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Bi-Frequency Illumination: A Quantum-Enhanced Protocol

Mateo Casariego,* Yasser Omar, and Mikel Sanz

Quantum-enhanced, idler-free sensing protocol to measure the response of a
target object to the frequency of a probe in a noisy and lossy scenario is
proposed. In this protocol, a target with frequency-dependent reflectivity 𝜼(𝝎)
embedded in a thermal bath is considered. The aim is to estimate the
parameter 𝝀 = 𝜼(𝝎2)− 𝜼(𝝎1), since it contains relevant information for
different problems. For this, a bi-frequency quantum state is employed as the
resource, since it is necessary to capture the relevant information about the
parameter. Computing the quantum Fisher information H relative to the
parameter 𝝀 in an assumed neighborhood of 𝝀 ≈ 0 for a two-mode squeezed
state (HQ), and a pair of coherent states (HC), a quantum enhancement is
shown in the estimation of 𝝀. This quantum enhancement grows with the
mean reflectivity of the probed object, and is noise-resilient. Explicit formulas
are derived for the optimal observables, and an experimental scheme based
on elementary quantum optical transformations is proposed. Furthermore,
this work opens the way to applications in both radar and medical imaging, in
particular in the microwave domain.

1. Introduction

Quantum information technologies are opening very promis-
ing prospects for faster computation, securer communica-
tions, and more precise detection and measuring systems,
surpassing the capabilities and limits of classical information
technologies.[1–5] Namely, in the domain of quantum sensing and
metrology,[6] we are currently witnessing a boost of applications
to a wide spectrum of physical problems: from gravimetry and
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geodesy,[7–11] gravitational waves,[12] clock
synchronization,[5,13] thermometry[14] and
bio-sensors,[15–19] to experimental proposals
to seek quantum behavior in macroscopic
gravity,[20] to name just a few.
While many of the quantum metrology

studies that focus on unlossy and noise-
less (unitary) scenarios, the more realistic,
lossy case has also been investigated.[21–29]

Equivalently, one can talk about quantum
metrology with open quantum systems.
Understanding what are the precision lim-
its of measurements in the presence of
loss is a fundamental endeavor in quan-
tum metrology.[30,31] Certain noise proper-
ties have been found to be beneficial in
some scenarios,[32,33] and quantum error
correction schemes have been proposed
to overcome decoherence and restore the
quantum-enhancement.[34] Quantum illu-
mination (QI)[35–45] is a particularly inter-
esting example of a lossy and noisy proto-
col where the use of entanglement proves

useful even in an entanglement-breaking scenario. QI shows that
the detection of a low-reflectivity object in a noisy thermal envi-
ronment with a low-intensity signal is enhanced when the signal
is entangled to an idler that is kept for a future jointmeasurement
with the reflected state. This makes QI a candidate for a quan-
tum radar,[46] although a more involved protocol is needed.[47,48]

The decision problem of whether there is an object or not can
be rephrased as a quantum estimation of the object’s reflectivity
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𝜂, in order to discriminate an absence (𝜂 = 0) from a presence
(𝜂 ≪ 1) of a low-reflectivity object.[49]

The goal of quantum estimation[50–54] is to construct an estima-
tor �̃� for certain parameter 𝜆 characterizing the system. It is note-
worthy that not every parameter in a system corresponds to an ob-
servable, and this may imply the need for data post-processing.
Either way, the theory provides techniques to obtain an optimal
observable—not necessarily unique, that is, whose mean square
error is minimal. The estimator �̃� is nothing but a map from the
results of measuring the optimal observable to the set of possible
values of the parameter 𝜆. One of themain results of this theory is
the quantum Cramér–Rao (qCR) bound, which sets the ultimate
precision of any estimator. Whether this bound is achievable or
not depends on the data-analysis method used, and on the statis-
tical distribution of the outcomes of different runs of the experi-
ment. Inmost practical situations,maximum likelihoodmethods
for unbiased estimators, together with a Gaussian distribution
of the outcomes of the (independent) runs of the experiment,
make the bound achievable. In order to find the qCR—and the
explicit form of the optimal observable—one needs to compute
the quantum Fisher information[55] (QFI), which roughly speak-
ing quantifies how much information about 𝜆 can be extracted
from the system, provided that an optimal measurement is per-
formed. In general, computing the QFI involves diagonalization
of the density matrix, which makes the obtention of analytical
results challenging. However, if one restricts to Gaussian states
and Gaussian-preserving operations,[56–59] the so-called symplec-
tic approach simplifies the task considerably.[60–70] As the QFI
is by definition optimized over all POVMs, it only depends on
the initial state, often called probe. This means that a second op-
timization of the QFI can be pursued, this time over all possi-
ble probes. Moreover, this approach allows us to quantitatively
compare different protocols, for example, with and without en-
tanglement in the probe, since an increase in the QFI when the
same resources are used—which typically translates into fixing
the particle number, or the energy—directly means an improve-
ment in precision.
In this article, we propose an idler-free quantum-enhanced,

lossy protocol to estimate the reflectivity 𝜂(𝜔) of an object as a
function of the frequency when the object is embedded in a noisy
environment. In particular, we propose a method where a bi-
frequency state is sent to probe a target—modeled as a beam split-
ter with a frequency-dependent reflectivity 𝜂(𝜔) and embedded in
a thermal environment. The goal is to obtain an estimator for the
parameter 𝜆 = 𝜂(𝜔2) − 𝜂(𝜔1), that captures information about the
linear frequency dependence of the object. For simplicity, it is as-
sumed that the frequencies are sufficiently close so that we can
work in a neighborhood of 𝜆 ≈ 0.
By imposing that the expected photon number is the same in

quantum and classical scenarios, we find the QFI ratio between
them, and analyze when it is greater than one. We find that the
maximum enhancement is obtained for highly reflective targets,
and derive explicit limits in the highly noisy case. We also pro-
vide expressions for the optimal observables, proposing a gen-
eral experimental scheme described in Figure 2, and motivating
applications in microwave technology.[71]

The article is structured as follows. First, we introduce the
model, along with the main concepts and formulas from quan-
tum estimation theory, motivating the use of Gaussian states.

Then, we compute theQFI and show the quantumenhancement.
Finally, we compute the optimal observables for both the quan-
tum and the classical probes, and briefly discuss applications.

2. Model and Fundamentals of Quantum
Estimation Theory with Gaussian States

2.1. Physics of Gaussian States

When a quantum system has one or more degree of freedom
described by operators with a continuous spectrum, we say that
the system is a “continuous variable” (CV) system. Within the
bosonic CV quantum systems, quantum Gaussian states are de-
fined as the ones arising from Hamiltonians that are at most
quadratic in the field operators, which we list in the vector Â :=
(â1, â2,… , âN, â

†
1, â

†
2,… â†N), where N is the number of modes.

This ordering of the creation and annihilation operators is com-
monly referred to as the “complex basis” or “complex form,”[57]

and allows for a compact way of writing down the commutation
relations: [Âa, Âb] = KabÎ, where a, b = 1,… , N, Î is the identity
operator, and K = diag(𝟙N,−𝟙N) is a diagonal matrix, 𝟙N being
the N × N identity matrix.
Instead of having to resort to the infinite-dimensional density

operator in order to describe a state, Gaussian systems are fully
characterized by anN-vector called the displacement vector and an
N × N matrix, the covariance matrix. We can construct the dis-
placement vector

d := Tr
[
𝜌Â

]
(1)

and the covariance matrix

Σ := Tr
[
𝜌{ΔÂ,ΔÂ⊺

}
]

(2)

where 𝜌 is the density operator, {⋅, ⋅} denotes the anticommu-
tator, and ΔÂ := Â − d. It is important to bear in mind that
other choices of basis lead to different, but equivalent defini-
tions. In fact, in the following sections we will start by writ-
ing down covariance matrices in the so-called “quadrature basis”
(x̂1,… , x̂N, p̂1,… , p̂N) with the canonical position and momen-
tum operators defined by the choice 𝜅1 = 2−1∕2 in âk = 𝜅1(x̂k +
ip̂k).

[72] A key result with important consequences in the con-
text of Gaussian states is the normal mode decomposition,[73,74]

which follows the more general theorem due to Williamson[75]

and that, from a physical point of view, establishes that any
Gaussian Hamiltonian (i.e., quadratic) is equivalent —up to a
unitary— to a set of free, non-coupled harmonic oscillators. This
apparent simplicity of Gaussian states, however, has a rich struc-
ture when it comes to analyzing their Hilbert space properties,
as well as information-theoretic quantities such as the quantum
Fisher information, entropies, and so on. We can state the result
in the following way: any positive-definite Hermitian matrix Σ
of size 2N × 2N can be diagonalized with a symplectic matrix S:
Σ = SDS†, where D = diag(𝜈1,… , 𝜈N, 𝜈1,… , 𝜈N) with 𝜈a the sym-
plectic eigenvalues of Σ, that are the positive eigenvalues of ma-
trix KΣ. An important result for what follows is that a state is
pure if and only if all the symplectic eigenvalues are one: 𝜈a = 1
∀a, and 𝜈a ≥ 1 for any Gaussian state.
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2.2. Quantum Estimation

Quantum metrology is so related to quantum estimation that
sometimes the two terms are used as synonyms. Incidentally,
quantum sensing could be seen as a quantum estimation or
metrology problem that deals with a binary question: is the value
of the parameter of interest zero or not? Terminology aside, quan-
tum estimation deals with the problem of measuring things that
may not be encoded in observables per se, that is, it allows for the
obtention of measurable quantities that do not necessarily corre-
spond to linear functions of the density matrix, and it teaches
us what the ultimate precision limits are, whether one can at-
tain them or not, and how to attain them. The most common
approach to attack the problem of metrology is from the notion
of classical frequentist estimation. Although the –perhaps more
realistic– approach of Bayesian quantum estimation theory[76–82]

exists and is a rich field of research, here we will take the for-
mer, tacitly assuming a local estimation strategy,[83,84] that hap-
pens when there is some prior knowledge of the interval where
the true value of the parameter (or parameters) of interest may
lie, hence its name: the true parameter value is localized into
some interval rather than completely unknown (in this case, the
estimation is called global). In the local approach, the QFI matrix
emerges as the figure of merit for the quantification of the maxi-
mum amount of information one can extract from the system.
While classical parameter estimation deals only with the statis-

tics of measurement outcomes, and answers questions of attain-
ability in the presence of statistical noise (with various properties
that can affect the scaling of the precision with which one esti-
mates the parameter), quantum estimation addresses the prob-
lem of what to measure, and imposes additional limits to the
precision due to the fundamental probabilistic nature of quan-
tum mechanics. Indeed, the quantum Fisher information (QFI)
matrix, can be seen as an optimization of the classical Fisher
information—a measure for the amount of information relative
to a set of parameters 𝝀 a system contains—over all possiblemea-
surements, or POVMs.
The QFI can be interpreted geometrically bymeans of a notion

of distance in the Hilbert space spanned by density operators.
Among the many candidates, the Bures distance

D2
B(𝜌1, 𝜌2) := 2

(
1 −

√
F(𝜌1, 𝜌2)

)
(3)

where F(𝜌1, 𝜌2) := (Tr[
√√

𝜌1𝜌2
√
𝜌1])

2 is the Uhlmann fidelity be-

tween states 𝜌1 and 𝜌2, the one correctly linking estimation to
geometry. This makes the interpretation of quantum estimation
straightforward: it depends upon the distinguishability between
states. If 𝝀 is a vector of parameters that defines a (possibly con-
tinuous) family of states {𝜌𝝀}, then the Bures distance between
two infinitesimally close states can be related to a metric tensor,
which is no other than the QFI matrix:

D2
B(𝜌𝝀, 𝜌𝝀+d𝝀) =

Hab(𝝀)
4

(4)

A largeQFI translates in a large distinguishability between states.
In this paperwewill focus on the single parameter case, for which

the QFI is a scalar that can be computed using the following
basis-dependent formula

H(𝜆) = 2
∑
m,n

| ⟨Φm| 𝜕𝜆𝜌𝜆 |Φn⟩ |2
𝜌m + 𝜌n

(5)

where {𝜌m, |Φm⟩} are the eigensolutions to 𝜌𝜆 |Φm⟩ = 𝜌m |Φm⟩,
and 𝜌𝜆 is the measured, or received state. Moreover, the theory
also provides a way of finding an optimal observable, whose out-
comes allow us to construct an estimator:[53]

Ô𝜆 = 𝜆𝟙 +
L̂𝜆
H(𝜆)

(6)

where L̂𝜆 is a symmetric logarithmic derivative (SLD) that solves
the equation {L̂𝜆, 𝜌𝜆} = 2𝜕𝜆𝜌𝜆, where {⋅, ⋅} is the anticommuta-
tor. When the estimator �̃� is constructed using a maximum
likelihood method, the so-called quantum Cramér–Rao bound
(qCRB)[85,86] is asymptotically achieved, meaning that the observ-
able in Equation (6) has the smallest possible variance:

var(Ô𝝀) ≥
1

MH(𝝀)
(7)

where var(Ô) := ⟨Ô2⟩ − ⟨Ô⟩2 denotes the variance of operator Ô,
M is the number of repetitions, andH(𝝀) is the QFI.
The problem, however, can become mathematically challeng-

ing due to the diagonalization implicit in Equation (5). In the next
section we review some results that help us circumvent these is-
sues, as long as we stick to Gaussian states.

2.2.1. Gaussian Quantum Estimation

As shown in ref. [60], when we are in the presence of Gaussian
states and Gaussian-preserving channels, there is no need to di-
agonalize the density matrix in Equation (5) in order to find the
QFI. For a single parameter, the QFI can be computed using

H(𝜆) = 1
2(det[A] − 1)

[
det[A] Tr

[
(A−1𝜕𝜆A)

2
]

+
√
det[𝟙2 + A2] Tr

[(
(𝟙2 + A2)−1𝜕𝜆A

)2]
− 4

(
𝜈2+ − 𝜈2−

)( (𝜕𝜆𝜈+)
2

𝜈4+ − 1
−
(𝜕𝜆𝜈−)

2

𝜈4− − 1

)]
+ 2𝜕𝜆d

†Σ−1
𝜆
𝜕𝜆d

(8)

where the dot over A and d⃗ denotes derivative with respect to 𝜆,
and 𝜈± are the symplectic eigenvalues of Σ𝜆, defined following ref.
[61]

2𝜈2± := Tr[A2] ±
√
(Tr[A2])2 − 16 det[A] (9)

with thematrixA given byA := iΩTΣ𝜆T⊺,Ω := antidiag(𝟙2,−𝟙2),
and Tij := 𝛿j+4,2i + 𝛿j,2i−1 is the matrix that changes the basis to
the quadrature basis(x̂th1 , x̂

S
1 , x̂

th
2 , x̂

S
2 , p̂

th
1 , p̂

S
1 , p̂

th
2 , p̂

S
2)

⊺. For a Gaussian
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Figure 1. An object reflects a bi-frequency beam (notice the similar but
different colors of the two beams coming out of the emitter), and mixes
it with a thermal bath for each frequency with the same expected photon
number, coming from the upper left. The transmitted signal and reflected
thermal state are lost, and a measurementO�̂� is performed onto the avail-
able part (lower right corner), whose expectation values converge, after
classical data processing, to an estimator of the parameter 𝜆 encoded in
the object. In our case, S𝜆 represents the transformation associated to a
multi-layered object, modeled as a beam splitter, where 𝜆 := 𝜂2 − 𝜂1 is the
parameter to be estimated, where 𝜂i = 𝜂(𝜔i) are the reflectivities for the
different frequencies. The emitter can produce either a pair of coherent
states (classical strategy) or an entangled, two-mode squeezed state. The
latter proves advantageous in the parameter estimation, giving a strictly
larger quantum Fisher information.

state (Σ𝜆, d⃗𝜆) written in the complex basis, the symmetric logarith-
mic derivative in Equation (6) can be obtained as in ref. [60]:

L̂𝜆 = Δ ⃗̂A†
𝜆Δ

⃗̂A − Tr[Σ𝜆𝜆]∕2 + 2Δ ⃗̂A†Σ−1
𝜆
𝜕𝜆d⃗𝜆 (10)

where Δ ⃗̂A := ⃗̂A − d⃗𝜆,
⃗̂A the complex basis vector of bosonic oper-

ators, 𝜆 := −1𝜕𝜆d⃗𝜆, where  = Σ̄𝜆 ⊗ Σ𝜆 − K ⊗ K, where the
bar denotes complex conjugate, and K := diag(𝟙2,−𝟙2). Note that
when 𝜆 → 0 we have Ô𝜆=0 ≡ Ô = L̂𝜆=0∕H(𝜆 = 0), since both lim-
its exist independently. This limit is of our interest because we
will work in a neighborhood of 𝜆 ≈ 0, that is, themeasured value
of the parameter is expected to be small (i.e. we shall adopt a local
estimation strategy).

2.3. Model

The model is synthesized in Figure 1, the target object, modeled
as a beam splitter with a frequency-dependent reflectivity is sub-

ject to an illuminationwith a bi-frequency probe. The transmitted
signal is lost, and only the reflected part is collected for measure-
ment. For a single frequency, a beam splitter is characterized by
a unitary operator

U(𝜔) ≡ exp
[
arcsin

(√
𝜂(𝜔)

)
(ŝ†
𝜔
b̂𝜔e

i𝜑 − ŝ𝜔b̂
†
𝜔
e−i𝜑)

]
(11)

where 𝜂(𝜔) is a frequency-dependent reflectivity, related to trans-
mittivity 𝜏 via 𝜂(𝜔) + 𝜏(𝜔) = 1.
We assume for simplicity that 𝜑 = 0, that is, there is no phase

difference between transmitted and reflected signals. This uni-
tary maps states (density matrices) that live in the density matrix
space associated with Hilbert space , () to itself. Formulat-
ing the problem from a density operator perspective, we have that
the received state is

𝜌𝜆 = TrS1 TrS2
[
U𝜆𝜌U

†
𝜆

]
(12)

where the parameter is defined as 𝜆 = 𝜂(𝜔2) − 𝜂(𝜔1), and 𝜌 ∈
S1 ,S2 ,B1 ,B2

is a four-mode state that includes the two signals (the
two-mode state that we can control) and two thermal environ-
ments of the form 𝜌th1 ⊗ 𝜌th2 , where the subscript indicates the
frequency, that is, 𝜌tha = (1 + Nth)

−1 ∑∞
n=0(Nth∕(1 + Nth))

n |n⟩a ⟨n|
where Nth = Tr(𝜌tha b̂

†
𝜔a
b̂𝜔a

) is the average number of thermal pho-
tons, which we assume to be the same for the two modes. Note
that in order to obtain the explicit form of the interaction U𝜆

in Equation (12) one just needs to reparametrize the four-mode
unitary U(𝜔1)⊗U(𝜔2) using the difference of reflectivities 𝜆 ≡

𝜂2 − 𝜂1 and Equation (11). The equal thermal photon number is
an accurate approximation as long as the frequency difference
Δ𝜔 ≡ 𝜔2 − 𝜔1 is sufficiently small. To make this statement more
quantitative, let us assume two different thermal photon densi-
ties, N1 and N2. The Bose–Einstein distribution for photons is
Ni ∝ 1∕(e𝛽𝜔i − 1) where 𝛽 ≡ ℏ∕kBT is a function of the tempera-
ture T . Then,

N1

N2
= e𝛽𝜔1 − 1

e𝛽𝜔2 − 1
= 1

1 + 𝛽Δ𝜔e𝛽𝜔1
e𝛽𝜔1−1

(13)

we see that up to first order in 𝛽Δ𝜔, the last expression reduces
to 1 − Δ𝜔∕𝜔1. This means that N1 ≈ N2 if Δ𝜔∕𝜔1 ≪ 1. In par-
ticular, for T = 300 K and 𝜔1∕2𝜋 = 5 GHz the expected thermal
photon number is roughly 1250. It is straightforward to check
that for these frequencies and temperatures, the above approxi-
mations are good (that is, ≈ 4% of relative error) for frequency
differences up to 20%.
Because we are working within the local estimation approach

and our goal is to find observables that saturate the qCRB, we
shall take the true value of 𝜆 to be exactly zero. This means that
the goal of the protocol is to increase one’s confidence about this
initial ansatz of the parameter being zero, and be able to tell when
it is close but not exactly zero. Hence, we work in a neighborhood
of 𝜆 ≈ 0—which can be implemented by taking the limit 𝜆 → 0
in the derived expressions. Moreover, this relies on a physical as-
sumption, since we are interested in probing regions of 𝜂(𝜔) that
do not change drastically, that are well approximated by a linear
function with either no slope or a small one. In this sense, the
protocol is a quantum sensing one, since we are interested in an-
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swering the question of whether the parameter either vanishes
or is small.
It is also worth discussing briefly the effect of absorption loss

due to the medium through which the signal travels. These can
be accommodated in the model by means of an additional beam
splitter. The medium through which the signal travels can be
seen as an array of infinitesimal beam splitters, each of which
having the same reflectivity, and mixing some incoming signal
with the same thermal state. For a travel distance L, the flying
mode will see a reflectivity

𝜂abs = 1 − e−𝜇L (14)

where 𝜇 is a parameter characterizing the photon-loss of the
medium. A concatenation of beam splitters can be easily put into
a single one, as long as they are embedded in the same environ-
ment, which is our case. For beam splitters of transmittivities 𝜏1
and 𝜏2 their combined resulting transmittivity is simply the prod-
uct: 𝜏 = 𝜏1𝜏2. Thus, accommodating absorption losses into our
model is trivially obtained by the transformation 𝜏 → e−𝜇L𝜏. Since
the QFI deals with derivatives with respect to the parameter to be
estimated, and ultimately we are interested in QFI ratios between
a quantum protocol and its classical counterpart, the above trans-
formation will not affect the overall results, since multiplicative
factors will cancel out.

3. Results: Quantum Fisher Information

In this section we compute the QFI for two different probes: an
entangled two-mode squeezed (TMS) state, and a pair of coherent
beams. The choice of the TMS state over other possible entangled
states ismotivated by the fact that these are customarily produced
in labs, both in optical -for example, with non-linear crystals, and
in microwave frequencies—using Josephson parametric ampli-
fiers (JPAs).

3.1. Two-Mode Squeezed Vacuum State

The TMS vacuum (TMSV) state is the continuous-variable equiv-
alent of the Bell state, being the Gaussian state that opti-
mally transforms classical resources (light, or photons) into
quantum correlations. The TMSV state is a cornerstone in ex-
periments with quantum microwaves.[87–91] In our case, we
are interested in states produced via nondegenerate paramet-
ric amplification, in order to have two distinguishable fre-
quencies. The state can be formally written as: |𝜓⟩TMSV :=
(cosh r)−1

∑∞
n=0(−e

i𝜙 tanh r)n |n, n⟩, where r ∈ ℝ≥0 is the squeez-
ing parameter. For simplicity we take 𝜙 = 0. In any realistic ap-
plication, the TMSV state should be replaced by a TMS ther-
mal state, which can be defined as the one obtained by applying
the two-mode squeezing operation to a pair of uncorrelated ther-
mal states 𝜌th, 1, and 𝜌th, 2 with mean thermal photon numbers
n1 and n2, respectively, and hence resulting in a mixed state.[92]

The expected total photon number in these states is given
byNTMST = ⟨N̂1 + N̂2⟩ = (n1 + n2) cosh 2r + 2 sinh2 r, where N̂i ≡

â†Si âSi for i = 1, 2. Typically, one has n1 = n2 ≡ n, which gives us

a symmetric TMST state. In this case we define the signal pho-
ton number NS as the photon number in each of the modes,
NS ≡ NTMST∕2 = n(1 + 2Nr) + Nr , where Nr ≡ sinh2 r.[ 93,94] In
microwaves, a squeezing level S = −10 log10[(1 + 2n) exp(−2r)] of
9.1 dB has been reported[95] for n = 0.34 and r ≈ 1.3, using JPAs
operating at roughly 5 GHz with a filter bandwidth of 430 kHz.
This corresponds to NS ≈ 8.
The total initial (real) covariance matrix –written in the real ba-

sis (x̂th1 , p̂
th
1 , x̂

S
1 , p̂

S
1 , x̂

th
2 , p̂

th
2 , x̂

S
2 , p̂

S
2)

⊺– is given by

Σ = N

⎛⎜⎜⎜⎜⎝
N−1Σth 0 0 0

0 Σr 0 𝜀r

0 0 N−1Σth 0

0 𝜀
⊺
r 0 Σr

⎞⎟⎟⎟⎟⎠
(15)

where N ≡ 1 + 2n, Σth = (1 + 2Nth)𝟙2 is the real covariance ma-
trix of a thermal state, Σr = cosh(2r)𝟙2 corresponds to the diago-
nal part of one of themodes in a TMSV state, and 𝜀r = sinh(2r)𝜎Z
is the correlation between the twomodes, where 𝜎Z is the Z Pauli
matrix. Note that the covariance matrix of the thermal TMS state
is simply N times the one of the TMSV state.
The displacement vector of a TMST state is identically zero

dTMST = 0, so the last term of Equation (8) vanishes. Under the
assumption that the object does not entangle the two modes, we
have that the symplectic transformation is S(𝜂1, 𝜂2) = SBS(𝜂1)⊕
SBS(𝜂2),

[96] where

SBS(x) =

( √
x𝟙2

√
1 − x𝟙2

−
√
1 − x𝟙2

√
x𝟙2

)
(16)

is the real symplectic transformation associated with a beam
splitter of reflectivity x. We define the parameter of interest as
𝜆 ≡ 𝜂2 − 𝜂1. With this, S(𝜂1, 𝜂2) becomes a function of 𝜆. For sim-
plicity, we define S𝜆 := S(𝜂1, 𝜂1 + 𝜆). The full state after the sig-
nals get mixed with the thermal noise is given by Σ̃𝜆 ≡ S𝜆ΣS

⊺
𝜆
. In

covariance matrix formalism, partial traces are implemented by
removing the corresponding rows and columns;[57] in our case
the rows and columns 1, 2, 5, and 6. The resulting received covari-
ance matrix reads as follows

Σ𝜆 =

(
a𝟙 b𝜎Z
b𝜎Z c𝟙

)
(17)

with a ≡ 1 + 2Nth + 2𝜂1(2Nr + 4nNr − Nth), b ≡ 2(1 +
2n)

√
2𝜂1NS(𝜂1 + 𝜆)(2Nr + 1), and c ≡ (1 + 2n)(1 + 4𝜆Nr +

𝜂1(4Nr − 2Nth) + 2(1 − 𝜆)Nth).
For this state, the symplectic eigenvalues 𝜈± defined in Equa-

tion (9) are strictly larger than one for any value of the parame-
ters n, Nr , Nth, and 𝜂1, other than 𝜂1 = 1 ∧ Nth = 0, so there is no
need of any regularization scheme.[61] Indeed, this is due to the
mixedness of the received state: regularization is only needed for
pure states.
We obtain the function HQ(𝜆) from Equation (8), and com-

pute the two-sided limitHQ ≡ lim𝜆→0HQ(𝜆) when the parameter

Adv. Quantum Technol. 2022, 5, 2100051 2100051 (5 of 11) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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𝜆 goes to zero, finding

HQ = 𝜅
[
𝜂1n̄

(
N̄th(4nNr + n + 4Nr − 2Nth) − 2𝜂1(2(n + 1)NrN̄th

+ Nth(n − Nth))
)
+ 𝛽

)(
𝜂1n̄

(
N̄th(4nNr + n + 4Nr − 2Nth)

− 2𝜂1(2(n + 1)NrN̄th + Nth(n − Nth))
)
+ 𝛽 + 1

]
(18)

where

𝜅−1
≡ n̄2

[
2𝜂1(N̄th(Nr(n̄(8(n + 1)N2

r + 6nNr + n) − 4Nr)

+ 2N2
th(4nNr + n + 6Nr) − 2NrNth(2(6n + 5)Nr + 2n − 1)

− 2N3
th) − 2𝜂1(−Nth(4(n + 1)Nr + n) + Nr((4n + 2)Nr − 1)

+ N2
th)(2(n + 1)NrN̄th + Nth(n − Nth))) + 2n(2Nr + 1)NrN̄

2
th

+ 4N2
r (6Nth(Nth + 1) + 1) − 4NrN

2
th(4Nth + 3) + N2

thN̄
2
th

]
(19)

and N̄th ≡ 1 + 2Nth, n̄ ≡ 1 + 2n, and 𝛽 ≡ nN̄2
th + 2Nth(Nth + 1).

3.2. Coherent States

Here we use a pair of coherent states as probe: |𝜓⟩ = |𝛼⟩⊗ |𝛼⟩.
The total expected photon number in this state is 2NC := 2|𝛼2|.
For simplicity we take 𝛼 ∈ ℝ. Moreover, since we will compare
with the TMST state, we set 𝛼2 = n(1 + 2Nr) + Nr . The initial co-
variance matrix is simply given by the direct sum of two identity
matrices (corresponding to each of the coherent states), and two
thermal states. After the interaction and the losses, the measured
covariance matrix is

Σ𝜆 =

(
d𝟙 0

0 f 𝟙

)
(20)

where d = 1 + 2Nth𝜏1, f = 1 + 2Nth(𝜏1 − 𝜆).
The initial displacement vector in the real basis is d⊺0 =

(0, 0,
√
2𝛼, 0, 0, 0,

√
2𝛼, 0) which leads—after the interaction and

the trace of the losses—to d⊺ = 𝛼(
√
2𝜂1, 0,

√
2(𝜂1 + 𝜆)). The sym-

plectic eigenvalues are also larger than one here. Inserting these
in Equation (8), and taking the limit 𝜆 → 0, we find that the QFI
for the coherent state is

HC =
4N2

th

(
(1 + 2Nth𝜏1)

2 + 1
)

(1 + 2Nth𝜏1)4 − 1
+
n(1 + 2Nr) + Nr

𝜂1(1 + 2Nth𝜏1)
(21)

where 𝜏1 = 1 − 𝜂1 is the transmittivity.Having computed both the
quantum and the classical QFIs, in the next section we analyze
their ratioHQ∕HC, a quantifier for the quantum enhancement.

3.3. Comparison: Quantum Enhancement

We analyze the ratio between the TMST state’s QFI (HQ) and
the coherent pair’s QFI (HC) for different situations. As a first

approximation and to simplify the discussion, we take the limit
where n → 0, which corresponds to a TMSV state input. Finding
values of (𝜂1, Nth, NS) such that the ratio HQ∕HC is larger than
one means that one can extract more information about parame-
ter 𝜆 using a TMST state than using a coherent pair, provided an
optimal measurement is performed in both cases. In Figure 2we
plot the results for various values of 𝜂1. We can immediately see
that the ratio gets larger for large values of 𝜂1, that is, for highly re-
flective materials. In particular, we find the high-reflectivity limit
the ratio converges even when the individual QFIs do not (since
they correspond to a pure state being transmitted):

lim
𝜂1→1

HQ

HC
=

N2
S

(
8Nth(Nth + 1) + 4

)
+ 4NSN

2
th + N2

th

Nth

(
NS(4Nth + 2) + Nth

) (22)

which converges to 1 + 8N2
S∕(4NS + 1) in the highly noisy sce-

nario Nth ≫ 1. Using a squeezing of r ≈ 1.3 which is experi-
mentally realistic for microwave quantum states, and that corre-
sponds to an expected photon number of NS ≈ 2.9, we expect to
find a quantum-enhancement of roughly a factor of six, that is,
HQ∕HC ≈ 6.4 in the highly reflective limit.
In the next section we explicitly compute the observables that

lead to an optimal extraction of 𝜆’s value for both the classical and
the quantum probes.

4. Optimal Observables

Here we address the question of how to extract the maximum
information about parameter 𝜆 for each of the probes. The the-
ory provides us with explicit ways to compute an optimal POVM,
which albeit not unique, provides us with an optimal measure-
ment strategy: upon measuring the outcomes and possibly after
some classical data-processing, the results asymptotically tend to-
ward the true value of the parameter to be estimated.

4.1. Optimal Observable for the TMSV State Probe

Computing the SLD in Equation (8) and inserting it in Equa-
tion (6) we find

ÔQ = L11â
†
1â1 + L22â

†
2â2 + L12

(
â†1â

†
2 + â1â2

)
+ L0𝟙12 (23)

where the general expressions for the coefficients can be found
in Appendix A. The variance of this operator is found to be
var(ÔQ) = 2N2

SL12(1 + NS). We can numerically test the validity
of the qCR bound for this observable by examining the bound it-
self for the extreme choice ofM = 1. The saturation of the bound
produces the following relation:

var
(
ÔQ

)
HQ = 1 (24)

Now, as the left hand side a function of (NS, Nth, 𝜂1), we can give
different values to the reflectivity and find the limiting condition
between NS and Nth, which is depicted in Figure 3. Naturally, the
largerM, the better results we can achieve, butM = 1 proves the
existence of a choice of parameters for which the bound is satu-
rated.
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Figure 2. Values, represented by a non-linear color grading, of the quantum enhancement given by the ratio HQ∕HC of the quantum Fisher information
of the two-mode squeezed vacuum state probe HQ by the quantum Fisher information of the coherent states probe HQ as a function of the photon
numbers of the signal (NS) and of the thermal bath (Nth), for a reflectivity 𝜂1 of a) 0.75, b) 0.90, and c) 0.95. Equivalently, scales of squeezing, r, given by√
NS = sinh r, and temperature T in Kelvin, are provided. The relation between temperature and mean thermal photon number is obtained via the usual

Bose–Einstein distribution Nth = 1∕(exp(E∕kBT) − 1) when the energy is set to E = ℏ𝜔 = h𝜈, which requires a choice of the frequency 𝜈. We have taken
𝜈 = 5 GHz, a typical frequency of microwaves. White represents no quantum enhancement, that is, HQ∕HC = 1. We clearly see that as 𝜂1 grows, the
quantum enhancement becomes not only more significant, but also easier to achieve with less signal photons. Importantly, as the reference reflectivity
𝜂1 grows, the protocol becomes more resilient to thermal noise.

Figure 3. Proof of the saturation of the quantum Cramér–Rao bound for
the optimal observable ÔQ given in Equation (23) for different values of the
reflectivity 𝜂1, expressed as the existence of a real functionNth = Nth(NS),
for the extreme case of just one experimental run (M = 1). As the reflec-
tivity grows, we observe an interesting behavior: the best choice of Nth—
defined as the one that saturates the bound while keeping NS as low as
possible—is actually non-vanishing.

Moreover, it is illustrative to study a possible implementa-
tion of the noiseless case, since this captures the essence of
what is being measured. When Nth → 0 we have that ÔLim

Q =
−𝜇2â†1â1 − â†2â2 + 𝜇(â

†
1â

†
2 + â1â2) − 𝜈𝟙12 where 𝜇2 ≡ (1 + 1∕2NS)

and 𝜈 ≡ (1 + 1∕4NS), and we have taken the limit of vanishing
Nth. Notice that we can rewrite this observable as b̂†1b̂1 − 1, that
is, implementing photon-counting on the operator b̂1 ≡ −i(â†2 −
𝜇â1). This is achieved by means of the transformations captured
in Figure 4.

Following that scheme, we have that after the first beam splitter

â′1 = â1 cos𝜑 + â2 sin𝜑

â′2 = −â1 sin𝜑 + â2 cos𝜑
(25)

then the Josephson parametric amplifiers (JPA)—-ideally squeez-
ing operators—produce â′′i = S†(ri, 𝜃i)â

′
iS(ri, 𝜃i) where S(ri, 𝜃i) is

the squeezing operator, acting as

â′′i = S†(ri, 𝜃i)â
′
iS(ri, 𝜃i) = â′i cosh ri − ei𝜃i â′†i sinh ri

â′′†i = S†(ri, 𝜃i)â
′†
i S(ri, 𝜃i) = â′†i cosh ri − e−i𝜃i â′i sinh ri.

(26)

Assuming that the phase shifter 𝜙 acts as ĉ → e−i𝜙ĉ we find the
following output modes

ei𝜙b̂1 = cos 𝜃
(
â′1 cosh r1 − ei𝜃1 â′†1 sinh r1

)
+ sin 𝜃

(
â′2 cosh r2 − ei𝜃2 â′†2 sinh r2

)
b̂2 = − sin 𝜃

(
â′1 cosh r1 − ei𝜃1 â′†1 sinh r1

)
+ cos 𝜃

(
â′2 cosh r2 − ei𝜃2 â′†2 sinh r2

)
.

(27)

We insert Equation (25) in the last expression and regroup, find-
ing

ei𝜙b̂1 = â1
(
cos 𝜃 cos𝜑 cosh r1 − sin 𝜃 sin𝜑 cosh r2

)
+ â2

(
cos 𝜃 sin𝜑 cosh r1 + sin 𝜃 cos𝜑 cosh r2

)
+ â†1

(
−ei𝜃1 cos 𝜃 cos𝜑 sinh r1 + ei𝜃2 sin 𝜃 sin𝜑 sinh r2

)
+ â†2

(
−ei𝜃1 cos 𝜃 sin𝜑 sinh r1 − ei𝜃2 sin 𝜃 cos𝜑 sinh r2

)
(28)
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Figure 4. Schematic circuit for the generation of mode b̂1, needed to correctly implement the optimal observable in the two-mode squeezed vacuum
(TMSV) state. The original âi modes mix at a 𝜑 beam splitter, and the outputs go through a single-mode squeezing operator—Josephson parametric
amplifier (JPA) in microwaves, with parameters ri and 𝜃i corresponding to squeezing and phase. Then they mix at a second beam splitter 𝜃. A phase
shift 𝜙 is applied at the end, to cancel undesired terms. This scheme is technology-independent, and could be applied to optics by replacing the JPAs
with the corresponding squeezing device, for example, a non-linear crystal that performs spontaneous parametric down-conversion.

Because we want to perform photon-counting over the operator
b̂1 ≡ −i(â†2 − 𝜇â1), we identify:

i𝜇 = cos 𝜃 cos𝜑 cosh r1 − sin 𝜃 sin𝜑 cosh r2 (29)

i = ei𝜃1 cos 𝜃 sin𝜑 sinh r1 + ei𝜃2 sin 𝜃 cos𝜑 sinh r2. (30)

4.2. Optimal Observable for the Coherent State Probe

The optimal observable in this case is given by ÔC = A𝟙(1) ⊗
[(â†2 − 𝜂1

√
𝛼)(â2 − 𝜂1

√
𝛼) + 1

2
], where A = 1∕(𝜂1 − 1)(1 − Nth(𝜂1 −

1)), and 𝟙(1) is the absence of activemeasurement of mode 1. This

expression can then be put as ÔC = A𝟙(1) ⊗ [(â†2 − 𝜂1
√
𝛼)(â2 −

𝜂1
√
𝛼) + 1

2
]. This operator can be experimentally performed with

a displacement D(−𝜂1
√
𝛼)[97] and photon-counting in the result-

ing mode. The interpretation is simple: because 𝜂1 is known (it
serves as a reference), there is nothing to be gained by measur-
ing the first mode in the absence of entanglement. Moreover, the
observable is separable, as one should expect, and the experimen-
tal implementation is straightforward: photon-counting in the—
locally displaced—second mode.
We have seen that both quantum and classical observables

are non-Gaussian measurements, since they can be related
to photon-counting, as expected in order to obtain quantum
enhancement.[59] Current photon counters in microwave tech-
nologies can resolve up to three photons with an efficiency of
96%.[98] Inefficiencies in the photon-counters can be accounted
for with a simple model of an additional beam splitter that mixes
the signal with either a vacuum or a low-temperature thermal
state. Additionally, the fact that real digital filters are not perfectly
sharp should also be accounted for in a full experimental pro-
posal, which we leave for future work.[99]

5. Conclusions

We have proposed a novel protocol for achieving a quantum en-
hancement in the decision problem of whether a target’s reflec-

tivity depends or not on the frequency, using a bi-frequency, en-
tangled probe, in the presence of noise and losses. Crucially, our
protocol needs no idler mode, avoiding the necessity of coher-
ently storing a quantum state in a memory. The scaling of the
quantum Fisher information (QFI) associated to the estimation
problem for the entangled probe is faster than in the case of a co-
herent signal. This quantum enhancement is more significant
in the high reflectivity regime. Moreover, we have derived an-
alytic expressions for the optimal observables, which allow ex-
traction of the maximum available information about the pa-
rameter of interest, sketching an implementation with quantum
microwaves.
This information can be related to the electromagnetic re-

sponse of a reflective object to changes in frequency, and, con-
sequently, the protocol can be applied to a wide spectrum of situ-
ations. Although the results are general, we suggest two appli-
cations within quantum microwave technology: radar physics,
motivated by the atmospheric transparency window in the mi-
crowaves regime, together with the naturally noisy character of
open-air;[71,98,100–103] and quantum-enhanced microwave medical
contrast-imaging of low penetration depth tissues, motivated not
only by the non-ionizing nature of these frequencies, but also be-
cause resorting tomethods that increase the precision and/or res-
olution without increasing the intensity of radiation is crucial in
order not to heat the sample.
Our work paves the way for extensions of the protocol to

accommodate both thermal effects in the input modes, and
continuous-variable frequency entanglement,[104] where a more
realistic model for a beam containing a given distribution of fre-
quencies could be used instead of sharp, ideal bi-frequency states.
It also serves as reminder that quantum enhancement provided
by entanglement can survive noisy, lossy channels.

Appendix A: Coefficients for the Optimal Quantum
Observable

Here we give the general expressions of the coefficients of the optimal
observable for the TMS state:

ÔQ = L11â
†
1â1 + L22â

†
2â2 + L12

(
â†1â

†
2 + â1â2

)
+ L0𝟙12 (A1)
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L11 = −
2𝜂1NS(2NS + 1)(2Nth + 1)

−A + B − C + D

L22 =
4𝜂1(2𝜂1 − 1)N2

S
(2Nth + 1) + 2NS(𝜂1 − 2Nth((𝜂1 − 3)𝜂1 + (𝜂1 − 1)(3𝜂1 − 1)Nth + 1) − 1) +Nth(2(𝜂1 − 1)Nth((𝜂1 − 1)Nth − 1) + 1)

A − B + C − D

L12 = −

√
2
√
NS(2NS + 1)

(
𝜂21
(
NS(4Nth + 2) −N2

th

)
+Nth(Nth + 1)

)
A − B + C − D

L0 = −
4𝜂31

(
N2
th
− 2NS(2Nth + 1)

)
2 − 2𝜂21 (6Nth + 5)F

(
NS(4Nth + 2) −N2

th

)
+ 4𝜂1(Nth + 1)

(
N2
S
(8Nth + 4) − 2NS(Nth(6Nth + 5) + 1) +N2

th
(3Nth + 2)

)
+ (2Nth + 3)GF

E − 4𝜂1(2Nth + 1)F
(
−4NSNth +NS(2NS − 1) +N2

th

)
− 8N2

S
(3Nth(Nth + 1) + 1) + 4NSNth(Nth(4Nth + 3) + 1) − 2N2

th
G

(A2)

where

A ≡ 8(𝜂1 − 1)𝜂1N
3
S(2Nth + 1)

B ≡ 4N2
S

(
−𝜂1 + (𝜂1 + 3𝜂1Nth)

2 − 𝜂1Nth(10Nth + 7) + 3Nth(Nth + 1) + 1
)

C ≡ 2NSNth(−𝜂1 +Nth(𝜂1(3𝜂1 − 8) + 4(𝜂1 − 1)(2𝜂1 − 1)Nth + 3) + 1)

D ≡ N2
th
(2(𝜂1 − 1)Nth((𝜂1 − 1)Nth − 1) + 1)

E ≡ 4𝜂21
(
−4NSNth +NS(2NS − 1) +N2

th

)(
NS(4Nth + 2) −N2

th

)
F ≡ 2NS −Nth

G ≡ 2Nth(Nth + 1) + 1
(A3)

In the high reflectivity case 𝜂1 → 1 we find:

lim
𝜂1→1

L11 = −
2NS(2NS + 1)(2Nth + 1)

N2
S(8Nth(Nth + 1) + 4) + 4NSN

2
th
+N2

th

lim
𝜂1→1

L22 = −
4NS(2NSNth +NS +Nth) +Nth

N2
S(8Nth(Nth + 1) + 4) + 4NSN

2
th
+N2

th

lim
𝜂1→1

L12 =
2
√
2
√
NS(2NS + 1)(NS(4Nth + 2) +Nth)

N2
S(8Nth(Nth + 1) + 4) + 4NSN

2
th
+N2

th

lim
𝜂1→1

L0 =
−2NS(NS(8Nth + 4) + 6Nth + 1) − 3Nth

8N2
S(2Nth(Nth + 1) + 1) + 8NSN

2
th
+ 2N2

th

(A4)

Additionally, as shown in the main text, in the noiseless case we get

ÔLim
Q := lim

Nth→0
𝜂1→1

ÔQ = −𝜇2â†1â1 − â†2â2 + 𝜇
(
â†1â

†
2 + â1â2

)
− 𝜈𝟙12

≡ b̂†1b̂1 − 1

(A5)

where 𝜇2 ≡ (1 + 1∕2NS) and 𝜈 ≡ (1 + 1∕4NS) and b̂1 ≡ −i(â†2 − 𝜇â1).
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