of a classical GAN, whereas the QCBM uses only a
parameterized circuit.

In general the generator G transforms samples from
some prior, simple-to-sample noise distribution z ∼
pprior(z) into new samples G(φg), thus mapping pprior(z)
to a different distribution pfake of generated data. The
discriminator takes as input samples x, from the real
distribution in the form of data, and tries to distin-
guish between fake data from the generator and this real
data preal. The adversarial training procedure alternates
between the generator suggesting samples that are ac-
cepted by the discriminator and the discriminator detect-
ing those samples suggested by the generator. Once this
adversarial game reaches a stable equilibrium over train-
ing epochs, the generator robustly suggests new, previ-
ously unseen, samples of the target distribution.

In practice, often the binary cross-entropy is used as
optimization objective. The individual loss functions can
then be defined as

LG(φg, φd) = −Ez∼pprior(z)[logD(φd, G(φg, z))] , (4)

LD(φg, φd) = Ex∼preal(x)[logD(φd, x)]

+ Ez∼pprior(z)[log(1−D(φd, G(φg, z)))] ,

(5)

for the generator and discriminator, respectively. As such
the training corresponds to a minimax two-player game,

min
φg

LG(φg, φd) , max
φd

LD(φg, φd) , (6)

where the optimum uniquely corresponds to the Nash
equilibrium between the loss functions.

The neural network architecture, input data, and com-
plexity of the distributions all play a role in successfully
training a GAN, both in the classical and the quantum
context. Here, in particular, the potential to create more
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complex, varied outcomes from simpler network architec-
tures in the quantum case could prove valuable. Study-
ing this connection between quantum network architec-
ture and complex outputs in detail provides interesting
future opportunities. For example, in Ref. [93] a robust
training advantage was established in the context of su-
pervised learning.

In HEP data analysis, two applications stand out
for their intensive computing resource requirements.
These are the simulation of the detector and its vari-
ous calorimeters on the one hand and the generation of
process events via Monte-Carlo on the other. Both fields
are under intensive research using classical methods due
to the potential gains from any speed-up. Finding a path
towards quantum advantage and speed-up could lead to
a jump in progress in the future.

1. Detector simulations

The traditional Monte-Carlo-based simulations of HEP
detectors are highly time-consuming. As an example, it is
estimated that during the last years before the last LHC
shutdown, the LHC experiments devoted more than 50
% of their WLCG computing resources to Monte-Carlo
production [94]. At the HL-LHC, given the higher detec-
tor granularity, the larger complexity of physics events,
and the statistics needed for accurate precision measure-
ment, Monte-Carlo production is expected to increase
by at least two orders of magnitude [94]. In this con-
text, deep generative models and, in particular, Gener-
ative Adversarial Networks, have been investigated in a
range of different use cases as possible alternatives for
fast simulations. Examples include 3DGAN [95, 96] or
CaloGAN [97].

In most cases, the GAN-based prototypes reach a high
level of accuracy and produce realistic datasets. Given
the increasing interest in quantum generative modeling,
it is only natural to explore the possibility of replac-
ing classical generative models using quantum or hybrid
classical-quantum architectures. Example applications
exist, proposing hybrid quantum GAN, where a quan-
tum generator is trained against a classical discrimina-
tor to reproduce the output of electromagnetic calorime-
ters [88]. The Dual-Parameterized Quantum Circuit
(PQC) GAN, is characterized by a classical discriminator
and two quantum generators that take the form of PQCs,
and it is capable of simulating reduced size pixelated im-
ages of calorimeter volumes [98]. The model was trained
to reproduce one-dimensional energy distribution, gen-
erated inside the calorimeter volume by single electrons.
The studies in Ref. [99] show that the results are stable
on both simulated and real quantum hardware. Simi-
larly, the work in Ref. [100] explores the performance
of a hybrid prototype (based again on a quantum gen-
erator and a classical discriminator) implemented using
photonic-based quantum computing [101], which has the
great advantage of allowing natural representation of con-

tinuous variables in quantum states.
Despite the encouraging initial results described above,

it should be noted that the use case of detector simulation
presents important challenges related to the size of the
distributions the generative models learn. In most cases,
this scales with the number of sensors in the detectors and
it is therefore challenging to embed in quantum circuits,
especially on near-term devices.

2. Monte Carlo event generation

The use of GANs for applications in the simulation of
HEP events has been a key focus in the context of clas-
sical machine learning [102–108]. Due to their ability to
generate larger samples of a distribution given through a
more limited data set, they present a unique opportunity
for data augmentation and signal boosting applications.

An example application is to provide distributions of
key experimental processes and to generate a larger sam-
ple using a qGAN. This was successfully implemented
for the process of pp → tt̄ production at the LHC with√
s = 13 TeV in [109]. Based on the data re-uploading

idea [60], there a flexible network architecture was pro-
posed that enabled an efficient representation of the de-
sired generative model.

In particular, through hyperparameter tuning, it was
found that a network in which each input dimension of
the distribution is represented by a single qubit, entan-
gled with its neighbors, and a single layer was sufficient
to successfully train the GAN with a robust minmax con-
dition found (with a few tens of thousands of epochs of
training, comparable with classical experiences).

The low complexity of the quantum circuit used en-
abled its deployment on both superconducting and ion-
based quantum computing architectures. Good signal-
to-noise properties were observed in both cases.

Even though the work in this direction is at a proof-of-
principle stage, results like these give hope for successful
deployment on NISQ devices.

Further refinements, such as training efficiently for
other processes through transfer learning, the inclusion of
error correction techniques in the generation process, or
further implementation of quantum components - as e.g.
the given example implements a classical discriminator -
are useful avenues to follow in the future.

The use of the trained qGAN is not limited to data aug-
mentation purposes. Additionally, it can also be used as
an intermediary encoder of the process generating func-
tions. In Ref. [110] it was successfully demonstrated that
a qGAN could be used to load the underlying informa-
tion of the process onto qubits. A quantum amplitude
estimation (QAE) algorithm subsequently performed the
integration of the elementary process in one and two di-
mensions on these loaded qubits. In future, it would be
interesting to pursue further opportunities to combine
different quantum algorithms in this way. One could en-
vision the construction of a “quantum pipeline” from raw
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data to refined results for physics observables in which
different quantum algorithms are connected in such a
way that they benefit from practical quantum advan-
tages. For example, one could imagine feeding in data
from an efficiently trained and sampling quantum net-
work [111, 112] into subsequent quantum analysis tools,
such as the QAE, via qGANs or exact encodings.

The QCBM is an example of an implicit model for
generative learning [113] that generates data by measur-
ing the system as a Born machine [82, 114]. Unlike the
q(R)BM models, the unitary circuit is not defined with
respect to a specific Hamiltonian, rather a QCBM is a
parameterized unitary U( 〈0|θ|0〉) that prepares N -qubits
in the state |ΨΘ〉 = U(~θ)|Ψ0〉. One can obtain a classi-
cal distribution over the 2N computational basis states
by measuring |ΨΘ〉 in a fixed basis (usually the compu-
tational basis). Unlike the qGAN model, QCBMs can
be trained using non-adversarial methods, either using
gradient-free [82] or gradient-based [115] optimization.
Training a QCBM is done by minimizing a loss function
L(Ptarget, PQCBM ) that computes the similarity between
the target distribution and the distribution sampled from
the QCBM. The study in Ref. [116], uses non-adversarial
gradient-based training of 8- and 12-qubit QCBMs to
generate joint distributions over 2 and 3 variables to gen-
erate synthetic data of a typical HEP process.

VI. QUANTUM-INSPIRED ALGORITHMS

The fusion of quantum computing and data analytics
promises a revolution in machine learning and other op-
timization and related computational capabilities. How-
ever, there are only a few demonstrations of quantum
advantage for very specific tasks. Given the current hard-
ware and software limitations, an exciting exploration for
HEP scientists is quantum-inspired algorithms, viewing
information technologies from the vantage point of quan-
tum to make gains in conventional systems.

Quantum-inspired algorithms involve a traditional
(non-quantum) computer emulating certain aspects of
quantum mechanics to gain a computational advantage.
To date, there have been quite a few quantum-inspired
algorithms tackling problems of optimization [117], ma-
chine learning [118], and linear algebra [119]. In addition,
the Fujitsu Digital Annealer [120] is a classical analog of
quantum annealers such as those produced by D-Wave.

In HEP, a method of increasing popularity rooted
in quantum mechanical concepts is tensor networks
(TNs) [121, 122] or tensor network states. TNs have been
developed to investigate quantum many-body systems on
classical computers by efficiently representing the expo-
nentially large quantum wavefunction in a compact form.

Recently, it has been shown that TN methods can also
be applied to solve ML tasks very effectively [123–125],
yielding comparable results when benchmarked against
NNs on standard datasets [123, 125, 126]. In HEP, TNs
have been explored in an ML context to gain insight into

the learned data by computing quantum correlations or
entangling entropy.

In Ref. [127], a TN-based supervised learning approach
to the identification of the charge of b quarks (i.e., b or
b̄) is presented. Simulated data of b quarks generating
jets produced in high-energy proton-proton collisions at
the LHCb experiment are studied. Although the TN-
based method yielded similar performance compared to
a deep neural network classifier, some benefits of the TN-
based approach were highlighted, including the power of
compressing the network while keeping a high amount of
information.

Similar conclusions were reported in Ref. [128], where a
TN-inspired classifier is used to discriminate top jets over
QCD jets. It is also noted that the TN learns the volume
and correlations of the projected geometry of topological
relations in the data, which is reflected by the entan-
glement entropy of the network. This observation can
be exploited to reduce redundant information in the in-
put data, thereby reducing the complexity of the network
while maintaining a high classification performance.

VII. CHALLENGES

In this section, we describe some of the limitations
that are common to the applications discussed in this
manuscript.

A. Quantum annealing-based algorithms

Compared with other quantum computing paradigms,
quantum annealing has the advantage that there are al-
ready commercially available processors with thousands
of qubits, and these are expected to grow further in the
near term. Nevertheless, is remains elusive a clear exper-
imental demonstration of quantum advantage for quan-
tum annealing.

Moreover, quantum annealers are severely limited in
the tasks that they can perform. Specifically, they are
only designed to solve quadratic unconstrained binary
optimization (QUBO) problems [129, 130], although the
more general quantum adiabatic computing model is uni-
versal [131].

A common problem with annealing-based solutions for
HEP data analysis is the large overhead of converting
the problem at hand to the corresponding QUBO for-
mulation, that is, computing all the QUBO coefficients.
The time taken in this pre-processing step largely dif-
fers from problem to problem, but, as we have seen, of-
ten scales worse than quadratically with instance size.
Another challenge is the required annealing schedule to
reach the global minimum, which determines the final
complexity of the algorithm. This is difficult to estimate
for real-world data analysis problems, but for many ap-
plications it is expected to scale exponentially with the
number of variables in the problem.
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Additionally, if a problem requires a significant degree
of connectivity among its binary variables (also called
logical qubits), it is extremely difficult to embed it onto
the physical qubits. Indeed, some instances might take
exponentially long for the embedding process [132].

For HEP problems specifically, the current methods for
problem decomposition such as qbsolv by D-Wave are
inadequate because of their lack of precision required for
collider experiments. These problems also require signifi-
cant hyperparameter optimization in addition to the pre-
and post-processing subroutines for dealing with noise,
freeze out, and competing strengths between spin cou-
plings in the Hamiltonian and the chain strengths.

B. Gate-based/universal QC algorithms

Gate-based quantum computers have already been
used to establish a clear advantage over the classical
counterparts [133]. However, present-day universal quan-
tum computers are noisy and limited in the number of
qubits to serve many practical applications, in particular
in HEP data analysis.

In the HEP context, a significant challenge is the in-
terface between the classical data and the quantum com-
puting architecture. Some proposals assume access to
QRAM [18], which would allowed coherent access to pre-
viously stored classical data. However, despite existing
theoretical proposals for building such devices [19], it is
not expected that they could be implemented in the near
term.

Considering solutions that do not require fault-
tolerance, the current generation of quantum varia-
tional circuits often uses the amplitude or basis encoding
schemes, as mentioned in Sec. IVB. While these are im-
portant first steps, each scheme has some shortcomings.
For instance, the data that can be stored using the ba-
sis embedding protocol is linear in the number of qubits
being used, much smaller than the Hilbert space, which
grows like 2N [134]. On the other hand, the amplitude
encoding scheme does allow for storage of 2N variables
but is less effective in certain contexts [64]. As has been
pointed out in [135], this may be due to the fact that
non-linear transformations of the data are difficult to de-
sign in this context. However, how to move beyond these
schemes is not obvious as other encoding mechanisms re-
quire a large amount of preprocessing on the input data;
see e.g. Ref. [51]. Going forward, we will need to find
methods for efficiently and densely embedding data in
quantum registers in order to take full advantage of QC’s
expressiveness.

In addition to the inefficiency in embedding data onto
the quantum computer, there is a lack of knowledge on
the kind of problems where one embedding scheme might
be better suited than the other. Furthermore, the under-
standing about how noise might impact the performance
of training is somewhat unclear—while some studies ad-
vocate for noise adding much desired stochasticity during

training, other studies present noise as a hindrance. In
terms of logistics, accessing quantum computers on the
cloud remotely and running jobs on them is extremely
inefficient—in some cases, users have to wait for days
before their jobs are run on the hardware.

Finally, it remains an open challenge to find a quantum
algorithm for HEP data analysis with proven exponential
speedup. In general, such algorithms are rare [136], re-
quiring highly structured problems [137]. Importantly,
Ref. [138] argues that with the current error-correction
techniques we should not see a time advantage for prob-
lems with small polynomial speedups, at least when we
consider practical input sizes.

VIII. OUTLOOK

Over the last couple of years, quantum computing tech-
niques have been developed to explore the applicability of
quantum computing to data analysis in HEP, promising
better algorithms for ML, optimization, and other tech-
niques. In this manuscript, we highlighted some areas
where quantum computing applications have been ex-
plored for data analysis in HEP. The major drawback
of these ideas is the lack of a fully mature quantum
computer. The main limitations were discussed in Sec-
tion VII. Naturally, the first question that arises from this
statement is whether there will ever be a demonstration
of quantum advantage. The second question to be an-
swered is if there is a short-term gain in exploring quan-
tum computing for data analysis in HEP. While it may
be sometime before quantum computers mature enough
to replace classical computing in certain HEP analysis
workflows, there are quantum explorations appropriate
even for today’s data analysts. These applications can
be categorized into main areas: (1) how HEP can benefit
from the use of QC, and (2) how HEP can contribute to
the quantum computing ecosystem.

In Section VI, we discussed how quantum-inspired al-
gorithms might provide a new perspective to the main
computational problems facing the HEP community.
Due to the requirement of analyzing vast, highly cor-
related data in order to exploit the full physics potential
of the LHC or other large sample size particle physics
experiments such as DUNE or IceCube, it becomes more
and more critical to develop a fundamental understand-
ing of the data analysis methods applied. In this context,
TNs are able to extract information not easily accessible
to NNs, such as correlation functions and entanglement
entropy which can be used to explain the learning process
and subsequent classifications, paving the way to an effi-
cient and transparent ML tool. Furthermore, TNs have
been shown to reduce prediction times. In Ref. [127], it
is expected that in the near future, prediction times will
be reduced to the order of MHz, having the potential for
deployment on FPGAs for real-time data acquisition and
selection at HEP facilities.

As the size and quality of QCs continue to advance,
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with large-scale entanglement achieved on a range of plat-
forms, so does the feasibility of using quantum machines
to perform typical data analysis tasks in particle physics.
In particular, there are various ways in which the field
of ML may benefit from the advent of QC. These bene-
fits range from speed-ups to specific subroutines, such as
gradient descent and linear algebra, to quantum analogs
of classical algorithms.

Finally, quantum computing benchmarks on HEP ex-
perimental data can be used to formulate metrics and
benchmarks for emerging quantum computers and other
quantum technologies. For reasons of cross-platform
comparison and the identification of trends to make pre-
dictions, metrics and benchmarks have an important role
to play even today, when quantum computers cannot,
with rare exception, outperform conventional devices.
One example is jet substructure, where analytics recon-
struction techniques coexist with numerical MVA meth-
ods. The combination of a large amount of available data
with an excellent theoretical understanding of the un-
derlying physics in collider phenomenology provides an
ideal environment to explore novel quantum and quan-

tum/classical techniques.
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