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Giovannetti, Lloyd, and Maccone [1] proposed a quantum random access memory (QRAM) ar-
chitecture to retrieve arbitrary superpositions of N (quantum) memory cells via O(log(N)) quan-
tum switches and O(log(N)) address qubits. Towards physical QRAM implementations, Chen et
al. [2] recently showed that QRAM maps natively onto optically connected quantum networks with
O(log(N)) overhead and built-in error detection. However, modeling QRAM on large networks has
been stymied by exponentially rising classical compute requirements. Here, we address this bottle-
neck by: (i) introducing a resource-efficient method for simulating large-scale noisy entanglement,
allowing us to evaluate hundreds and even thousands of qubits under various noise channels; and (ii)
analyzing Chen et al.’s network-based QRAM as an application at the scale of quantum data centers
or near-term quantum internet; and (iii) introducing a modified network-based QRAM architecture
to improve quantum fidelity and access rate. We conclude that network-based QRAM could be
built with existing or near-term technologies leveraging photonic integrated circuits and atomic or
atom-like quantum memories.

I. INTRODUCTION

A quantum random access memory (QRAM) is an es-
sential computational primitive for many quantum algo-
rithms. The ability to perform a QRAM query in log(N)
time steps, where N is the number of memory cells, im-
plies polynomial speed-ups for applications such as quan-
tum machine learning [3], matrix inversion [4], quantum
imaging [5], and quantum searching [6]. Despite its clear
importance to quantum information processing, a QRAM
has yet to be realized experimentally. Hence, finding a
suitable architecture that can be realized in the near-
future remains an active research subject in the theoret-
ical and experimental domains.

In this article, we present a novel method to simulate
large-scale entanglement accounting for various sources
of noise. We are able to efficiently simulate circuits
with thousands of qubits under dephasing, amplitude
damping, and CNOT errors. Based on our simulation
model, we present a novel QRAM architecture for pho-
tonic network-based QRAM based on Ref. [2]. The fea-
sibility assessment is based on realistic parameters ex-
tracted from recent experiments, which we will refer to
throughout the article.

The article is organized as follows. In Section II,
we present the state-of-the-art for QRAM by briefly re-
viewing the notion of a classical RAM, followed by an
introduction to the fan-out scheme, the bucket-brigade
model, and a recently introduced network-based QRAM

scheme [2] based on quantum teleportation. We shall call
this scheme teleportation-based deterministic QRAM, or
TD-QRAM for short. In Section III, we present our
methods to simulate large-scale noisy entanglement. In
Section IV, we simulate the teleportation-based QRAM
under different noise channels, up to thousands of qubits.
Based on these numerical simulations, we identify CNOT
error as the main bottleneck for scalability. We then in-
troduce an alternative QRAM architecture in Section V,
that we dub teleportation-based stochastic QRAM, or TS-
QRAM, which reduces the effect of CNOT errors by con-
sidering a mix of electronic and nuclear CNOTs. We
conclude by assessing the experimental feasibility of the
proposed scheme.

II. QRAM DEFINITION AND
ARCHITECTURES

A classical RAM [7] consists of a binary tree leading
to a final layer of memory cells, each corresponding to an
unique address. The address is represented as a series of
bits, with each bit corresponding to a layer of the binary
tree. Each bit of an address describes how the bus signal
propagates in the layer: to the right or to the left child
node. Hence, the nodes of the binary tree act as switches
for the address. When provided with a n-bit address, the
RAM returns a bit string fk associated to the memory
cell labeled k. This is called the fan-out scheme [1].
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A QRAM is the quantum analog of the RAM, similarly
consisting of addresses, quantum switches, and memory
cells in the form of qubits. In particular, with a quantum
address state, over the set of address qubits a, given by
|ψ′in〉 =

∑N
j=1 αj |j〉a, one can retrieve data from a super-

position of memory cells. A QRAM query is defined via
the following transformation,

|ψin〉 = |ψ′in〉|∅〉b −→ |ψout〉 =

N∑
j=1

αj |j〉a|Dj〉b (1)

where |∅〉 represents an ancillary state, over the bus qubit
b, which transforms into the retrieved data state after
querying. In this article, we will restrict our investi-
gations to classical data, i.e. |Dj〉 are separable bits.
A direct conversion of classical fan-out protocol to the
quantum realm is inefficient since it requires maintain-
ing quantum coherence over an exponential number of
connections [1].

Three main schemes have been investigated to date:
the fan-out scheme that was already described, the
bucket brigade model, and the teleportation-based
scheme. Important figures of merit for the QRAM are
the fidelity of the above transformation and the query
time. For a detailed study and comparison of the first
two schemes, please refer to Ref. [8].

In the bucket brigade (BB) model [1], the number of
qubits of the device still scales as O(2N ). However, the
number of control gates to be performed in each mem-
ory call only scales polynomially with N . Therefore, ac-
counting for qubit decoherence, a QRAM based on the
BB scheme is more viable than the fan-out scheme. To
enable this scaling, the protocol includes a third state
in each node, called the “wait” state for preventing the
effect of super-decoherence on all the nodes in the tree.
Nonetheless, Hann et al. [8] have recently shown that
excluding the wait state still retains a poly-logarithmic
scaling under different noise channels.

More recently, Chen et al. presented a photonic
network-based QRAM scheme [2] that makes use of quan-
tum teleportation of addresses from a quantum computer
to the QRAM binary tree. Such a scheme greatly in-
creases the protocol’s efficiency by teleporting the reg-
isters to the layers (initially prepared in GHZ states) in
parallel as opposed to in series, thereby circumventing the
event of a single qubit loss collapsing the entire tree state.
Additionally, the proposed QRAM maps onto quantum
networks, leading to potential applications in distributed
quantum computing and sensing.

However, Chen et al. left as an open challenge the sim-
ulation of the scheme on large-scale networks since the
computational complexity scales exponentially with the
number of qubits. In this work, we bypass this problem
resorting to more efficient ways of modeling the noise in
stabilizer states. Moreover, this method generalizes to
other quantum networking tasks with similar construc-
tions, such as protocols for distributed quantum compu-
tation.

Setting mode Routing mode

Quantum
Computer

...

...

...

Quantum RAM
Access Tree

Memory Cells

Layer 1

Layer 2

Layer 3

D1 D2 D3 D4 D5 D6 D7D0
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b) c)

FIG. 1. Overview of a teleportation-based QRAM architec-
ture. (a) A quantum RAM in the form of a binary tree
comprises GHZ states for each physical layer. The left-most
node of each layer i is entangled with an ancillary qubit in
a remote quantum computer, which hosts the query address
qubits (blue). Bell state measurement in the quantum com-
puter then teleports the address state onto the access tree.
The elementary operations to constructing GHZ states in a
photonic integrated circuit (PIC) QRAM consist of: (b) de-
tecting a cavity-reflected photon to herald successful mapping
of a photonic address register qubit onto a stationary spin
qubit, and (c) reflecting a subsequent photon to perform spin
state-dependent quantum routing in a quantum switch.

III. SIMULATING LARGE-SCALE NOISY
ENTANGLEMENT

The need to distribute entanglement is central in quan-
tum information processing schemes ranging from quan-
tum computing to sensing to communications [9–11].
Simulation of distributed entanglement in a network set-
ting, be it a long-distance network such as a possible
future quantum internet [12], or small-distance quantum
local area network (QLAN) [13], is important to assess-
ing the limitations imposed by near-term quantum tech-
nologies. The architecture of the QRAM considered in
this paper, building on photonic network-based QRAM
proposed in Ref. [2], involves a series of exponentially
growing GHZ states, with the largest having as many
qubits as there are memory cells. Each GHZ state spans
across a physical layer in the QRAM architecture, and
the number of nodes per layer grows exponentially with
the number of memory cells 2n ≡ N to be addressed, as
shown in Fig. 1.
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Computer simulations of noisy quantum processes in
such a system quickly becomes computationally inten-
sive [14–16] due to the density matrices growing expo-
nentially in size with the number of qubits. However,
both the operations used to create these GHZ states and
the teleportation protocol to map the address state onto
the QRAM access layers themselves belong to the set of
Clifford gates. This set of operations can be classically
simulated efficiently [15]. Moreover, in the protocol, we
will only consider a fixed set of operations belonging to
the Clifford group. This approach enables an explicit and
efficient description of all the intermediary states, up to
local unitary corrections. In this article, we develop effi-
cient methods to simulate large-scale noisy entanglement
by characterizing the impact of noise at all intermediate
steps, and apply these tools to simulate a noisy QRAM.

A. Discrete-time-event based simulations with
NetSquid

Given the complexity of a quantum network and its for-
mulations, a tool such as NetSquid [17] is essential to sim-
ulating a QRAM. NetSquid is capable of defining intri-
cate discrete-time-event based protocols, with a number
of steps and operations that are executed conditioned on
the signaling and heralding of prior processes. Further-
more, NetSquid can simulate quantum circuits, providing
methods for (i) stabilizer circuits, with simpler and faster
execution, of complexity O

(
m2
)
, where m is the number

of qubits; (ii) graph states formalism, with possibly even
faster execution, in O

(
d2
)
, where logm < d < m and

m is again the number of qubits; (iii) density matrix
formalism, which is slower in execution, in O

(
23m

)
; (iv)

sparse density matrix formalism that relies on sparse ma-
trix codes to speed up the execution.

Instead of using the density matrix formalism from
NetSquid, we begin by retrieving the timing information
in each step of the protocol from a noiseless discrete-time
event simulation, resorting to the stabilizer formalism
in polinomial time. We then incorporate the extracted
times to estimate the effects of decoherence at each step
a posteriori. With this information at hand, we have ac-
cess to the time-evolved state of the QRAM tree at all
steps of the protocol.

In the following section, we formalise the elementary
building blocks for the operations required to create these
GHZ states across each physical layer in the QRAM, and
explain how different types of noise affect each of the
intermediate steps, allowing for a reconstruction of the
density matrix. We analysed dephasing, damping and
depolarizing channels, and we believe other noise models
could be added in a similar manner. The result is an
explicit description of the final state of the QRAM ac-
cess tree state prior to the execution of the teleportation
protocol. The error in the state of the access tree en-
compasses the majority of all the error of accessing the
QRAM, as the number of steps and operations made af-

ter creating the GHZ state grows with the total number
of memory addresses logarithmically, whereas the process
of generating the GHZ state requires a number of opera-
tions linear with the number of memories.

IV. TELEPORTATION-BASED
DETERMINISTIC QRAM

As described in Section II, there are several architec-
tures for a QRAM. Here, we focus on the optically medi-
ated quantum network-based QRAM architecture intro-
duced in Ref. [2], as it offers several key benefits: imple-
mentation in quantum networks compatible with envi-
sioned quantum internet architecture and quantum data
centers, and faster query times and possibility of exe-
cuting in a non-local manner by means of teleportation.
Hence, this scheme works under any network-like archi-
tecture, be it locally (e.g. on a chip) or across large dis-
tances (e.g. over a quantum internet). Without loss of
generality, we characterize each node of the architecture
as one of a spin-photon network that could be imple-
mented in photonic integrated circuits (PIC).

The architecture of the QRAM is similar to previous
models, such as BB and the fan-out models. The main
difference concerns the execution of the protocol and the
resources available at each node. In this architecture, one
considers two agents: the quantum computer, which pre-
pares the addresses, and the QRAM or quantum access
tree (see Fig. 1). The quantum computer must provide
an address state with n = log2N qubits, where N is the
total number of memories (for simplicity assume n ∈ N).
The QRAM has a binary tree architecture, with n phys-
ical layers, where the kth layer (k ∈ {1, ..., n − 1}) has
2k−1 quantum nodes. As we describe next, in each phys-
ical layer, all the nodes share a GHZ state, which is used
to teleport the address state onto the QRAM itself, al-
lowing for an ancilla qubit to access the memories in the
correct superposition.

A. Physical implementation

Without loss of generality, we focus on a QRAM im-
plementation involving solid-state spin qubits integrated
into PICs, an approach that is promising in terms of scal-
ability. In particular, we consider diamond nanophotonic
cavities coupled with silicon-vacancy centers [18, 19] as
each QRAM tree node. Each emitter contains an elec-
tronic spin that directly interacts with the photonic ad-
dress register qubits and an accompanying nuclear spin
acting as a long-lived memory. By entangling the elec-
tronic spin with the photon via cavity reflection, consec-
utive reflection of a photon off two neighboring nodes
and subsequent heralding achieves spin-spin entangle-
ment. This remote entangling strategy is repeatedly used
to generate a GHZ state across each layer. Such opera-
tions are probabilistic (see Fig. 2): the photon has a non-
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zero probability of being lost to the environment before
reflecting off two cavities and arriving at the detector.
On the other hand, it is possible to perform close to de-
terministic two-qubit gates between the electronic and
nuclear spin qubits, albeit with a larger error [20, 21].
For this reason, we term this architecture teleportation-
based deterministic QRAM, or TD-QRAM.

e1 e2 e1 e2 e1 e2

X
p

Electron Photon Interaction

FIG. 2. Execution of a CNOT gate between two electrons, e1
and e2, mediated by a photon.

In these types of systems, the main contributors to er-
rors are (i) spin phase errors (at rate 1/T2), (ii) spin flip
errors (at rate 1/T1), and (iii) errors in hyperfine gates
between electron and nuclear spins (see Table E in Ap-
pendix E). We leave out photon-electron interactions, as
one could conceive trading-off the efficiency η for arbi-
trarily high fidelity in the cavity-reflection based scheme
proposed in Ref. [22] in the high-cooperativity and over-
coupling regime.

Hence, we explore different values for T1, T2 of both
electronic and nuclear spin qubits, and pe and pn for
the probabilities of error in electronic and nuclear spin
CNOTs. For the remaining of this article, we set Tn1 =
100 T e1 ≡ 100 T1 and Tn2 = 100 T e2 ≡ 100 T2. Nuclear
spins have a higher coherence time as they are much
less coupled to the noisy spin-bath compared to elec-
tronic spins. Reported values of characteristic times go
up to T e1 ∼ 1 s, T e2 ∼ 10 ms [23], with pe, pn = 10−2 ∼
10−4 [24, 25]. Moreover, we detail other important phys-
ical parameters of this type of system, used for the sim-
ulations, in Appendix E.

B. Elementary building blocks

The protocol for generating GHZ states across each
layer consists of two steps (see Fig. 3):

1. Generating entanglement between the odd-indexed
links. This entails first distributing photon-
mediated heralded entanglement between the
electrons, with a certain efficiency η, followed by
electronic CNOTs being applied with the electron
qubit acting as the control and the nuclear qubits
as the target. Finally, a measurement of the elec-
tron spin in the X basis, with posterior corrections
sent to the nuclear qubits.

2. The second step links the entangled pairs, creating
a larger GHZ state distributed across each layer.
This starts off by generating heralded entangle-
ment, with the same efficiency η, between the even
links, followed by applying nuclear CNOTs, where
now the control is the nuclear qubit and the target
is the electronic qubit. We then make consequent
measurements in the Z basis on both electronic
qubits followed by appropriate Pauli corrections.

After the aforementioned steps, each physical layer
hosts a GHZ state shared among all the nodes. Subse-
quently, each physical layer extends its (2k−1)-GHZ state
into a (2k−1 + 1)-GHZ state by sharing an additional en-
tangled pair between an outermost node in the QRAM
layer and the quantum computer, which holds the ad-
dress state. After performing a Bell state measurement
and corresponding corrections, the address state is tele-
ported to the QRAM. Lastly, the memories can be ac-
cessed in superposition to complete the QRAM protocol.

1. EPR pair creation and transferring

The first step to creating a GHZ state across each layer
is to share entanglement between neighbouring nodes.
EPR pairs are created by performing a distributed CNOT
gate between these nodes’ electronic spin qubits, medi-
ated by a photon. Despite the process being probabilistic
with an efficiency dependent on the experimental imple-
mentation, it is a heralded entanglement. Hence, the
presence (absence) of photon detection informs the suc-
cess (failure) of the entangling attempt. After this CNOT
is applied between the electronic spins, an EPR pair is
created and transferred to the nuclear spins in each node
via a deterministic electronic CNOT.

Electron Nuclear Electronic CNOT

nL nR

eL eR

nL nR

eL eR

X
eL

X
eR

FIG. 4. Building block for step 1: Creating an EPR pair
between two electrons, then transferring the entanglement to
the nuclear spin qubits.

Given the different operations and various types of
qubits involved, we introduce noise sources in the sys-
tem to estimate the protocol’s fidelity. We consider am-
plitude damping, dephasing, and CNOT gate errors for
both electronic and nuclear spin qubits.

In this step, illustrated in Fig. 4, the following takes
place:
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Electron Nuclear Electronic CNOT Nuclear CNOT

n1 n2 n3 n4 n5 n6

e1L e1R

e2L e2R

e3L e3R

e4L e4R

e5L e5R

n1 n2 n3 n4 n5 n6

e1L e1R

e2L e2R

e3L e3R

e4L e4R

e5L e5RX
eL

X
eR

n1 n2 n3 n4 n5 n6

e1L e1R

e2L e2R

e3L e3R

e4L e4R

e5L e5R Odd

EG

n1 n2 n3 n4 n5 n6

e1L e1R

e2L e2R

e3L e3R

e4L e4R

e5L e5R

n1 n2 n3 n4 n5 n6

e1L e1R e3L e3R e5L e5R

e2L e2R e4L e4R

Z
eL

Z
eR

n1 n2 n3 n4 n5 n6

e1L e1R

e2L e2R

e3L e3R

e4L e4R

e5L e5R Even

EG

FIG. 3. Example of the different steps in creating the GHZ state for a chain of 6-qubits, excluding the final step of entangling
with the quantum computer: (1 ) EPR pair creation and transfer; (2 ) Linking of pairs.

1. eL and eR decohere for a duration of time teL and
tnL, respectively;

2. An electronic CNOT is applied between eL and nL,
with an error probability of pe,

3. An electronic CNOT is applied between eR and nR
with an error probability of pe,

4. nL and nR decohere for a duration of time tnL and
tnR, respectively.

Hence, these parameters, plus the parameters associ-
ated with the physical systems, namely the T1 and T2
times, govern the final form of the entangled pairs. Using
the notation ε(σ) = 1−e−σ and ε(σ) = 1−ε(σ) = e−σ for
parameters that are functions of other physical parame-
ters, namely the elapsed times and coherence times. We
will use ε for parameters that go to zero in the absence
of noise, as is the case for ε(·) and pn. We also further
assume ε � 1. We then apply the following sequence
of noise channels (check Appendix A for details on the
parameters):

1. Apply a Dephasing channel with probability
ε(teL/T

e
2 ) ≡ ε

(2)
eL and ε(teR/T e2 ) ≡ ε

(2)
eR to electronic

spin qubits eL and eR, respectively;

2. Apply an Amplitude damping channel with prob-
ability ε(teL/T

e
1 ) ≡ ε

(1)
eL and ε(teR/T

e
1 ) ≡ ε

(1)
eR to

electronic spin qubits eL and eR, respectively;

3. Apply Depolarising channels with probability pe to
all qubits, after applying CNOTs (modelling a noisy
CNOT);

4. Apply a Dephasing channel with probability
ε(tnL/T

n
2 ) ≡ ε

(2)
nL and ε(tnR/Tn2 ) ≡ ε

(2)
nR to nuclear

spin qubits nL and nR, respectively;

5. Apply an Amplitude damping channel with prob-
ability ε(tnL/T

n
1 ) ≡ ε

(1)
nL and ε(tnR/T

n
1 ) ≡ ε

(1)
nR to

nuclear spin qubits nL and nR, respectively;

The final state for each entangled pair becomes:

1

2

1− µ 0 0 ν
0 µ 0 0
0 0 µ 0
ν 0 0 1− µ

 (2)

where

µ =
1− f(ε

(1)
eL , ε

(1)
eR)(1− pe)2g(ε

(1)
nL, ε

(1)
nR)− ε(1)nLε

(1)
nR

2
, (3)

ν = ε
(2)
eL · ε

(2)
eR · ε

(2)
nL · ε

(2)
nR ·

√
ε
(1)
eL · ε

(1)
eR · ε

(1)
nL · ε

(1)
nR · (1− pe)

4

(4)

and

f(ε1, ε2) = 1− ε1 − ε2 + 2ε1ε2,

g(ε1, ε2) = (1− ε1)(1− ε2)
(5)

For intuition regarding the ε function, consider the fol-
lowing two limits: (1) σ → 0 in the noiseless regime where
the memory coherence time goes to infinity (no decoher-
ence) and (2) σ →∞ where there only exists noise and all
the information is scrambled. In these limits we retrieve:
limσ→0 ε(σ) = 0, limσ→∞ ε(σ) = 1, limσ→0 ε(σ) = 1 and
limσ→∞ ε(σ) = 0.

2. Linking of Bell pairs

The following step is crucial to extending entanglement
from bipartite to GHZ states across the entire physical
layer of the QRAM. It relies on using an entangled pair
to combine two GHZ states of smaller sizes into a larger
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GHZ state, whose number of qubits equals to the sum of
each of the elementary GHZ states (i.e. n1-GHZ linked
with a n2-GHZ becomes a (n1 + n2)-GHZ state).

Electron Nuclear Nuclear CNOT

nL nR

eL eR

......

Z
eL

Z
eR

nL nR

eL eR

......

FIG. 5. Building block for step 2: Linking two GHZ states
through an entangled pair and a set of operations and mea-
surements.

In this step, we account for decoherence before apply-
ing CNOTs, therefore entering the previous expressions
for the form of each pair. The decoherence to be analysed
in this step stems from:

1. A nuclear CNOT gate on eL and nL with proba-
bility of error pn;

2. A nuclear CNOT gate on eR and nR with proba-
bility of error pn;

3. Nuclear qubits nL and nR decohere after a CNOT
for t′.

Additionally, for each block, we analyse the impact of
decoherence by applying the following noise channels:

1. Apply depolarising channels with probability pn to
all qubits (eL, eR, nL, nR), after applying CNOTs
(modelling a noisy CNOT);

2. Apply a dephasing channel with probability
ε(t′nL/T

n
2 ) ≡ ε

′(2)
nR and ε(t′nR/T

n
2 ) ≡ ε

′(2)
nL to nuclear

spin qubits nL and nR, respectively;

3. Apply an amplitude damping channel with proba-
bility ε(t′nL/T

n
1 ) ≡ ε

′(1)
nR and ε(t′nR/T

n
1 ) ≡ ε

′(1)
nL to

nuclear spin qubits nL and nR, respectively;

Note that all the following calculations are now lower
bounds for the fidelity, as calculation of the full analyt-
ical expressions grows exponentially with the number of
qubits. Because of this, we keep only the terms up to
O (ε). In Appendix B, we detail and test the validity of
our approximations.

The final GHZ state in each layer is described by a
matrix with the following form:

1

2


ρ00 0 . . . 0 ρ01
0 ε . . . 0 0
... 0

. . . 0
...

0 0 . . . ε 0
ρ10 0 . . . 0 ρ11

 (6)

where all ε terms are of at least order O(ε) and do not con-
tribute to infidelity, as they are orthogonal to the GHZ
state.

The diagonal elements that we consider are only the
first and the last, as the remaining ones have at least O (ε)
and, when expanding to a larger GHZ state, contribute
in O

(
ε2
)
or higher orders, hence negligibly affecting the

fidelity.
Let us first consider the form of the state after exe-

cuting the linking protocol in a noiseless manner, with
previously noisy states, as the ones that result from the
entangling step given by Eq. 2. Starting with the simple
case of a 4-qubit GHZ state built from three states of
the form of Eq. 2, with parameters (µj , νj), j = 1, 2, 3
respectively, the final matrix is:

1

2


µ1µ2µ3 0 . . . 0 ν1ν2ν3

0 µ1µ2µ3 . . . 0 0
... 0

. . . 0
...

0 0 . . . µ1µ2µ3 0
ν1ν2ν3 0 . . . 0 µ1µ2µ3

 (7)

where we, again, denote a bar over a variable as 1 minus
itself, µi ≡ 1 − µi. Note that each of the µi comes from
one of the pairs used to create the GHZ state, as these
pairs are solely described by two numbers (µi, νi) (see
Eq. 2). There exists a rule for each entry in the diagonal,
which we detail in Appendix B, and the same rule holds
for any number of qubits of the final state. The GHZ
diagonal entries then become:

ρ00 = ρ11 = µ1µ2µ3 (8)

Now, adding the effect of the noisy CNOTs on the
state, we calculate the diagonal terms that are shown
to be identical, given by:

ρ′00 = ρ′11 =
(

1− pn
2

)2
(1− µ1)(1− µ2)(1− µ3)

− pn
(

1− pn
2

)
(1− µ1 −

pn
2

)(1− µ2 −
pn
2

)(1− 2µ3)

+ O
(
ε3
)

=

[(
1− pn

2

)2
− pn

(
1− pn

2

)]
(1− µ1)(1− µ2)(1− µ3)

+ O
(
ε2
)

≡ h(pn)(1− µ1)(1− µ2)(1− µ3) + O
(
ε2
)

(9)

where we recall that every term with pn, µi � 1 converges
to zero in the noiseless limit. For the other diagonal
entries, we multiply them by h(pn).

Finally, incorporating memory decoherence after
CNOTs, we perform another approximation. For the di-
agonal terms, only the damping channel plays a role. The
first and last entries of the diagonal become:

ρ′′00 = h(pn)
(
µ1µ2µ3 + ε

′(1)
nL µ1µ2µ3 + ε

′(1)
nR µ1µ2µ3

)
+ O

(
ε4
)

ρ′′11 = ρ11(1− ε′(1)nL )(1− ε′(1)nR )
(10)
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In this approximation, the extra terms that appear for
the first entry are already of order O

(
ε3
)
and could be

neglected.
Lastly, we compute the off-diagonal terms by multiply-

ing every contribution from each noise channel applied in
the correct manner. The expression is given by:

ρ′′01 = ρ′′10 =ν1ν2ν3 · ε′(2)nL ε
′(2)
nR

√
ε
′(2)
nL ε

′(2)
nR · (1− pn)2f(pn, pn)

(11)
When extending the linking protocol to a larger num-

ber of qubits, the expressions maintain their form. We
only need to add all the terms in a similar manner as in
the case of the 4-GHZ state. The complete analysis is
detailed in Appendix B.

3. Remarks

Thus far, we show how three types of noise (one for
the two-qubit operations and two for individual memo-
ries) influence the final state of the GHZ states generated
across each physical layer of the QRAM access tree. Note
that we always present the full-expressions accounting for
all the noise channels. In fact, if we include a specific
noise channel or a subset of what we have considered, we
may simply set the parameters corresponding to other
noises to zero. For example, it is straightforward to ver-
ify that setting pe and pn to zero and T1 to infinity re-
covers the case for only having dephasing, thus affecting
only the off-diagonal terms. The same is valid for all the
other noises.

C. Effect of decoherence - Simulation

To simulate the QRAM initialization protocol, we use
NetSquid [26] under the stabiliser formalism and extract
all the parameters of the noise channels before imple-
menting them in simulations, for instances: timing pa-
rameters for every qubit used throughout the simulation,
all the noisy CNOTs with corresponding error probabili-
ties, and to which qubits and at which step it is applied.
From here, we compute the fidelity of the final QRAM
state by substituting all these values into the expressions
presented in the previous section.

We start by presenting the simulation of a 212-qubit
QRAM in Fig. 6. Here, we detail individually the fideli-
ties of the GHZ state distributed at each physical layer
of the QRAM. The fidelity of the full state of the QRAM
is given by:

F (QRAM) =

n−1∏
i=1

F
(
Layeri, |GHZ〉2i−1+1

)
, (12)

where |GHZ〉q =
1√
2

(
|0〉⊗q + |1〉⊗q

)
(13)

i.e., the fidelity of the entire tree (or the QRAM) is de-
fined as the product of the fidelities of each physical layer

(see Appendix D for more details). We distinguish access
fidelity from tree fidelity, where the former refers to the
fidelity of the state retrieved after accessing the memory
cells (|ψout〉 in Eq. 1), and the latter refers to the mul-
tipartite state fidelity of the binary tree constituting the
QRAM. Only the access fidelity depends on the address
and bus qubits.

1 2 3 4 5 6 7 8 9 10 11 12
Layer Number

1 10 2

1 10 3

1 10 4

Fi
de

lit
y

Layer 2
Layer 3
Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

Layer 11

Layer 12

 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 0.9

FIG. 6. Teleportation-based QRAM access protocol for 12
layers, with the efficiency of generating a Bell pair swept from
η = 50% to η = 90%. The noise analysis considers only
dephasing and damping errors. The final fidelity is calculated
according to Eq. 12, with T1 = 20 ms, T2 = 10 ms, and
εCNOT = 0 for each layer.

One observes an exponential decrease of the fidelity
with the number of the layer (notice the logarithmic scal-
ing on the y-axis corresponding to the fidelity). This
agrees with the GHZ state size increasing exponentially
with the number of layers, i.e. scaling 2k. When one
qubit in this multipartite state suffers an error, the en-
tire state is affected.

One critical figure of merit that we extract from the
NetSquid simulations is the query time. As demonstrated
in Ref. [2], the query efficiency scales logarithmically with
the number of qubits. Extracting from multiple queries
of the QRAM, we obtain the query times (apart from
a logarithmic factor derived from making the bus qubit
traverse the binary tree) in Fig. 7.

1. Dephasing and Damping Errors

In this section, we evaluate the effects of only dephas-
ing and amplitude-damping errors in the spin qubits. We
consider T2 = 10 ms and T2 = 100 ms with a fixed
T1 = 2 s [23], see Table E. We also set the CNOT er-
ror rate to 0. We present the simulation results for the
TD-QRAM scheme under memory dephasing for increas-
ing QRAM size, as shown in Fig. 8:
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FIG. 8. TD-QRAM noise analysis with dephasing errors,
T2 = 10 ms (filled lines) and T2 = 100 ms (traced lines),
with fixed amplitude-damping error T1 = 2 s. We consider
different QRAM sizes from 2 layers to 12 layers as well as
various efficiencies of generating a Bell pair from η = 50% to
η = 90%.

Separating the effect of dephasing from that of
amplitude-damping realizes an identical behavior be-
tween the different noises. However, the impact from
amplitude-damping is smaller than that from dephasing.
Moreover, since T1 is usually much longer than T2, i.e.
T1 ∼ 1 s [23], its impact can be neglected relative to other
sources of error.
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FIG. 7. Query times with varying sizes from 2 layers to 12
layers, and sweeping the efficiency of generating a Bell pair
from η = 50% to η = 90%. There is an expected logarithmic
scaling of the query time with the number of qubits.

2. Dephasing, Damping and Noisy CNOTs

The only type of error missing in the analysis is the
error derived from the use of noisy CNOTs. Illustrated
in Fig. 9, the dephasing and damping errors minimally
contribute to infidelity. We now analyse the case for noisy
CNOTs on top of fixed T1 = 2 s and T2 = 100 ms (note
the now linear scale in the y-axis for the fidelity, due
to the set of values present for the different simulations).
For simplicity, we consider equal CNOT error probability,
εCNOT, for both electronic and nuclear CNOTs, and vary
εCNOT from 10−5 to 10−2 as shown in Fig. 9:

101 102 103

Number of Memory Qubits

0.0

0.2

0.4

0.6

0.8

1.0

F
id

e
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ty
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0.0091

0.6204

0.9525

0.999

CNOT = 10 2

CNOT = 10 3

CNOT = 10 4

CNOT = 10 5

CNOT = 0

FIG. 9. TD-QRAM noise analysis with noisy CNOTs, pe =
pn ∈ {0, 10−5, 10−4, 10−3, 10−2}, for a QRAM with the num-
ber of layers ranging from 2 to 12. The dephasing time is fixed
at T2 = 100 ms, and the amplitude-damping time is fixed at
T1 = 2 s. The efficiency of generating a Bell pair is fixed at
η = 90%. The final fidelity mainly depends on the number
of noisy CNOTs performed throughout the protocol and has
little dependence on the efficiency.

These simulations show that the CNOT gates domi-
nate the overall error in the QRAM state fidelity in the
TD-QRAM. For instance, to access a 128-qubit QRAM,
one needs fidelities of the CNOT gates to be somewhere
near 99.9% to obtain an access fidelity exceeding 90%. In
this architecture, while the query times do not increase
linearly with the size of the memory, the errors do. Ex-
pectedly, applying an error to a single qubit of a GHZ
state contributes in the same order for the entire state.

The price to pay for performing CNOTs with such large
error rates deterministically could be circumvented by
near-perfect yet probabilistic CNOTs [22, 27] via cavity-
based electron spin-photon interactions, as opposed to
deterministic yet error-prone nuclear-electron spin cou-
pling. In light of this, we explore a hybrid teleportation-
based QRAM architecture in the following section.
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V. TELEPORTATION-BASED STOCHASTIC
QRAM

In the TD-QRAM protocol, the entanglement gener-
ation and swap (Fig. 4) operation are still probabilis-
tic given the finite chance of photon loss. Hence, these
probabilistic CNOTs are done in parallel throughout each
physical layer to improve efficiency. After an EPR pair
is created between two electron spins, however, trans-
ferring entanglement onto the nuclear spins is a deter-
ministic procedure. Thereby, the query time grows sub-
linearly. As noted in the previous section addressing the
TD-QRAM scheme, this deterministic CNOT based on
nuclear-electron spin interaction mainly dominates the
infidelity of the GHZ state, motivating us to contemplate
an alternative solution.

Since the decoherence errors from T1 and T2 contribute
much less to the infidelity relative to electron-nuclear spin
CNOT, replacing some of the noisy deterministic CNOTs
with probabilistic CNOTs helps improve the fidelity de-
spite reducing efficiency. As we will show, this leads
to higher QRAM tree state fidelities, albeit with longer
query times. We call this new architecture ‘teleportation-
based stochastic QRAM’, or TS-QRAM.

Relying solely on probabilistic CNOTs in every step of
the protocol would be very inefficient since the probabil-
ity of generating a GHZ state diminishes exponentially
with the number of nodes. In other words, if one entan-
glement attempt fails during construction of a GHZ state,
the entire state collapses. Since each linking process is
heralded, there are ways to circumvent this by choosing a
specified order to perform the CNOTs, similar to entan-
glement swapping in a repeater chain [17, 28]. Here, the
probabilistic swapping operations are equivalent to the
probabilistic CNOTs, and measuring the middle node is
analogous to joining smaller GHZ states to form a larger
GHZ state. Abstractly, they describe the same problem,
which allows us to use the solutions provided by Ref. [28].
In this section, we present an in-depth analysis of the
trade-off between fidelity and query rate as a function of
error rates and physical implements.

A. Increasing T1 and T2

To decrease the number of employed deterministic
CNOTs, and taking into account that these always hap-
pen when the electronic spins interact with the nuclear
spins, it is natural to consider dropping the nuclear spins
altogether. This is motivated by the fact that we can per-
form CNOTs, albeit probabilistically, between the elec-
tron spins. The downside is that electron spins suffer
from having shorter coherence times than their nuclear
counterparts. Still, it is advantageous to consider such
schemes to avoid the use of noisier deterministic CNOTs.

To minimize the consequently increased decoherence,
one could conceive schemes for increasing the T1 and T2
times for the electrons, since these are the ones now caus-

ing the fidelity bottleneck, together with the required
time to query the memory.

Presently, the SiV’s electronic spin’s T1 time is shown
to be longer than 1 s [23], thereby posing no concern
over depolarisation. On the other hand, its T2 coherence
time is limited to tens of milliseconds [23] even under dy-
namical decoupling. The main dephasing mechanism is
attributed to the surrounding nuclear spin bath, which is
weakly coupled to the electronic spin of interest via hy-
perfine interaction [29]. A potential avenue to improving
the electronic spin’s T2 is therefore to “purify” its environ-
ment by materials engineering [30]. By producing SiV in
a carbon-13 free matrix, for example, the coherence time
may be further extended.

Nevertheless, our numerical analyses of the hybrid
scheme following this section show fidelities still exceed-
ing 60% for a reasonable CNOT error rate of 10−3 and
1024 memory cells, using a T2 of 100 ms. For such a re-
sult, a probability of success of about 70% for the CNOT
is required.

B. Modified Protocol and New Building Blocks

We now consider an alternative architecture that en-
ables different subsets of each layer to create GHZ states
independently. As illustrated in Fig. 10, this architecture
assumes two electron spins and one nuclear spin (instead
of each node of the QRAM having an electronic spin and
a nuclear spin assumed in Section IV). As we will show,
this architecture still retains similar building blocks as
the aforementioned TD-QRAM protocol.

1. EPR creation

As in the non-hybrid version of the protocol, the first
step to creating an EPR pair between two physically sep-
arated electronic spins is sending a photon that interacts
with them sequentially. A subsequent measurement her-
alds the successful production of a spin-spin EPR pair.
Notably, there are no deterministic CNOTs applied to
transfer the qubit states onto the nuclear spins, as we
only work with the electron spins at this stage.

The final state shared between the electronic spins is
the one of Eq. 2 in the limit of the absence of electronic
CNOT error (pe → 0) and altering the memory deco-
herence noise from nuclear to electronic (εnL → ε′eL and
εnR → ε′eR):

1

2

1− µ 0 0 ν
0 µ 0 0
0 0 µ 0
ν 0 0 1− µ

 (14)
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where

µ =
1− f(ε

(1)
eL , ε

(1)
eR)g(ε

′(1)
eL , ε

′(1)
eR ) + ε

′(1)
eL ε

′(1)
eR

2
, (15)

ν = ε
(2)
eL · ε

(2)
eR · ε

′(2)
eL · ε

′(2)
eR ·

√
ε
(1)
eL · ε

(1)
eR · ε

′(1)
eL · ε

′(1)
eR (16)

and again,

f(ε1, ε2) = 1− ε1 − ε2 + 2ε1ε2,

g(ε1, ε2) = (1− ε1)(1− ε2)
, (17)

where we use the same abbreviation ε(σ) = 1 − ε(σ) =
e−σ.

2. Linking Pairs - Probabilistic

TS-QRAM differs from TD-QRAM in that the opera-
tion of linking pairs has a non-unity probability of suc-
ceeding - let us call this probability pCNOT . Moreover, it
is executed in a similar way as that of creating an EPR
pair:

1. Interact photon γ with the left electronic spin qubit
eL, executing a local CNOT,

2. Send the single photon γ to the right cavity,

3. Interact the photon γ with the right electronic spin
qubit eR, executing a local CNOT,

4. Measure the photon γ,

5. Measure the right (or left) electronic spin in X.

Importantly, both cavities belong to the same node in
this step. This results in a controlled gate applied be-
tween the right and left electronic spin qubits. Unlike
before, it is still necessary to measure one of the nodes’
electronic spin qubits, as the state has twice the num-
ber of qubits as the final state (we chose to measure the
right electron, but one could choose to keep the right
and measure the left instead; the choice is arbitrary and
translates to the same practical outcome). This measure-
ment should be in the X basis, in order to not destroy
the entanglement shared among all the qubits and ren-
dering the state useless. Moreover, a correction must be
made depending on the outcome on the measurement of
the electronic spin qubit and the photonic qubit.

Afterwards, the GHZ states shared between the left
and right nodes are linked into a larger GHZ state, via
an intermediary node. Inside this intermediary node, its
left electronic spin merges into the larger GHZ state. We
again take into account the previous calculations for de-
tailing the density matrix of the final state. The decoher-
ence steps are now only provenient from the memories of
where each qubit is being held (which we chose to be the
left cavity of the node). As we used near-perfect proba-
bilistic CNOTs mediated by a photon, only its memory
affects the state fidelity. Thus, for the remainder of the
protocol, we:

1. Apply a dephasing channel with probability
ε(t′′eL/T

e
2 ) ≡ ε′′(2)eL to electronic spin qubit eL;

2. Apply an amplitude damping channel with prob-
ability ε(t′′eL/T

e
1 ) ≡ ε

′′(1)
eL to electronic spin qubit

eL.

Importantly, the following calculations are again lower-
bound approximations for the fidelity. Performing the
calculations for a simple link of two entangled pairs de-
scribed by Eq. 14, with parameters (µj , νj), j = 1, 2, the
final density matrix of the 3-GHZ state, prior to any
memory decoherence, is:

1

2


µ1µ2 0 . . . 0 ν1ν2

0 µ1µ2 . . . 0 0
... 0

. . . 0
...

0 0 . . . µ1µ2 0
ν1ν2 0 . . . 0 µ1µ2

 (18)

Adding the memory decoherence accounting for both
dephasing and amplitude-damping leads to a matrix sim-
ilar in form to one shown in Eq. 6, except with entries
changing to:

ρ′00 = µ1µ2 + ε
′′(1)
eL µ1µ2 + O

(
ε4
)

ρ′11 = µ1µ2(1− ε′′(1)eL )

ρ′10 = ρ′01 = ν1ν2ε
′′(2)
eL

√
1− ε′′(1)eL

(19)

3. Linking Pairs - Deterministic

We next describe a scheme for deterministic CNOT
gates. Since the composition of each node is now differ-
ent, the operations one needs to execute to determinis-
tically link smaller GHZ states into larger GHZ states
changes as well:

1. Apply a deterministic electronic CNOT controlled
by the left electronic spin qubit eL and targeted at
the nuclear spin qubit n,

2. Measure the left electronic spin qubit eL in X,

3. Apply a deterministic nuclear CNOT controlled by
the nuclear spin qubit n and targeted at the right
electronic spin qubit eR,

4. Measure the right electronic spin qubit eR in Z.

Measurement-conditioned corrections result in a GHZ
state consisting the nuclear spin and the remaining elec-
tronic spin qubits. Notice that by not involving the pho-
ton mediated CNOT, this has been done in a determin-
istic fashion. In this case, we must consider additional
errors, namely those that arise from using deterministic
electronic and nuclear CNOTs. The sequence of noise
channels becomes:
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FIG. 10. Possible protocols for linking smaller GHZ states into a larger GHZ state both probabilistically and deterministically.
(a) Probabilistic CNOT Protocol mediated by a photon. (b) Deterministic CNOT Protocol, consisting of a nuclear CNOT
between the nuclear spin ancilla and the left electronic spin qubit.

1. Apply depolarising channels with probability pe to
the electronic spin qubit eL and to the nuclear spin
qubit n,

2. Apply depolarising channels with probability pn to
the nuclear spin qubit n and to the electronic spin
qubit eR,

3. Apply a dephasing channel with probability
ε(t′n/T

n
2 ) ≡ ε′(2)n to nuclear spin qubit n,

4. Apply an amplitude damping channel with proba-
bility ε(t′n/Tn1 ) ≡ ε′(1)n to nuclear spin qubit n.

From here, we calculate the final state’s density matrix.
Performing the calculations for the same simple link of
two entangled pairs described by Eq. 14, with parameters
(µj , νj), j = 1, 2, the final density matrix of the 3-GHZ
state, prior to any memory decoherence and without any
CNOT errors is the same as Eq. 18. Adding the effect of
the CNOTs leads to:

ρ′00 = ρ′11 = (1− p)2µ1µ2 +
p

2

(
1− p

2

)
ρ′10 = ρ′01 = ν1ν2(1− p)3

(
1− p

2

) (20)

where we set pe = pn ≡ p. In fact, all diagonal entries can
be decomposed into terms of the form (1− p)2diag(ρ) +
1p/2(1 − p/2). Using this fact, we incorporate the pos-
terior amplitude-damping noise channels:

ρ′′00 = h̃(p) · (µ1µ2 + ε
′(1)
eL µ1µ2) + O

(
ε3
)

ρ′′11 = h̃(p) · µ1µ2(1− ε′(1)eL ) + O
(
ε3
)

ρ′′10 = ρ′′01 = ν1ν2(1− p)3
(

1− p

2

)√
1− ε′(1)eL

(21)

where h̃(p) = (1−p)2+p/2(1−p/2). Appendix B presents
the derivation for a chain of an arbitrary number of chan-
nels, as well as a proof of the validity of our approxima-
tions.

4. The TS-QRAM Protocol

In the TD-QRAM protocol, there are two steps oc-
curring in parallel across each layer in the QRAM: one
for generating EPR pairs across the odd links and an-
other for linking all the states into a larger GHZ state,
via sharing EPR pairs across the even links. This could
be made in parallel because the linking operations are
deterministic.

In the TS-QRAM protocol, however, we must now con-
sider an order for the linking step that depends on the
node’s position, similar to the quantum repeater chain
problem [26, 28, 31]. If a linking process fails, the sub-
set of qubits that would have become entangled must
be reset. The optimal strategy is then performing the
linking process in a binary-tree-like approach [28]. This
order binary-tree for the linking processes means that
now a heralding signal for a successful link must be ex-
changed within the tree. Each parenting node will have
two children, the right-child and the left-child. Each node
only attempts entanglement if it receives heralding sig-
nals from both children nodes that have been successfully
entangled themselves. Fig. 11 illustrates this procedure
and defines the order:

Moreover, as mentioned before, the advantage of the
TS-QRAM protocol is that probabilistic CNOTs are used
to minimize state infidelity. One might consider the op-
timal placements for the deterministic CNOTs to max-
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FIG. 11. Binary-tree-like approach of linking nodes. The ar-
rows represent heralding signals for the subsequent step, and
the dark nodes represent the selected nodes for attempting
entanglement at each time step.

imize the GHZ state fidelity across each physical layer.
We further introduce having an additional distribution
layer. This is the layer of the order binary-tree at which
a linking step is attempted, as shown in Fig. 11. These
abstract layers are only needed to describe the order of
the linking steps and help illustrate the optimal place-
ments for the deterministic CNOTs.

For this reason, we present two possible options to
solve the placement of deterministic nodes problem: the
first is randomly choosing a set of nodes to be determin-
istic, regardless of their distribution layer. The second
option is choosing the nodes that attempt to link entan-
glement at the higher steps, since if those attempts are
unsuccessful, they take the biggest toll on the protocol re-
quiring re-attempting every preceded step. We illustrate
these two possible options in Fig. 12.

As we will verify later, we need a much smaller number
of deterministic nodes if we place them in higher-level
distribution layers. We first present simulation results
for both cases.

Probabilistic CNOT Nodes Deterministic CNOT Nodes

L
O
G(N

)

(a)

L
O

G(N
) - D

 
D

(b)

FIG. 12. Two possible reasons to choose the placement of the
deterministic CNOTs. (a) Randomly distributed determinis-
tic nodes across the logN distribution layers. (b) Intuitively
distributed deterministic nodes with D deterministic distri-
bution layers.

C. Effects of Decoherence - Simulation

Using the aforementioned results, we compare the TD-
QRAM protocol (Section IV) with the TS-QRAM (Sec-
tion V) that includes both probabilistic EPR pair genera-
tion and deterministic linking. We further assume all the
probabilistic CNOTs (Prob (node being deterministic) ≡
Pd = 0%) have unit efficiency in the latter scheme. If
the deterministic and the probabilistic CNOTs are of the
same order in gate time, then the binary-tree approach is
bound to be more time-consuming considering its greater
number of entanglement attempts. However, the proba-
bilistic CNOT based on cavity-reflection is typically sev-
eral orders of magnitude faster than the deterministic
CNOT (101 ns vs. 105 ns). We therefore present both
the QRAM’s query time and its fidelity for both schemes
in Fig. 13, assuming perfect deterministic CNOTs. We
also consider the case where the CNOT efficiency is less
than unity for comparison.

Before moving onto the noise simulations, we delve
into the query times. It is not obvious that now
the query times scale logarithmically (or even poly-
logarithmically), since the efficiency of the distributed
CNOTs can increase the query times depending on the
order of the linking steps. In fact, Figure 13(a) already
shows a non-logarithmic behavior when considering a
completely probabilistic protocol. If one were to choose
sequential linking steps, the query times would increase
exponentially with the efficiency. By choosing the scheme
demonstrated in Fig. 11, we are able to reduce this to
polynomial scaling [26]. However, depending on the noise
parameters, this increase in time, compared to the initial
two-step scheme, might not be wanted, as we will ver-
ify in upcoming subsections. In Fig. 14, we present the
query times for different efficiencies of the distributed
CNOT, under the two possible hybrid schemes, with dif-
ferent number of deterministic CNOTs placed strategi-
cally (see Fig. 12).

We start by verifying that, for a random placement of
the deterministic nodes, there is no clear dependence on
the number of deterministic CNOTs [32]. The reason is
that, when choosing random placements for the deter-
ministic nodes, the best order for the linking steps im-
mediately changes and is no longer a binary tree. There
already exist algorithms [28] that use linear programming
to solve an identical problem of finding the best order to
attempt entanglement swapping along a chain, which is
virtually identical to our problem. However, the polyno-
mial scaling of these algorithms in terms of the number
of nodes of the chain makes it unsuitable for exponen-
tially growing chains. For the intuitive placement of the
deterministic nodes, this is not the case, as choosing only
the top layers of the linking tree does not change the best
order to do the linking. We also consider varying the ef-
ficiency of the distribution of the Bell pairs, as shown in
Appendix F.
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(a) Query times for accessing a QRAM.
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FIG. 13. Completely probabilistic hybrid scheme (Pd = 0%) and comparison under identical efficiencies of the distribution of
Bell pairs for the TD-QRAM (two-step) scheme. T1 = 2 s, T2 = 100 ms, and εCNOT = 0.

101 102 103

Number of Qubits

105

106

107

108

Q
ue

ry
 ti

m
e 

(n
s)

Pd = 50%
Pd = 40%
Pd = 30%
Pd = 20%
Pd = 10%
Pd = 0%

(a) Query time scaling for randomly distributed deterministic
nodes under the regular binary tree ordering.
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FIG. 14. Comparison between the two deterministic CNOT placement strategies for distributing the GHZ states in the TS-
QRAM scheme (see Fig. 12). Notice that for the non-random placement strategy, the ratio of deterministic nodes Pd is
approximately given by Pd ≈ 2−(log2(N)−D)−1. In both cases, the efficiency of the distribution of a Bell pair was set at η = 0.5.

1. Dephasing and Damping Errors

We start by considering the case where there are no de-
terministic CNOTs, and vary the dephasing and damp-
ing parameters, T2 and T1 respectively. Note that, as
expected, the query times have increased by orders of
magnitude (see in greater detail in Appendix F), hence
the extent of decoherence in the memories. Moreover, to
overcome the necessity of performing noisy determinis-
tic CNOTs, the qubits used are now the electronic spin
qubits, whose dephasing and damping times are much
smaller than their nuclear counterparts, thereby limiting
the fidelity of the QRAM tree state. For this reason, we
analyzed a wide range of possible values for T e1 and T e2 :

{20 ms, 200 ms, 2 s, 20 s} and {10 ms, 100 ms, 1 s, 10 s},
respectively. In this scenario of having only probabilis-
tic distributed CNOTs, we analyse for multiple CNOT
efficiencies η and T2 values, fixing T1 = 2 s, as its contri-
bution to the error is negligible compared to the T2. In
Fig. 15, we observe infidelity values scaling exponentially
with the number of qubits for a completely probabilistic
execution of the hybrid protocol. Only for memory co-
herence times on the second timescale, i.e. T2 = 1 s, does
the fidelity reach around 80% under a CNOT efficiency
of η = 0.5. For other combinations of parameters, we
refer to Appendix F.
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FIG. 15. Fidelity scaling for a dephasing time T2 = 1 s
and amplitude-damping time T1 = 2 s. The simulations are
for the completely probabilistic execution of the linking step
(Pd = 0%), meaning there are no deterministic CNOTs be-
ing executed to create the GHZ states within each layer of
the QRAM. We present different simulations for several pos-
sible values for the efficiency of each distributed CNOT (i.e.
the probability of success of each of the distributed CNOT),
namely η ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

2. Dephasing, Damping and Noisy CNOTs

Here, we explore adding some noisy deterministic
CNOTs to counteract the effect of the decoherence for
longer periods of time. As seen previously, the better lo-
cation for these deterministic CNOTs are the nodes that
perform the linking step at higher levels of the linking
tree. In our simulations, we evaluate different values of
the first deterministic layer log2(N)−D ∈ {2, 3, 4, 5, 6}.
The results are presented in Fig. 16.

Depending on the CNOT error, the TS-QRAM scheme
can surpass the fidelities of access of the TD-QRAM
scheme under high enough T2 times in the order of sec-
onds. For other possible sets of parameters, we refer
again to Appendix F.

101 102 103

Number of Memory Qubits

0.0

0.2

0.4

0.6

0.8

1.0

F
id

e
li

ty

0.4654

0.5196

= 0.5

= 0.6

= 0.7

= 0.8

= 0.9

Two-step Scheme: = 0.5

(a) εCNOT = 10−2

101 102 103

Number of Memory Qubits

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
id

e
li

ty

0.8366
0.8585
0.876
0.8901
0.9295

= 0.5

= 0.6

= 0.7

= 0.8

= 0.9

Two-step Scheme: = 0.5

(b) εCNOT = 10−3

101 102 103

Number of Memory Qubits

1 10 1

1 10 2

1 10 3

Fi
de

lit
y

0.8877
0.9108
0.9293
0.9442

0.9858

 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 0.9

Two-step Scheme: = 0.5

(c) εCNOT = 10−4

FIG. 16. Fidelity scaling for a dephasing time T2 = 1 s, amplitude-damping time of T1 = 2 s and a varying CNOT error. The
simulations are in the hybrid regime, with 6.2% of deterministic nodes. We present different simulations for several possible
values for the efficiency of each distributed CNOT (i.e. the probability of success of each of the distributed CNOT), namely
η ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. In dashed black lines, we also plot the values for the two-step scheme for the case with η = 0.5, and
with the same T1, T2 and εCNOT as the hybrid scheme.

VI. OUTLOOK

In this article, we introduce a method to simulate large
quantum networks in an open system model. Specifically,
this approach enables us to model networks comprising
hundreds of stationary qubits by modeling decoherence
processes as noisy channels with spin dephasing errors,
spin-flip errors, and noisy CNOT gates. When applied to
the challenging but important problem of network-based

QRAM, we find that the qubit depth of memory calls in
the recently proposed TD-QRAM architecture becomes
limited by CNOT errors. To overcome this bottleneck,
we propose a modified network-enabled QRAM in which
the noisy deterministic gates of Ref. [20] are replaced
by heralded probabilistic CNOT gates, which can sharply
reduce gate errors. This scheme, TS-QRAM, trades in-
creased query time for improved memory access fidelity
and/or memory depth. The TS-QRAM protocol makes
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use of already demonstrated elements (see Table E), sug-
gesting the viability of near-term demonstrations in plat-
forms of solid-state color centers as well as potentially
other atomic memory modalities.

An outstanding problem relates to the compounding
loss of photonic qubits with increasing memory depth.
Since teleportation-based QRAM [2] has shown that dis-
tributed quantum computers naturally map onto quan-
tum networks, error correction schemes proposed for the
former may be applied to address the issue of photon loss
for the latter. Approaches include (i) photonic forward
error correction using, for example, 2D photonic cluster
states [33–38] and (ii) error-corrected cluster states [39–
41]. We leave the exploration of error correction schemes
in the context of QRAM for future studies.
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Appendix A: Brief description of noise channels

A noise channel is a special type of quantum channel, and, as all quantum channels, it can be described by a set of
Kraus operators {Ki}E. Its action on a quantum state, represented by a density matrix ρ, is given by the following
equation, which can also be conceived as a unitary evolution of the system in question ρ and a complementary system
ρE , usually the environment, after tracing out the complementary system:

E(ρ) =
∑
i

K†i ρKi ⇐⇒ E(ρ) = TrE
[
Uρ⊗ ρEU†

]
. (A1)

Because of this, these operations are completely positive trace preserving (CPTP) maps and verify the identity∑
i K̂
†
i K̂i = I. Moreover, the set of Kraus operators is not unique to a quantum channel, as a unitary map between

two sets of Kraus operators leaves the action of the quantum channel itself invariant.
As we described in the main text, we deal with several types of noise, all of them described by corresponding

noise channels. In the memories we consider dephasing and amplitude-damping noise, described by corresponding
dephasing and amplitude damping channels, with sets of Kraus operators given respectively by:

EDeph ∼
{√

1− p I,
√
p Ẑ

}
=

{[√
1− p 0
0

√
1− p

]
,

[√
p 0

0 −√p

]}
(A2)

EDamp ∼
{
|0〉〈0|+

√
1− p|1〉〈1|,√p|0〉〈1|

}
=

{[
1 0
0
√

1− p

]
,

[
0
√
p

0 0

]}
(A3)

Moreover, to also consider the possibility of noisy CNOTs, and following the lines of NetSquid to be able to
corroborate results, we model the error in CNOTs by applying a perfect CNOT gate proceeded by two depolarising
channels, one applied to the control qubit, and another applied to the target qubit:

˜CNOT = E
Dep
i ◦ EDepj ◦ CNOTij(ρ), (A4)

where the depolarising channel is defined by the following set of operators:

EDep ∼
{√

1− p I,
√
p/3 X̂,

√
p/3 Ŷ ,

√
p/3 Ẑ

}
=

{[√
1− p 0
0

√
1− p

]
,

[
0

√
p/3√

p/3 0

]
,

[
0 −i

√
p/3

i
√
p/3 0

]
,

[√
p 0

0 −√p

]} (A5)

1. Bell Pair States under different Noise Channels

For completion let us describe the memory noise channels action on the elementary building block of either of the
detailed schemes, namely, the Bell pair state |φ+〉 ∝ |00〉 + |11〉. We do this for an arbitrary error parameter p, and
one that is useful for the noise analysis in terms of the time the qubits spend decohering in the memories σ = ∆t/Tcoh.

1. Dephasing:

E
Deph
1 (|φ+〉 〈φ+|) = E

Deph
2 (|φ+〉 〈φ+|)

= (1− p) |φ+〉 〈φ+|+ p |φ−〉 〈φ−|

=
1

2

 1 0 0 1− 2p
0 0 0 0
0 0 0 0

1− 2p 0 0 1

 2p→1−e−σ

−−−−−−−−→ 1

2

 1 0 0 e−σ

0 0 0 0
0 0 0 0
e−σ 0 0 1

 (A6)
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2. Damping:

E
Damp
1 (|φ+〉 〈φ+|) =

1

2

 1 0 0
√

1− p
0 0 0 0
0 0 p 0√

1− p 0 0 1− p

 p→1−e−σ

−−−−−−−−→ 1

2


1 0 0 e−σ/2

0 0 0 0
0 0 1− e−σ 0

e−σ/2 0 0 e−σ



E
Damp
2 (|φ+〉 〈φ+|) =

1

2

 1 0 0
√

1− p
0 p 0 0
0 0 0 0√

1− p 0 0 1− p

 p→1−e−σ

−−−−−−−−→ 1

2


1 0 0 e−σ/2

0 1− e−σ 0 0
0 0 0 0

e−σ/2 0 0 e−σ


(A7)

Appendix B: Detailed Calculations and Validity of Approximations

In this appendix we detail all the calculations for extending the previous results for arbitrary number of qubits
GHZ states, together with verifying the approximations made throughout the calculations, namely for the amplitude-
damping channel and the noisy CNOTs. To do this we utilise some results known from quantum channels theory,
that simplify the result into something easier to handle.

The first important result is the following: let E(·) and D(·) be two arbitrary noise channels, with corresponding
sets of Kraus operators {K̂i} and {M̂i}:

E ◦D (·) = D ◦ E (·) (B1)

if [K̂i, M̂j ] = 0 ∀i, j, meaning, all Kraus operators commute. The most obvious case of this is the case where E(·) acts
over a subsystem A and D(·) acts over a subsystem B, such that A ∩B = ∅, which is always the case when applying
noise channels over distinct qubits.

This will allow in particular to refrain from calculating the final memory decoherence until the final step, and divide
both protocols always in three phases: Bell pair creation, linking the GHZ states (whether they are deterministic as
in the teleportation-based protocol, or probabilistic, in the hybrid protocol), and final decoherence over the memories.

1. Bell Pair Creation

The first step of Bell pair creation is already detailed in the main text. To verify this is simply to apply every noise
channel described in the text following the protocol, and symmetrize the state, since the amplitude-damping channel
introduces some terms which are not symmetric. In Appendix C we explain exactly what we mean by symmetrizing,
and the correspondence within the protocol.

2. Linking GHZ States

For the linking part, we assume that every pair that will be linked is described by Eq. 2, which we reproduce here:

1

2

1− µi 0 0 νi
0 µi 0 0
0 0 µi 0
νi 0 0 1− µi

 ,

where the µis and the νis depend on all the errors previous to the entanglement linking step. Let us start by the
most simple case: the one where the linking does not contain any error, meaning no noisy deterministic CNOTs are
applied. Take two different pairs on qubits i1, i2 and j1, j2:

1

2

1− µ1 0 0 ν1
0 µ1 0 0
0 0 µ1 0
ν1 0 0 1− µ1

 ,
1

2

1− µ2 0 0 ν2
0 µ2 0 0
0 0 µ2 0
ν2 0 0 1− µ2


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The protocol, under this assumption, is identical to applying a regular CNOT between qubits i2 and j1 and measuring
afterwards either qubit i2 or j1 in the X basis, with posterior correction. The result of doing so is:

1

2



(1− µ1) (1− µ2) 0 0 0 0 0 0 ν1ν2
0 (1− µ1)µ2 0 0 0 0 0 0
0 0 µ1µ2 0 0 0 0 0
0 0 0 µ1 (1− µ2) 0 0 0 0
0 0 0 0 µ1 (1− µ2) 0 0 0
0 0 0 0 0 µ1µ2 0 0
0 0 0 0 0 0 (1− µ1)µ2 0

ν1ν2 0 0 0 0 0 0 (1− µ1) (1− µ2)


(B2)

In fact, we can see the general rule from this already simple example: the entry ρii of the density matrix of the GHZ
state connecting n nodes is given by:

ρii =
∏

(j,j+1)∈L(n)

θi(µj) , where θi(µj) =

{
1− µj , if ij + ij+1 mod 2 = 0

µj , otherwise

ρ01 = ρ10 =
∏

(j,j+1)∈L(n)

νj

(B3)

where L(n) represents the line graph composed by the set of vertices (i, i+1), 1 ≤ i ≤ n−1, and where (i, j) represents
one link, equivalently one Bell pair, between one qubit on node i and one qubit on node j. Moreover, consider the
notation ik as the kth most valuable bit of the number i expressed in basis 2, with word length n. For example 53
with word length 4 is given by first converting 5 to basis 2, 5 = 0101, and then choosing its 3rd most valuable digit
counting from the right: 53 = 1. This is not really that surprising, as applying CNOTs can be seen as an addition
modulo 2 of two qubits expressed in the computational basis. Since the CNOTs are applied between neighbouring
links, Eq. B3 seems somewhat intuitive.

a. Noisy CNOTs – Two-Step Protocol

Finally, the only step missing here is the step of adding the noise contribution of the CNOTs. To do this, we have
to consider separately the cases for the two-step protocol and the repeater protocol (only the deterministic execution,
as it is the one where noisy CNOTs are applied). The simpler way to calculate this is recursively. For the two-step
protocol we had that:

1

2


ρ00 0 . . . 0 ρ01
0 ε . . . 0 0
... 0

. . . 0
...

0 0 . . . ε 0
ρ10 0 . . . 0 ρ11

 ,

where ρ00 = ρ11 = h(pn)(1 − µ1)(1 − µ2)(1 − µ3) + O
(
ε2
)
and in fact the diagonal terms that are not part of the

GHZ state are always at least O
(
ε1
)
. The first thing to note is that, under the linking protocol, these diagonal terms

can never jump to the GHZ state entries without it resulting from an error, meaning, they always contribute to the
fidelity of the final state in O

(
ε1
)
· O
(
ε1
)

= O
(
ε2
)
. Doing so and calculating the GHZ entries recursively, by adding

more links, we get that:

ρ′00 = ρ′11 = ρ00 ·
∏

(j,j+1)∈LE(n)

h(p) + O
(
ε2
)

= ρ00 · [h(p)]
n/2

+ O
(
ε2
)

h(pn) =
(

1− p

2

)2
− p

(
1− p

2

) , (B4)

where p ≡ pn it is the CNOT error, and we denote by LE(n) the set of links in L(n) with links (j, j + 1) where j is
even. Since in a chain with n links, half of them are even, assuming all the CNOTs have an equal amount of noise,
the first expression can be simplified into the second expression of Eq. B4.
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As for the off-diagonal terms, namely the corner entries corresponding to the GHZ state, as usual, the expression
is quite simple and an exact value. They will be given by:

ρ′01 = ρ′10 = ρ01 ·
∏

(j,j+1)∈LE(n)

(1− p)2(1− p+
p2

2
)

= ρ01 ·
[
(1− p)2(1− p+

p2

2
)

]n/2 , (B5)

b. Noisy CNOTs – Repeater Protocol

Identically to the previous case, we also recover the fact that every contribution from the diagonal terms which do
not belong to the GHZ state, are always at least O

(
ε2
)
. Using this fact, and calculating recursively from Eq. 20, we

get that:

ρ′00 = ρ′11 = ρ00 ·
∏

j∈D(n)

h̃(p) + O
(
ε2
)

h̃(p) = (1− p)2 +
p

2

(
1− p

2

) , (B6)

where p = pn is again the CNOT error, and we denote by D(n) the set of nodes in the chain L(n) which perform a
deterministic CNOT. As for the off-diagonal terms, the result is again very simple, but slightly different:

ρ′01 = ρ̃10 = ρ01 ·
∏

j∈D(n)

(1− p)3(1− p

2
). (B7)

3. Final Decoherence in Memories

Finally, after each linking step is performed, the qubits stay in the memory suffering decoherence, which can be
described by dephasing and amplitude-damping channels. Moreover, this step is identical to both protocols.

The dephasing contributions are the simplest to calculate. They contribute in the exact same manner as previously,
affecting only the off-diagonal entries of the density matrix. The amplitude-damping contributions to this off-diagonal
terms are also straightforward to calculate:

ρ′′01 = ρ′′10 = ρ′01
∏

i∈L(n)

ε(ti/T
e,n
2 )

√
ε(ti/T

e,n
1 ). (B8)

where T e,n1,2 is chosen accordingly, meaning, if the qubit is an electronic spin or a nuclear spin. If the protocol is the
first two-step scheme, then it is always a nuclear spin. In the case of the hybrid scheme, one can have both a nuclear
or electronic spin.

As for the diagonal terms, an approximation is made, similarly to the main text, in order to not calculate an
exponential number of terms coming from each of the diagonal entries of the density matrix. Take that, when talking
about the density matrix entries, except the GHZ entries (the first and the last, ρ00 and ρ11), the terms can be
described by:

ρii 7→ ρ′ii = ρii + O
(
ε2
)
, (B9)

since ρii is already O
(
ε1
)
for these entries. Each amplitude-damping channel applied to a qubit will make all the entries

where such qubit takes value one, climb up the diagonal multiplied by a factor in O (ε). For this reason, including
a contribution from this error, we verify that the contributions come in at order at least O

(
ε2
)
. Nonetheless, since

there are many contributions in O
(
ε2
)
, as there are qubits, and they might add-up to something not in O

(
ε2
)
. This

is the reason we also include them in the calculations. Let us first demonstrate an example of calculating diagonal
terms of a 4-GHZ state, built from 3 different entangled pairs with {µi, νi}i=1,2,3.

ρ00 =(000)+

+ ε1(100) + ε2(110) + ε3(011) + ε4(001)+

+ ε1ε2(010) + ε1ε3(111) + ε1ε4(101) + ε2ε3(101) + ε2ε4(111) + ε3ε4(010)+

+ ε1ε2ε3(001) + ε1ε2ε4(011) + ε1ε3ε4(110) + ε2ε3ε4(100)+

+ ε1ε2ε3ε4(000)

, (B10)
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where (i1i2i3) = θi1(µ1)θi2(µ2)θi3(µ3) and the θ function was defined in Eq. B3, for example (010) = (1−µ1)µ2(1−µ3).
Moreover, we abbreviate ε(ti/T

e,n
1 ) as εi, representing the error parameter from the amplitude-damping channel

applied to qubit i. One can verify that in fact (i1i2...in) ∼ O(µ
∑
j ij ), and for the kth line in Eq. B3 there are

(
N
k

)
terms (where N is the number of qubits of the GHZ state). Given this, since the biggest terms in the kth line are of
O
(
εk+1

)
, and there are at most

(
N
k

)
of them, we can verify that our approximation is good if at least:(
N

k

)
· εk+1 = Nk · εk+1

= N · N − 1

1
· N − 2

2
...
N − k
k
· εk+1

≤ (Nε)k

k!
· ε

=⇒ Nε . 1

(B11)

Since T1 is not the shortcoming in current setups, we can expect that even for t/T1 ∼ 10µs/20ms we have ε→ 10−4

which means the approximations are valid for at least 10.000 qubits. Since the first line is the same as not adding any
contributions from the final amplitude-damping, adding the second line results in the following expression for ρ00:

ρ′′00 = ρ′00 +

N∑
j=1

(j)εj , (B12)

where (j) = (0...01j−11j0...0) for 1 < j < N , and with (1) = (10...0) and (N) = (0...01), where again, (i1i2...iN−1) =
θi1(µ1)θi2(µ2)...θiN−1

(µN−1). The only thing missing is calculating the last diagonal entry, which, from the form of
the amplitude-damping channel applied to the entry |11...1〉 〈11...1| is simply:

ρ′′11 = ρ′11 ·
N∏
j=1

(1− εj). (B13)

Appendix C: Randomized corrections

GHZ states are highly symmetric states, derived directly from their form. Moreover, they belong to a set of states
that can be generated using a limited amount of Clifford Gates. Among its implications, there is one which allows
us to define a state solely from its set of stabilizers, as it is known that there is an equivalence between the set of
stabilizer states and the ones that can be reached only using Clifford gates.

Denote the Pauli group on n qubits by Gn, we call |ψ〉 a stabilizer state if we can find a subset S ⊂ Gn, such that
|S| = 2n and ∀ A ∈ S : A |ψ〉 = |ψ〉. In particular, the fidelity of a quantum state is invariant under any stabilizer.
Taking this and a channel for which we choose the Kraus operators from the set of stabilizers (apart from a constant),
we have that:

S = {√piAi}Ai∈S , such that
∑
i

pi = 1, then:

F (S(ρ), |ψ〉 〈ψ|) =
∑
i

piF (AiρA
†
i , |ψ〉 〈ψ|) = F (ρ, |ψ〉 〈ψ|)

(C1)

The GHZ state in particular is a stabilizer state, with one of the stabilizers being SX =
⊗

i X̂i. This operation
in particular can be seen as a transposition along the anti-diagonal, which we shall denote by TAD(·). Here, by
anti-diagonal of a matrix, we mean the elements that range from |0〉 〈2n| to |2n〉 〈0|, i.e. from the upper-right corner
to the down-left corner of the matrix. This is an important notion to have, as the GHZ state is symmetric not only
over the diagonal, but also over the anti-diagonal, in the computational-basis.

However, the action induced by the amplitude-damping channel breaks this symmetry, as expected. To try and
compensate for this symmetry breaking, we introduce the concept of randomized corrections. Consider the simplest
example of a GHZ state with two qubits, the φ+ Bell pair. When creating this state in our protocol, there is a
sequence of measurements with posterior corrections that are made. In particular, we use this fact to randomize the
type of corrections sent, utilizing the SX stabilizer equivalence of the Bell pair ψ+ (which is the state previous to the
correction):
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1⊗ X̂ |ψ+〉 = (1⊗ X̂) ◦ (X̂ ⊗ X̂) |ψ+〉
= X̂ ⊗ 1 |ψ+〉
= |φ+〉

, (C2)

we can send half of the time the correction for the first qubit and half of the time the correction for the second
qubit. This will create an ensemble with the same fidelity (given by Eq. C1), and now the same symmetry as before.
Equivalent to applying a X̂ ⊗ X̂ half the times, we can think of this operation as:

SymA(ρ) :=
ρ+ TAD(ρ)

2
, (C3)

which is the corresponding of symmetrizing matrices over their diagonal, by adding their transpose:

Sym(ρ) :=
ρ+ ρT

2
. (C4)

In all the calculations in the main text we have used this as means to simplify the expressions and symmetrize the
matrices, without actually changing the final fidelity output.

Appendix D: Fidelity of Accessing the QRAM

In this appendix, we will discuss why the fidelity for accessing the QRAM will essentially be affected by the several
GHZ states existent in each of its layers.

In terms of noisy operations, the operations that are used to create the GHZ states within each layer grow linearly
with the number of memory cells. The number of operations used to route the bus qubit along the QRAM itself only
grows logarithmically, as this is one of the main benefits from this architecture.

In terms of actual time the qubits are spent decohering on the memory, after the GHZ state is distributed within
each layer, it takes O (logN) for the bus qubit to be routed through the memory cells, which is at its worse, as big as
the time it took to distribute the GHZ states. However, if these operations are photonic, this time is much smaller
than that of creating the GHZ states as most of the decoherence occurs when creating the GHZ states.

Taking this into account, then the bus qubit will be routed via the noisy GHZ states. Trying to find a decent measure
for the fidelity of access implies finding an average over all possible states for the address, execute the protocol, and
measure the fidelity between the output state of the address plus bus qubit and the state for the case of a noiseless
access. Even with a large representation of address states, this does not seem like a smart approach. If one looks at
the fidelity of each of the GHZ states, it will essentially dictate how much of the bus qubit will be routed correctly, for
any address state. Then, if each layer routes at a different level, the probability of a bus qubit being routed correctly
along the tree, will be given by the product of being routed correctly at each of the layers. This happens since, if
an error happens on one of the first layers, the bus qubit can never be routed to its correct memory cell. Then, this
introduces an error on the final state. This is the reason why simply multiplying, for each layer, the fidelities of the
GHZ states (as shown in the main text Eq.12) translates in a good measure for the fidelity of accessing the QRAM.

Appendix E: Table of Parameters

In the following table (Table E), we present the physical values of important parameters that define the experimental
setup, with the values reported reported in the main text.
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Single Qubit Gate Time 32 ns

Qubit initialization time (|0〉) 5 µs
Nuclear CNOT Time 16 µs

Electronic CNOT Time 29 ns

Photon-Spin Interaction Time 0.1 ns

Light Velocity in Medium 2× 108

Distance between Cavities 10 µm

Electronic Qubits Damping Time, T1 [20 ms, 200 ms, 2 s]

Electronic Qubits Dephasing Time, T2 [10 ms, 100 ms, 1 s]

Nuclear Qubits Damping Time, T1 [2 s, 20 s, 200 s]

Nuclear Qubits Dephasing Time, T2 [1 s, 10 s, 100 s]

Electronic CNOT Error
[
0, 10−5, 10−4, 10−3, 10−2

]
Nuclear CNOT Error

[
0, 10−5, 10−4, 10−3, 10−2

]
Number of Simulations 100

TABLE I. Physical parameters used in simulations.

Appendix F: Simulations - Full Results

In this appendix, we present simulations for more combinations of parameters, for the hybrid scheme. We vary not
only the amount of deterministic nodes, which in turn alters both the fidelity of access and the query times, but we
also vary the error parameters, to go inline with near-term developments with respect to memory decoherence times
and gate errors.
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1. Hybrid - Query Times

In Fig. 17 we present the scaling of the query time varying the amount of deterministic nodes Pd (left pane) and the
efficiency of the probabilistic operations η (right pane). In the first line of figures we simulated for the case of random
placement of deterministic nodes, achieving no notable improvements in function of the amount of deterministic nodes.
In the second line of figures, we simulated for the case introduced in Fig. 11, with a clear advantage with increasing
values of Pd.
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FIG. 17. Query times for both types of placements of the deterministic linking steps under the repeater protocol, under several
values of efficiency and amount of deterministic nodes. In (a) and (b), we consider a random placement of deterministic nodes
across each chain, and go from 0% of deterministic nodes to 50%, and also vary the efficiency of the distributed CNOTs η, from
0.5 to 0.9. In (c) and (d), we consider placing deterministic nodes only in the nodes used at the higher level time steps of the
linking binary tree, in each chain. We vary the first deterministic layer from the 3rd to the 6th (log2(N)−D ∈ {2, 3, 4, 5}, see Fig.
12), meaning that the probability of being a deterministic node in each layer of the QRAM is approximately Pd ≈ 2−(log2(N)−D).
We also vary the efficiency of the distributed CNOTs η, from 0.5 to 0.9 as before.
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2. Hybrid - Fidelities

In Fig. 18 we present the fidelities scaling as a function of the number of qubits of the QRAM for the case of a
completely probabilistic QRAM.
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FIG. 18. Fidelity scaling for different values of the dephasing time T2, ranging from 10ms to 1s (with T1 fixed at 2 s). The
simulations are for the completely probabilistic execution of the linking step (Pd = 0%), meaning there are no deterministic
CNOTs being executed to create the GHZ states within each layer of the QRAM. We present different simulations for several
possible values for the efficiency of each distributed CNOT (i.e. the probability of success of each of the distributed CNOT),
namely η ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

In Figs. 19, 20 and 21 we present combinations of error parameters (increasing T2 times across the horizontal) and
amounts of deterministic nodes (decreasing Pd across the vertical) for CNOT errors in the order of 1%, 0.1% and
0.01%, respectively. For each of the plots, we also plot, for comparison purposes with equivalent error parameters,
the initial TD-QRAM architecture, to verify when there is an advantage to use the hybrid scheme.
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FIG. 19. Fidelity scaling in function of the number of memory qubits for a TS-QRAM. Dephasing time T2 ranging from 10ms
to 1s. Amplitude-damping time T1 fixed at 2 s. Deterministic CNOT error probability fixed at 1%. The simulations are for the
hybrid scheme under different possible amounts of deterministic nodes (Pd = {3.1%, 6.2%, 12.5%, 25%}). We present different
simulations for several possible values for the efficiency of each distributed CNOT (i.e. the probability of success of each of the
distributed CNOT), namely η ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
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FIG. 20. Fidelity scaling in function of the number of memory qubits for a TS-QRAM. Dephasing time T2 ranging from 10ms
to 1s. Amplitude-damping time T1 fixed at 2 s. Deterministic CNOT error probability fixed at 0.1%. The simulations are
for the hybrid scheme under different possible amounts of deterministic nodes (Pd = {3.1%, 6.2%, 12.5%, 25%}). We present
different simulations for several possible values for the efficiency of each distributed CNOT (i.e. the probability of success of
each of the distributed CNOT), namely η ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
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FIG. 21. Fidelity scaling in function of the number of memory qubits for a TS-QRAM. Dephasing time T2 ranging from 10ms
to 1s. Amplitude-damping time T1 fixed at 2 s. Deterministic CNOT error probability fixed at 0.01%. The simulations are
for the hybrid scheme under different possible amounts of deterministic nodes (Pd = {3.1%, 6.2%, 12.5%, 25%}). We present
different simulations for several possible values for the efficiency of each distributed CNOT (i.e. the probability of success of
each of the distributed CNOT), namely η ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
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