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The third law of thermodynamics, also known as the Nernst unattainability principle, puts a fun-
damental bound on how close a system, whether classical or quantum, can be cooled to a temperature
near to absolute zero. On the other hand, a fundamental assumption of quantum computing is to
start each computation from a register of qubits initialized in a pure state, i.e. at zero temperature.
These conflicting aspects, at the interface between quantum computing and thermodynamics, are
often overlooked or, at best, addressed only at a single-qubit level. In this work, we argue how the
existence of a small, but finite, effective temperature, which makes the initial state a mixed state,
poses a real challenge to the fidelity constraints required for the scaling of quantum computers. Our
theoretical results, carried out for a generic quantum circuit with N -qubit input states, are validated
by experiments performed on a real quantum processor.

I. INTRODUCTION

Quantum computers represent the ultimate frontier
in information processing, with the objective to obtain
quantum advantage in solving computational problems
that classical computers cannot address in any feasible
amount of time [1, 2]. So far, one of the biggest obstacles
to this endeavour has been noise, that is responsible
for the decay of quantum coherence and correlations
[3, 4] in quantum states, especially pure states which are
notoriously hard to preserve. Their degradation hinders
the exploitation of quantum resources such as quantum
superposition and entanglement. This issue has led
to the current paradigm known as Noisy Intermediate
Scale Quantum (NISQ) regime [5], whereby one exploits
quantum computers with a modest amount of noisy
qubits. To obtain a quantum advantage, however, we
will need to develop large-scale quantum computers with
thousands of highly coherent qubits. Quantum error
correction protocols [6, 7], assisted by the statements
of the quantum threshold theorem [8, 9], can help
in overcoming quantum state degradation. However,
experiments on existing NISQ devices [10–12] still lack
the high-fidelity required for error correction. For this
reason, the analysis of thermodynamical and energetic
resources, has recently emerged in the literature as an
useful tool to study the fundamental limits of quantum
computation, with several implications on quantum
gates [13, 14], quantum annealers [15, 16] and quantum
error-correction [17].

In the following, we will focus on thermodynamic
limits for quantum state preparation, and on their
consequences in obtaining high fidelity in multi-qubit
quantum registers. The very existence of pure states
and the limits to their preparation have to face Nernst’s
unattainability principle, also known as the third law
of thermodynamics [18], stating that cooling a physical
system to the ground state ideally requires infinite

resources. Since pure states can be brought to the
ground state (and vice-versa) by means of finite-cost
transformations, i.e., unitary operations, in order to
abide to the third law, the preparation of pure states
necessarily involves an infinite resource cost. This issue
has been recently brought to light in the quantum
thermodynamics community with implications to quan-
tum measurement [19], purification [20] and cooling
[21]. The simplest and most fundamental case of state
preparation is the initialization of a qubits register
to the computational state |00...0〉 by means of the
operation denoted as reset. Single-qubit reset, has been
investigated in numerous platforms, some of which are:
solid state, such as silicon [22] or rare-earth ion-doped
crystals, both in spin ensembles [23, 24] and single
ions [25], NV centers in diamond [26], superconducting
qubits [27–30], microwave photons [31, 32] and trapped
ions [33–35]. However, |00...0〉 being a pure state, it is
subject to the thermodynamic constraint originated by
the Nernst’s principle.

In this work, we will go beyond the thermodynamics of
the single-qubit reset, showing that in real-world quan-
tum computers there exist a thermodynamic limit to the
initialization of multi-qubit registers that, other than be-
ing a fundamental theoretical topic, has practical impli-
cations on the scaling of quantum computers. In fact,
although the reset (or initialization) of single-qubits has
been proven to be realized with high-fidelity (even above
99.9%) [36], we are going to analytically prove and ex-
perimentally verify that even a small initialization error
on a multi-qubit register may dramatically reduce the fi-
delity of a multi-qubit states by following a scaling law
that directly stems from Nernst’s principle. We argue
that, in order to go beyond NISQ devices, substantial ef-
forts are needed to improve not only the fidelity of single
gates, but also the quality of initialization of multi-qubit
registers. Thus, with this work, our aim is to help im-
proving the design of quantum protocols and devices that
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properly takes into account fundamental thermodynamic
constraints, hitherto neglected.

II. FIDELITY SCALING

The usual assumption in quantum computation is to
initialize the qubits register in the computational state
|00...0〉. Here, we want to investigate how the fidelity of
a quantum computer is affected by an imperfect prepa-
ration of the initial |00...0〉 register. Using the formalism
of density matrices, the initial N -qubit pure state (target
state) we wish to prepare is

σ0 ≡
N
⊗
i=1

(
0 0
0 1

)
(1)

that, by definition, is a zero temperature state. However,
from the Nernst’s unattainability principle we are bound
to prepare states that have an arbitrary small, but finite,
temperature. We assume thus that the real initial state of
the system is the thermal state ρ0 = e−βH/Z (where Z is
the appropriate partition function) that reads explicitly:

ρ0 ≡
N
⊗
i=1

1

1 + e−β∆E

(
e−β∆E 0

0 1

)
(2)

where β is the effective inverse temperature of the ini-
tial (prepared) state and ∆E is the energy difference be-
tween the states |0〉 and |1〉. It is worth noting that the
effective inverse temperature β is not the actual inverse
temperature of the environment in which our quantum
computer is located (albeit it will depend on it), but is
a parameter that takes into account on average all the
sources of disturbance that prevent our system to be in
a perfectly pure state. For this reason, we will refer to
it as an effective temperature. In this regard, observe
that our choice to take a global constant value for the ef-
fective inverse temperature β, instead of setting different
inverse temperatures {β1, . . . , βN} for each qubit, stems
from considering the average error on the state initializa-
tion of the target state σ0 on all the N considered qubits
for sake of clarity. Thus, without loss of generality, we
can consider an average effective temperature that, in
turn, makes our model easier to interpret. Moreover, let
us also note that with this notation, in the limit of zero
temperature (β → ∞), the σ0 state is recovered, while
in the opposite limit of infinite temperature (β → 0) one
gets the maximally mixed state IN×N/2N . We also recall
that, given two density matrices ρ and σ, representing the
states of a quantum system, the fidelity between them is

usually defined as F(ρ, σ) =
(
Tr
[√√

ρ σ
√
ρ
])2

[37].
Now, after setting our notation and initial assump-

tions, we formally show how the fundamental limit im-
posed by Nernst’s principle to the quantum state ini-
tialization affects the scaling of quantum computers. In
doing this, let us initially take a perfect (in the sense
of noiseless) unitary transformation U operating on an
ensemble of N qubits, such that ρ1 ≡ Uρ0U

† and σ1 ≡

Uσ0U
† are the resulting density operators after the ap-

plication of the transformation. Then, we can find the
analytical expression for the fidelity F(ρ1, σ1) as a func-
tion of the parameters N and β. Since the fidelity is
invariant under any unitary transformations [38] and σ0

is a pointer state, we can prove that

F(ρ1, σ1) = F(ρ0, σ0) = Tr [ρ0σ0] . (3)

By substituting the explicit form of ρ0 and σ0 in Eq.(3),
we obtain the following result for the scaling of F(ρ1, σ1)
as a function of the parameters N and β:

F(ρ0, σ0) =
(
1 + e−β∆E

)−N
(4)

that is valid independently on which unitary transfor-
mation U is applied. Eq. (4) clearly shows that, even
having at disposal any perfect unitary transformations
U , a value slightly bigger than zero for the initial inverse
temperature β of the real state ρ0 can end up hindering
the scaling (i.e., N →∞) of the considered quantum cir-
cuit or algorithm. The reason behind this result being so
general, lies again in the thermodynamic considerations
behind the Nernst’s unattainability principle, and thus in
the divergent cost of attaining a perfect pure state (i.e.,
with β →∞). In fact, it now becomes clear, that the is-
sue of scaling quantum computers regards two competing
limits:

lim
N→∞

lim
β→∞

F(ρ0, σ0) = 1 (5)

lim
β→∞

lim
N→∞

F(ρ0, σ0) = 0 . (6)

Eq. (5) states simply that if one is able to initialize a
qubit in a pure quantum state, then in principle a per-
fect, arbitrarily large quantum register can be realized.
While, Eq. (6) reflects the evidence that, for finite tem-
perature, increasing the size of the quantum device nec-
essarily entails a decrease in the attainable initial state
fidelity F(ρ0, σ0) that will eventually disrupt the compu-
tation. The non-commuting nature of the two series of
limits (5) and (6) is the second result of this work. In
addition, the results of Eq. (3) and Eq. (4) remain valid
even if the real initial state ρ0 contains residual quantum
coherence (in the form of off-diagonal terms) originated
by non-ideal state initialization routines. Refer to the
Supplemental Material for the proof of such result. Ac-
cordingly, in order to move beyond NISQ devices, we
need to prepare pure states with increasing fidelity by
properly taking into account also the needed resources,
at least at the energetic level. In doing this, quantum
state initialization could need to be improved at a faster
rate than the one at which the size of quantum computers
increases.

Let us now analyze the more general case in which
a noisy quantum circuit (or, in general, a quantum
channel) is applied to ρ0. In case the quantum chan-
nel is responsible for non-unitary dynamics, the value
(1 + e−β∆E)−N remains, for most non-unitary maps, an
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FIG. 1. Scaling of the fidelity F(ρ0, σ0) as a function of the
number N of qubits (in log-scale), for different single qubit
error rates η = 1 − (1 + e−β∆E)−1. We can observe a sharp
decay of the fidelity, due to the effective temperature β, as
the system size increases. It is thus important that the qubit
initialization error η is kept under the appropriate threshold,
depending on the number of the register qubits and the target
fidelity.

upper bound to the attainable fidelity F(ρ1, σ1) of the fi-
nal computation. However, there are some cases in which
this does not hold and the application of a noisy quantum
channel actually improves the initial fidelity. This can be
pictured by considering the extreme case whereby ρ0 is
the identity state on the 2N dimensional Bloch sphere.
This state is the fixed point of the unitary dynamics, so
one could easily find non-unitary maps that kick the sys-
tem out of the identity state, thus improving the final
fidelity with respect to the initial one. Other than the
identity state, there will also be a volume of states around
the identity for which this reasoning is valid and the ini-
tial fidelity F(ρ0, σ0) is no longer an upper bound to
F(ρ1, σ1). The theory behind these concepts is discussed
in the Supplemental Material. However, for the specific
case of depolarizing quantum channels, which are com-
monly used to model noisy quantum computers [39, 40],
it can be proved that (see the Supplemental Material for
the proof):

F(ρ1, σ1) ≤ F(ρ0, σ0) =
(
1 + e−β∆E

)−N
. (7)

Overall, these findings are quite general and hold – re-
gardless of coherent and possible non-unitary sources of
noise – as an upper bound to the attainable fidelity of
a generic operation U ∈ SU(2N ), given the constraints
imposed by thermodynamics.

To better understand our results, we provide a quan-
titative gauge of the attainable precision (in terms of
the fidelity function) of quantum computing, given a
nonzero temperature of the initial qubit states. In this
regard, in Fig. 1 one can observe a plot of the fidelity
F(ρ0, σ0) with respect of the size N of the qubit regis-
ter for some values of single qubit error rates η, related

to the effective temperature β by means of the relation
η ≡ 1−(1+e−β∆E)−1. In Fig. 1 it is apparent a sharp de-
cay of the fidelity F(ρ0, σ0) while increasing the number
N of qubits; even by starting with quite accurate sin-
gle qubit initialization, the fidelity will eventually start
degrading.

Once realized that perfect initialization may be chal-
lenging due to strict thermodynamic constraints imposed
by the third law of thermodynamics, one shall necessarily
perform quantum state initialization with an error good
enough to ensure that the fidelity F(ρ0, σ0) – as provided
by Eqs. (3) and (4) – is equal to the target value required
to the operation. To put this into perspective, to have
a target fidelity of 90% for a quantum computer of 1000
qubits, the error on the single qubit initialization has to
be well below 10−4 that, to our knowledge, is the best
recorded value [33, 34].

A similar kind of scaling, was already observed for the
preparation of GHZ states, both theoretically [41] and ex-
perimentally [42] (in particular, we refer to Fig. 17b) on
a 24-qubits trapped ion platform. However, GHZ states
are highly nontrivial, with respect to the |00...0〉 register
state, thus requiring the implementation of a Mølmer-
Sørenson gate. In such a case, the dominant effect ex-
plaining the fidelity decay is likely due to the number
of operations (scaling as ∼ N2) required to prepare the
GHZ state. Of course, the simpler case (analyzed in this
work) concerning the preparation of the factorized state
|00...0〉 on N qubits, as proved above, always remains
valid as an upper bound for the attainable fidelity. As
an example, we estimate that for the values of η ∼ 5·10−3

reported in [42], the fidelity to initialize the |00...0〉 state
for the 24-qubits will be ∼ 90%, while the actual mea-
sured fidelity after the circuit required to create the GHZ
state is ∼ 50%.

III. EXPERIMENTS

In this section, we test experimentally our theoreti-
cal findings, with the aim to understand in quantitative
terms how the fidelity of current flagship quantum de-
vices scales as a function of the system’s size and in re-
lation to the quantum state initialization. For this pur-
pose, experiments are performed using a superconducting
quantum computer provided by IBM [10]. Specifically,
our experiments are run on the ibm-lagos quantum com-
puter that, with 7 qubits and a quantum volume [43] of
32, was the larger device at our disposal.

The first realized scaling experiment consists in locally

measuring the initial register state |0〉⊗N ≡ |00...0〉 im-
mediately after its preparation. For each value of N ,
the experiment is repeated 5000 times to collect statis-
tics. Note that in such a case the fidelity F(ρ0, σ0) is

equal to the frequency by which the |0〉⊗N state is mea-
sured. By then performing the experiment for differ-
ent qubits’ number N , we obtain the results reported
in Fig. 2. From the figure one can observe that, while
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FIG. 2. Experimental fidelity values of the σ0 state on an
IBM quantum computer as a function of the number N of
reset qubits. The dashed line denotes the theoretical fit on
the experimental data using Eq.(4). In the inset, we show the
same plot but with the theoretical fit extended to 100 qubits;
the log-scale on the x-axis is used for visualization purposes.
In this figure, we test our theoretical scaling against data
from a real device, by extrapolating how much we could scale
it up before a drastic improvement to the qubit initialization
protocol are needed. Error bars over the experimental values
are computed by assuming that error fluctuations follow a
Gaussian distribution.

the single-qubit initialization fidelity is almost 99%, as
the qubit count increases this value drops significantly
to around 92%. To quantitatively evaluate the fidelity
scaling, we assume the fidelity to be scaling as Eq.(4),
and we fit the value of β∆E over the experimental data,
getting a value of β∆E = 4.35 ± 0.03 with a coefficient
of determination R2 = 0.976. The resulting curve, whose
analytical expression is provided by Eq. (4), is plotted as
the dashed line in Fig. 2. Since IBM provides us with
the values of ∆E [10] for each qubit of our processor
(all around 5 GHz), we can thus compute the value of
the effective temperature β, that for the realized experi-
ments is placed at 56.80 ± 1.21 mK. This effective tem-
perature, as expected, is a bit higher than the physical
temperature of the fridge (∼ 15 mK), since it takes into
account also the effect of other sources of noise such as
measurement-induced errors or single-gate errors. Note
that our choice to take a global constant for the effective
temperature gives a small discrepancy between the ex-
perimentally measured values and the theoretical scaling
curve where, in the experiment, every qubit has its own
effective temperature which is slightly different from the
average one. The trend of the fidelity scaling provided by
Eq. (4), with respect to the size N , is shown in the inset
of Fig. 2 where the predicted fidelity is evaluated for a cir-
cuit composed by a larger number of qubits. We remark
here that, since the number of qubits at our disposal was
just up toN = 7, this scaling is an extrapolation from our
theory and the fit we provide does not constitute a proof
that the scaling we propose is indeed the correct one.

Hence, from the results in Fig. 2, it becomes evident the
so fundamental role played by quantum state initializa-
tion for the effective realization of a large-scale quantum
computer (or more generally a quantum device), before
its fidelity dramatically decreases.

IV. RESET PROTOCOLS

We then focus on understanding how these results can
be improved. The simplest way to reset a qubit is to wait
for the relaxation time T1 such that the environment acts
as a reset for the qubit. Nevertheless, when T1 is large
(the meaning of “large” will depend on the application),
such a reset procedure is not viable, as it will drastically
increase the information processing time, i.e., the time
interval to run the whole protocol all times needed for
the desired goal. Therefore, active reset methods have
been devised, which fall into two categories: conditional
[44–46] and unconditional [30, 47, 48] resets. We em-
ployed a mixture of conditional resets methods and ther-
malization inspired by experiments performed by IBM
[49] where we take a register of qubits, initially prepared

in the superposition state |+〉⊗N ≡ (H |0〉)⊗N (with H

being the Hadamard gate)[50] is reset to |0〉⊗N by means
of K consecutive conditional resets. In this conditional
reset protocol, each qubit of the register is measured and
then a NOT-gate is applied conditionally on the measure-

ment outcome. Ideally, the register is reset to |0〉⊗N with
zero error, but practically its state is set to the density
operator ρK .

In Fig. 3, the results of the conditional reset experi-
ments, carried out on the IBM quantum computer ibm-
lagos 7-qubits, are plotted for a varying number of re-
sets K. As one can observe, by increasing the number
of resets (i.e., employing more energy to carry out the
reset protocol), the state reset fidelity increases up to
a certain plateau, whose value depends on (i) the mea-
surement readout error, (ii) the gate noise affecting the
NOT operation, as well as (iii) the thermalization of the
qubit due to the environment. We also observe that we
can further increase the fidelity of our reset protocol by
inserting a delay of 500µs between two consecutive re-
set (dash-dotted lines in Fig. 3) during which the qubits
thermalize with the environment. This delay value of
500µs is the maximum that we could implement on our
machine and we observed that, for different values, in-
creasing the delay would lead to a better reset fidelity. A
similar behaviour was also observed in [51] for a range of
different processors. Let us also note that the difference
between the results provided by the reset protocol ap-
plied both to a single-qubit register and to the 7-qubits
register lies in the plateau’s value (that decreases as the
size of the register increases) and not in the number K of
resets needed to reach the maximum allowed fidelity. Our
findings are the hint that achieving greater fidelity values
in state initialization protocols just for a larger amount
of thermodynamic resources (i.e., energy and time) than
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FIG. 3. Experimental fidelity between the quantum compu-
tational state σ0 and the density operator ρK , solution of the
conditional reset protocol, as a function of K. The latter
denotes the number of consecutive conditional resets we per-
formed. The circle markers are the fidelity values in applying
conditional resets on a single-qubit register, while the cross
markers identify the conditional resets on the 7-qubits reg-
ister. Dashed lines refer to consecutive resets without delay
and dash-dotted lines to resets with a delay of 500µs between
them. The error bars are smaller than the size of the markers.
We can observe that repeating more times the reset protocol
(i.e., using more resources) improves the fidelity of the state
initialization. However, after a certain number of repetitions,
this improvement saturates due to the measurement errors
that affect the conditional reset protocol.

the nominal case, as we quantified in Fig. 3.

V. CONCLUSIONS

In conclusion, the resolution of any quantum state ini-
tialization protocol, as the ones addressed here, is con-
strained by the statement of the third law of thermo-
dynamics, whereby the purification of a quantum state
(equivalent to a cooling process in case of qubits) requires
an increasing amount of resources (in terms of energy,
time or space) as the desired purity value is higher.

Here, we have also proved, both theoretically and ex-
perimentally, that the larger the size of the quantum reg-
ister we need to prepare, as well as of the quantum circuit
we need to realize, the more expensive the initialisation
protocol has to be. The observed scaling clearly follows

the thermal distribution expressed by Eq. (4) for every
finite value of the effective inverse temperature β of the
initial qubits register. We argue that this thermodynamic
bound has to be carefully taken into account, not only
from a purely theoretical point of view, but also from
a technological one as we aimed to show with our ex-
perimental results. The solution to the challenge posed
by this constraint, is to use better protocols and using
more resources in order to reach the target fidelity values
needed by the desired size of the register.

In this regard, it would be of great interest to compare
different implementations of conditional and uncondi-
tional resets, as well as more recent ideas which avoid
resets entirely [52]. A detailed study of all the variants
of qubit reset is timely and of great importance to the
future of quantum computing. In future investigations,
it might also be interesting to explore if quantum
computing can be redesigned, thus pushing efforts for
a quantum computation operating (even partially) on
mixed quantum states [53]. To conclude, we would like
to stress the fundamental importance that the thermo-
dynamical study of quantum systems will have for the
development of quantum devices and the successful real-
ization of large-scale quantum computers. As we showed
in this work, considerations about energy dissipation,
finite-temperature states and other thermodynamical
quantities will be of fundamental importance for the
next developments in practical applications of quantum
computing.
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man Sathyamoorthy, Göran Johansson, and Per Delsing.
Storage and on-demand release of microwaves using su-
perconducting resonators with tunable coupling. Applied
Physics Letters, 104(23):232604, 2014.

[32] Kuan Yen Tan, Matti Partanen, Russell E Lake, Joonas
Govenius, Shumpei Masuda, and Mikko Möttönen.
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PROOF OF EQ.(3)

The fidelity between two generic density matrices ρ and
σ is provided by the well-known Uhlmann fidelity that is

defined as F(ρ, σ) =
(
Tr
[√√

ρ σ
√
ρ
])2

. If at least one of
the two states is pure, i.e., σ = |ψ〉〈ψ|, the expression of
F(ρ, σ) simplifies as F(ρ, σ) = Tr [ρσ]. Let us prove such
a statement. The proof is based in the evidence that the
fidelity F is invariant under unitary transformations [38],
i.e.,

F(Uρ0 U
†, Uσ0 U

†) = F(ρ0, σ0) (8)

where U generic unitary operator. This entails that, by
defining ρ1 ≡ Uρ0 U

† and σ1 ≡ Uσ0 U
†, the following

equation holds:

F(ρ1, σ1) = F(ρ0, σ0) = Tr [ρ0σ0] . (9)

Eq. (9) is exactly Eq.(3) in the main text.

PROOF OF EQ. (4) BY INCLUDING INITIAL
QUANTUM COHERENCE

Let us now assume that the actual initial state of the
considered quantum system is not just

ρ0 ≡
N
⊗
i=1

1

1 + e−β∆E

(
e−β∆E 0

0 1

)
, (10)

thermal state at inverse temperature β, also contains
quantum coherence terms that one may consider as a
defect of the reset protocol for quantum state initialisa-
tion. Hence, let us consider that the actual initial state
(after the initialisation procedure) is

ρ0 ≡
N
⊗
i=1

1

1 + e−β∆E

(
e−β∆E ε
ε∗ 1

)
. (11)

If, then, we make use of Eq.(3), one simply gets that

F(ρ1, σ1) = Tr [ρ0σ0] . (12)

Afterwards, since σ0 ≡ |00...0〉〈00...0| is a projector on
the computational basis, we still have that

F(ρ1, σ1) =
(
1 + e−β∆E

)−N
. (13)

In conclusion, Eq. (4) remains valid even for initial states
which are not purely thermal (or mixed) ones, i.e, in other
terms, initial quantum coherence in the register qubit
states does not affect the scaling of the fidelity F(ρ1, σ1).

PROOF OF EQ. (7)

We here prove that
(
1 + e−β∆E

)−N
is still the upper

bound to the attainable fidelity also in the case the quan-
tum gate is also followed by a depolarizing channel acting
on ρ as E(ρ) ≡ (1−λ)ρ+λTr[ρ]I/2N , with ρ generic den-
sity operator. The depolarizing channel is a model for
quantum errors commonly affecting quantum systems in
general and quantum gates in particular [3, 39], which
makes non-unitary the applied quantum operation.

Let us thus apply the depolarizing channel E to
Uρ0 U

†; one gets:

ρ1 = E(Uρ0 U
†) = (1−λ)Uρ0 U

†+
λ

2N
Tr[Uρ0 U

†] I, (14)

where I denotes the 2N dimensional identity matrix and
λ, with 0 ≤ λ ≤ 4N/(4N − 1), is the parameter that

https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/reset/backend_reset
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/reset/backend_reset
https://nonhermitian.org/posts/2021/2021-11-07-rep_delay.html
https://nonhermitian.org/posts/2021/2021-11-07-rep_delay.html
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quantifies how much the channel is non-unitary. Our
target state σ1, on the other hand, would be σ1 = Uσ0U

†.
Then, we check whether

F(ρ0, σ0) = Tr[ρ0σ0] ≥ Tr[ρ1σ1] = F(ρ1, σ1). (15)

For this purpose, Tr[ρ1σ1] can be explicitly expressed as
Tr[ρ1σ1] = (1−λ)Tr[ρ0σ0]+ λ

2N by using the cyclic prop-
erty of the trace. In this way, one obtains the following
inequality:

Tr[ρ0σ0] ≥ (1− λ)Tr[ρ0σ0] +
λ

2N
. (16)

With some simple manipulations, the inequality (16) sim-
plifies as

Tr[ρ0σ0] ≥ 2−N . (17)

Finally, by recalling the explicit expression of Tr[ρ0σ0],
we have that

(
1 + e−β∆E

)−N ≥ 2−N (18)

that is always true ∀β ≥ 0. We have thus proved Eq. (7).

FIDELITY SCALING WITH GENERIC
NON-UNITARY CHANNELS

Here, we prove the conditions that allow for the va-
lidity of the bound in Eq. (7) for a generic non-unitary
channel Φ, with ρ1 = Φ(ρ0). For calculation purposes,
we simply assume that the target transformation is the
identity channel such that σ1 = σ0. Under these assump-
tions, the expression that we want to check, i.e.,

F(ρ1, σ1) ≤ F(ρ0, σ0), (19)

becomes the following inequality:

Tr[ρ1σ0] ≤ Tr[ρ0σ0]. (20)

From Eq. (20), by making explicit each terms in the in-
equality, one gets that

〈N |Φ(ρ0) |N〉 ≤
(
1 + e−β∆E

)−N
, (21)

i.e.,

e−β∆E ≤ (〈N |Φ(ρ0) |N〉)−1/N − 1 . (22)

Therefore, in order to satisfy the inequality (19), one has
to require that

β ≥ − 1

∆E
log
[
(〈N |Φ(ρ0) |N〉)−1/N − 1

]
. (23)

Eq. (23) depends on the specific map Φ(·) one is con-
sidering, and both sides of the inequality is dependent on
β: the left-hand-side explicitly, while the right-hand-side
implicitly. Thus, the validity of Eq. (23) can be tested
only once ρ0, Φ and N have been assigned. In general,
there will be some particular quantum states and non-
unitary quantum maps for which Eq. (19) is not satis-
fied, since counter-intuitively the application of a noisy
channel may result in an increased value of the fidelity
F . To better frame the meaning of inequality (23), let us
look at a pathological case that does not satisfy Eq. (23),
i.e., considering β = 0 that corresponds to take ρ0 equal
to the completely mixed state. Being such a state the
fixed point of any unitary dynamics, there is no way to
bring the real initial state ρ0 closer to the target state σ0

by means of a unitary operation. Hence, for the case of
β = 0, the bound (23) is not verified, since there might
exist at least one non-unitary channel/transformation (a
quantum purification process in the considered pathologi-
cal case) able to correctly modify the real initial quantum
state and make it overlap with σ0, such that the fidelity
F(ρ1, σ1) results increased. Accordingly, we can conclude
that, while Eq. (19) holds for most quantum states and
non-unitary maps, it may be violated, as proved by the
pathological case with β = 0.
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