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Continuous-time quantum-walk spatial search on the Bollobas scale-free network
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The scale-free property emerges in various real-world networks and is an essential property that characterizes
the dynamics or features of such networks. In this work, we investigate the effect of this scale-free property
on a quantum information processing task of finding a marked node in the network, known as the quantum
spatial search. We analyze the quantum spatial search algorithm using a continuous-time quantum walk on the
Bollobds network, and we evaluate the time 7 to localize the quantum walker on the marked node starting from
an unbiased initial state. Our main finding is that 7 is determined by the global structure around the marked
node, while some local information of the marked node, such as the degree, does not identify 7. We discuss
this by examining the correlation between 7' and some centrality measures of the network, and we show that the
closeness centrality of the marked node is highly correlated with 7. We also characterize the distribution of T
by marking different nodes in the network, which displays a multimode log-normal distribution. Especially on
the Bollobds network, T is a few orders of magnitude shorter depending on whether the marked node is adjacent
to the largest degree hub node. However, as 7' depends on the property of the marked node, one requires some
amount of prior knowledge about such a property of the marked node in order to identify the optimal time to
measure the quantum walker and achieve a fast search. These results indicate that the existence of the hub node

in the scale-free network plays a crucial role in the quantum spatial search.
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I. INTRODUCTION

Social, technological, or biological systems in the real
world often display complex interactions between elements,
which cannot be simply explained as regular or random struc-
tures. Such real-world systems can be analyzed by mapping
their interactions as a graph, often referred to as complex net-
works. Understanding the structural properties or simulating
dynamics in these networks has revealed universal properties
of real-world systems [1-3]. Especially, scale-free networks
are an important class of networks as they commonly emerge
in various systems, such as the World Wide Web, protein in-
teraction in biological organisms, or transport systems such as
an airline network [4,5]. Scale-free networks are characterized
by their degree distribution following a power-law function of
the form

(k) x k=5, (1)

where k is the degree of a node, and the exponent 8 > 0 is
a real constant (see Fig. 1). Simulating various dynamics on
such networks led to a comprehensive understanding of the
dynamics in real-world systems such as the fast spreading of
information [6-9].
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On the other hand, a recent development in engineering
quantum systems has enabled us to design complex quantum
systems that are beyond regular lattice structures [10-13].
Analyzing quantum dynamics or performing a quantum-
information processing task on such complex quantum net-
works is becoming of great interest, and it is important to
examine what difference or improvement we can see from
these systems compared to regular lattice systems [14—17].

Toward that end, we analyze here a quantum-information
processing task to find a marked node in a graph, which is
known as the spatial search, on a scale-free network. Search-
ing a marked item in a database is one of the most fundamental
and important computational problems. The spatial search is
the case in which each item of the database is represented as
each node of a network, and one aims to find a marked node
using some quantum dynamics and measurement defined in
the network [18-20]. One can achieve this by using the
framework presented by Childs and Goldstone [20], which
prepares a black box Hamiltonian that encodes the network
adjacency matrix and the information of the marked node,
and performing a continuous-time quantum walk using that
Hamiltonian. Since the network structure is encoded in the
Hamiltonian, we can observe how the scale-free property of
the network will affect the quantum walk and the spatial
search.

Under the framework of the continuous-time quantum
walk, the spatial search has been extensively studied on
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FIG. 1. Degree distribution of the Bollobds model with network
parameters N = 10000, m =5, B = 2.9. The red solid line is the
fitting curve of the blue data points acquired from the generated
network. Inset: visualization of the network for N =200, m =
2, B =3. The size of the nodes is determined by the closeness
centrality of its node, the red node placed at the center of the network
has the largest degree (the hub node) with its edges drawn as red bold
lines, and the blue nodes connected to them are the neighbors of the
hub node.

various graphs. Much work has been done considering regular
graphs or lattice structures [20-24], as well as a comprehen-
sive analysis of the spatial search using Erdos-Rényi random
graphs [25] or general Markov chains [26]. The main focus of
these studies was on whether one can achieve the search with
the time complexity of O(+/N) on the given graph. Some work
moved toward exploring nonregular structures. Agliari et al.
[27] explored a spatial search on fractal structures and studied
how the transition in the ground state of the Hamiltonian
depends on the marked node. Berry and Wang [28] studied a
spatial search with a discrete-time quantum walk on a Cayley
tree, and they examined the relation between the search and
centrality measures of the graph. Philipp e? al. [29] examined
balanced trees, and they observed that the search performance
changes depending on whether the marked node is toward the
root or the leaves of the graph. Although each of these studies
provided important results to characterize some correlation
between the graph structure and the spatial search, we still
do not know how the spatial search will behave in complex
networks.

To further clarify our aim, we point out two differences
that we expect between the complex networks in which we are
interested, and the handful of graphs mentioned above. First,
the nodes in a complex network are mostly nonequivalent to
each other. A counterexample is the nodes in lattices with a
periodic boundary condition, which are all equivalent due to
the translational symmetry. Secondly, complex networks are
not purely random, and some order lives in the randomness.
A typical example is the scale-free network, as they have hub

nodes that have a substantially larger degree than the others,
while most nodes have a small degree. To satisfy these condi-
tions, we choose the Bollobas model [30,31], a mathematical
model to generate the scale-free network obeying preferential
attachment [4], as the network in which to analyze the spatial
search.

Searching nodes on scale-free networks using classical
random walks has been investigated in the literature in terms
of analyzing the hitting time or the mean first-passage time
[32-34]. In the Barabasi-Albert network, the mean first-
passage time is shown to be roughly proportional to the degree
of the target node [32]. Regarding the dependency on the
network size N, the mean first-passage time scales linearly
to N [33], while sublinear scaling was also found in special
cases such as searching the hub node [34]. In our work, we
will also discuss how the quantum nature leads to different
results compared to the above classical cases.

Through our numerical simulations, first we will show that
the speed of the spatial search using the quantum walk indeed
depends on which node in the network is marked, due to the
nonequivalence of the nodes. Surprisingly, this speed can be
different by up to a few orders of magnitude. This is the
first critical difference compared to searching on regular or
lattice graphs. We characterize how this dependency emerges
in terms of the leading eigenvector (the eigenvector corre-
sponding to the largest eigenvalue) of the network adjacency
matrix. This reveals that the performance of the algorithm is
dominated by the localized property of the leading eigenvec-
tor. To further characterize the relation between the network
structure and the performance of the search, we examine the
correlation between some centrality measures of the network
and the time complexity of the quantum search. We find that
the degree and the time complexity of the search are not
strongly correlated, unlike the search using a classical random
walk. The speed is determined instead by the shortest path
distances between the marked node and the rest of the nodes.
This observation cannot be seen from purely random graphs
[25], and this is another critical difference from the previous
studies. We also point out one advantage of using a scale-free
network for the spatial search, which is that one can perform
the search starting from a localized initial state instead of a
global superposition state conventionally used in the spatial
search. From this, one can naturally translate the spatial search
to an efficient state transfer protocol between the hub node
and another arbitrary node. All of these results indicate that
the hub node plays an important role in the spatial search
algorithm.

II. MODELS

Let us begin by defining the spatial search algorithm we are
going to examine. Defining G(V, E) as a graph (such as shown
in Fig. 1, inset) with a set of nodes V = {1,2,...,i,...,N}
and a set of edges E, we consider an N-dimensional Hilbert
space spanned by the basis states {|1), |2), ..., |i),...,|N)}.
Each state corresponds to the situation in which a quantum
walker is localized at node i. We can then define the state of
the quantum walker at time ¢ as Y (¢)) = Zf\': | ¢ili) with ¢;
constrained such that va:l lci]* = 1. To search for a single
marked node (labeled |w) in this case), we let the state
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|v (¢ = 0)) evolve under the action of the Hamiltonian

H=—yA—ey|lw)(w| 2)

N
=-v ZAij(liHjl+Ij><i|)—€w|w><wl, 3)

ij
where A is the adjacency matrix of graph G(V, E) whose
entries are defined as A;; = A;; = 1 if nodes 7 and j are con-
nected by an edge, and otherwise A;; = 0. The real constant
y > 0is the transition energy between the nodes, and €, is the
on-site energy on node w. The projection |w)(w| causes the
amplitude to accumulate on the marked node w. We consider

the unitary time evolution of the system given by

ih%wf(r» — Hly (1), (4)

and we compute the probability to measure the
quantum  walker at the marked node P(t)=
|(w] exp (—iHt/R)|¥(0))]>. The time complexity of the
algorithm or the “search time” 7', in units of /i/€,,, is evaluated
by finding the shortest time ¢ = t that maximizes P(¢). As
one can find the quantum walker on node w with probability
P(t) at the optimal measurement time t, the algorithm can
identify the marked node with success probability P(t). We
finally compute 7 = t/P(t), which takes into account the
repetition of the algorithm for 1/P(t) times.

Although we are aware that the Hamiltonian in Eq. (3) has
limitations when the underlying graph is nonregular [35], and
amodified search Hamiltonian has been proposed [25], we use
the Childs and Goldstone formalism since our interest is fo-
cused on investigating how the quantum dynamics is affected
when the Hamiltonian itself has a scale-free property. Mod-
ifying the Hamiltonian based on the method by Chakraborty
etal. [25] will be advantageous to analyze the time complexity
on arbitrary graphs systematically, but it also compensates
for the inhomogeneity of the graph. This will compensate
for the scale-free property of the underlying graph, which
conflicts with the purpose of this paper. Additionally, the
search Hamiltonian by Childs and Goldstone could be ex-
perimentally realized on quantum simulators [36] without
requiring gate decomposition of the algorithm on quantum
computers. For these reasons, in our work we keep our focus
on the Hamiltonian formalized by Childs and Goldstone.

Next we describe how the preferential attachment (PA)
model is generated, and we point out some properties of this
network. We use the formalization by Bollobds [30,31]. The
process of generating the network with N nodes is as follows:
At the initial time step u = 1, the network Gy,=; starts with
a single node v| with one edge connecting to itself. At every
subsequent time step u > 2, one node v/, having one outgoing
edge is added to G,—) and connects to one of the nodes in
Gy with its outgoing edge. Defining the degree of node v;
at time u as d,(v}), the node to connect to is chosen by the
following probability distribution [30]:

A/ u 1),
Pr(t_s)_{l/(éu_l)’

This means that the probability for a node to be chosen is
proportional to its degree, which resembles the “preferential
attachment.” After repeating the above process until a certain

1<s<u—1,
s =u.

®)

time step u =m (m € N), the set of nodes v, v},..., v,
forms a single node v;. The edges that were connecting the
nodes within the set are converted to m self-loops on v;.
The process of adding new nodes vj, is continued until a
time step u = 2m, and again the set of nodes v;, IRTRR V),
forms another node v,. If m’ < m nodes in the set of nodes
U, 15 -+, Uy, are connected to vy, they are converted to m’
edges between v; and v,. Following the rule described above,
the process is repeated until time step ueng = mN, which
results as a network Gy,n, with N nodes and mN edges. The
obtained network has a power-law degree distribution with
exponent 8 = 3 [30]. To change the value of B, we use the
method introduced by Dorogovtsev et al. [37].

From the construction above, we have three control param-
eters when generating the network; the total number of nodes
N, the parameter that controls the connectivity of the network
m, and the degree distribution exponent 8. The average degree
of the network is 2m, while the minimum degree is m and
the largest degree is ~N'/#=D_ Note that we allow self-loops
and parallel edges between nodes in our network in order to
maintain consistency, that is, to fix the total number of edges
to mN for every trial of generating Gy,y;. When converting
Gy to the adjacency matrix A, the number of self-loops or
parallel edges contributes to the weight of the diagonal or the
off-diagonal entries of A, respectively. The degree distribution
and visualization of an instance of Gy,y, are shown in Fig. 1.

Although there are many other scale-free network models
proposed in the literature [38—42], in this paper we focus
only on this Bollobds model to make our problem more
tractable. The Bollobds model has no high clustering coef-
ficient, community structure, or a self-similar structure. We
leave the examination of the effect of such properties on
the spatial search for future work, and we take advantage of
the simplicity of Bollobds model to concentrate on how the
power-law degree distribution affects the spatial search.

IIl. SEARCH TIME ON THE BOLLOBAS MODEL

As the first step to analyzing the search time on the Bol-
lobds model, we consider an abstract dynamics of the spatial
search algorithm to show that the search time will depend on
the selection of the target node in the network. We define two
states |A;) and |®) as

k1) = (IEo) — |E)/V2, (6)
@) = (IEo) + 1E1))/V/2, @)

where |Ey 1) are the lowest and second lowest energy eigen-
states of our Hamiltonian A, with the parameter y chosen at a
specific value y = yop. We assume that the two lowest ener-
gies are nondegenerate. We also assume that |A) is the leading
eigenvector of A, such that A|A;) = A|A;). This assumption
of Egs. (6) and (7) is based on degenerate perturbation theory
[20], and it can also be confirmed from Fig. 3. Next, we
are going to consider the unitary evolution where the initial
state is |A), which will rotate to |@) in time 7 /AE. Here
AE = E; — Ej is the gap between the energies corresponding
to the eigenstates |Ey ;). It is straightforward to show that

AE = 2[(A|w)(wlw)]. (®)
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FIG. 2. Plot of the overlap (w|A;) vs w, showing all compo-
nents of the leading eigenvector (the eigenvector corresponding
to the largest eigenvalue of the network adjacency matrix) from
one instance of our Bollobds model with network parameters N =
1000, m = 10, g = 3. The eigenvector, all components of which are
real and positive, displays a localized property around the large
degree nodes. Index w =1 is the largest degree hub node. Inset:
The squared component on the largest degree node |(hub|A,)|* for
different sizes of the Bollobas model with m = 10 and 8 = 3. Since
there is a substantial overlap between |hub) and |A;), and the value
does not decrease when N is increased, we can select the state |hub)
as the initial state without degrading the scaling of the search time.

The first factor in Eq. (8) tells us that the energy gap (and
equivalently the evolution time t = 7w /AFE) depends on the
component c¢,, of the leading eigenvector |A;) = va: L CilD).
One has (A;|w) = 1/+/N for any index w if the adjacency ma-
trix A is the one for regular graphs or if the Laplacian matrix
is used. However, for nonregular graphs the components of
the leading eigenvector are not uniform. As in the preferential
attachment network, it was shown by Goh et al. [43] that the
components of |A;) are localized on the largest-degree node,
and ¢; varies from 1/+/2 to 1/(2+/N). Figure 2 confirms this
property of |A;) for the network we have generated. The value
of the second factor in Eq. (8) is nontrivial, since we need to
know (w|Ep) and (w|E}), but in principle this also depends on
the index w if the graph is nonregular. It is worth mentioning
that |(w|®)|? represents the success probability P, and thus P
and t are related through (A|w).

As the second step of the analysis, we discuss the opti-
mization of y in Eq. (3) and the selection of the initial state
[ (0)). The parameter y has to be chosen at an optimal value
Yopt SO that the search will work in the most efficient way.
Specifically, yop is chosen to be the value for which Eq. (6) is
approximately true. In our numerical simulation, Yo is deter-
mined by finding the point where |(A;|Eo)|*> & [(A1|E1)|* ~
0.5 is achieved. This point is shown graphically in Fig. 3. In
addition to y, the initial state of the time evolution |y (0))
has to be chosen properly for the search to work. Clearly

2 1
60
&
5 0.8
C
()
3 0.6
[77]
o
®©
o 04
>
o
202
S
O
) ‘
0 0.01 0.02 0.03
Y
(a)
Yopt
a 1 ——i
2 /q( [(Aa] {;
> A Ey
Bnal ]
5 08 (1] Eo)
)
306} [(w| B |? 1
a
2. f
z /
o AFE
027 1
S [(AL|E)[?
=)
O
N ‘ /
0 _______________ L
0 0.01 0.02 0.03

FIG. 3. Plots of the squared overlaps of the states of interest,
and the energy gap AE = E; — Ey of the Hamiltonian H. The
Bollobas model with N = 2000, m = 10, 8 = 3 is used in this plot.
By changing the value of y (plotted in units of €,), we can
see the quantities |(A|Ep)|> change from O to 1 and vice versa,
which confirms that the eigenstates |Ej ;) switch around y = yop.
This also confirms that |x,) = (|[Ey) — |E;))/+/2 is approximately
achieved at ¥ = Y. AE is minimized at this point. The quantities
[(w|Ey1)|* are shown to indicate how close the resulting state of
the time evolution |®) is to |w). Part (a) represents the case when
a node with a large degree is marked, and (b) represents the case
when a node with the smallest degree in the network is marked.
Part (a) has the larger AE at y = y,, compared to (b), which
indicates that the evolution time 7 is smaller. One can also see

that the switch of eigenstates around y = y,, is much sharper
in (b).
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the ideal choice is |A;), since we want the dynamics to stay
inside the two-dimensional subspace spanned by |Ej ;). On
the other hand, the search still works (it shows a high success
probability) using a state that has a substantial overlap with
|A1). Here, we utilize the localized property of |A;) (see the
inset of Fig. 2), and we choose an initial state where the quan-
tum walker is fully localized at the single largest-degree hub
node. We define this state as |hub) for convenience. On the
other hand, we have confirmed that the uniform superposition
state over all nodes vaz . liy/+/N, which is conventionally
used in the spatial search, has a small overlap with |;). For
all of the following results, our simulation is performed with
|¥(0)) = [hub).

Now let us describe the simulation results, where we have
numerically computed the maximum probability to measure
the quantum walker after evolving for an optimal time r,
P(t = 1) = |(w|exp (—iHt/h)|¥(0))]*. As we know that t
and P(t) depend on the index of the marked node w, we will
take full account of which node in the network was marked
when evaluating the search. To this end, we first show the
distribution of the search time 7' = 7 /P(7). We get the distri-
bution by generating multiple samples of the Bollobas model
with a fixed {N, m, B}, repetitively marking a random node for
each network, finding y,p and computing 7', and finally taking
the histogram of 7. We have excluded the largest-degree hub
node when randomly marking a node, since we initialize the
quantum walker on that site. Figure 4 shows the distribution
for three different values of 8 = 2.5, 3, 3.5, with fixed N and
m. Note that the distribution is taken in logarithmic scale. The
main feature in this distribution is that they have multiple
peaks, meaning that there are classes of nodes that can be
searched faster or slower than each other. A good fit to the
distributions was a sum of log-normal functions in the form

@) =" pig(T; i, 07), ©)

where

) . 1 (InT — w)?
gTip,0)= TaoT exp ( 752 ) (10)

Therefore, the distribution f(7') is characterized by the mean
values u;, standard deviations o;, and the mixing parameters
pi (constrained such that ), p; = 1). For the distributions
with 8 = 2.5 and 3 we take up to i = 4, and for § = 3.5 we
take up to i = 3.

We understand that this multimode log-normal distribution
results from the randomness of the network and the effect of
the hub node. When we take a distribution of the search time
on the Erdos-Rényi random graph, we see a single-mode log-
normal distribution. Likewise, the connections of the nodes
in the Bollobds model are mostly random (meaning that there
are no characteristic structures such as communities or self-
similarity) except that the overall degree distribution follows
a power law. However, this power-law degree distribution,
or the large-degree hub node, heavily influences the nodes
around it, leading to the multimode distribution. In fact, we
find that the narrower modes w3 and u4 (and pu, for g = 2.5)
correspond to the nodes that are directly connected to the
largest-degree hub. We will discuss this further in Sec. IV.
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FIG. 4. Distributions of the search time 7', in a logarithmic scale,
for networks with N = 10000, m = 10 and (a) 8 = 2.5, (b) 8 =
3, and (c) B = 3.5, respectively. To obtain each distribution, we
have generated 1000 network samples and computed 7" for at least
400 randomly selected nodes from each network sample. For all
distributions we observe multiple peaks, and we find that they are
best fit to a sum of log-normal distributions. The symbols w1, ..., w4
indicate the individual modes.
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TABLEI. Exponent« of each parameter of the search time distri-
bution fit to «N*. Obtained from networks with N = 2000-10 000,
m =10, and g = 2.5, 3, 3.5. “const” indicates that the quantity is
independent of N.

1 0.7314+0.021 0.620+0.024 0.681 +0.032
o 0.2954+0.010 0.254 +0.040 0.256 +0.027
U3 0.253 +0.009 0.1944+0.014 0.1724+0.014
m 0.240 4+ 0.006 0.1554+0.012 N/A
o 0.1474+0.026 0.1804+0.032 0.155+0.029
0, —0.013 £0.005 —0.133+£0.035 const
03 const —0.016 +0.004 const
oy const const N/A
1 0.213+0.018 0.2114+0.022 0.1124+0.030
D2 —0.1324+0.034 —1.65+0.54 —0.942 +0.096
D3 —0.478 £0.043 —0.423 +£0.061 —0.613 +£0.057
Pa —0.847 £ 0.055 —0.920 +0.086 N/A

Next we evaluate the scaling of the parameters u;, o;, p;
by examining their dependence on N, specifically by fitting
to the function o«N®. The obtained scaling exponents « are
shown in Table I, and the plots of w; versus N are shown in
Fig. 5. We find two features in our results. First, for all 8, i,
has o > 0.5 while u;>» has o < 0.5. As @ = 0.5 is the best
known scaling of the spatial search algorithm, the scaling of
Wi>2 being o < 0.5 has to be interpreted carefully, and we are
not claiming here that a spatial search faster than T oc N*?
can be achieved. The search time evaluated here is the case
when the measurement of the quantum walker is done at the
exact optimal time T when the probability P(7) maximizes.
To know the optimal time, one must first know the properties
of the marked node, or at least know that the node is in one
of the modes of p;>, in order to make a reasonable guess of
the measurement time. Therefore, our result does not mean
that a search faster than N3 can be achieved for some nodes
in the network, but rather that the quantum walker can be
localized to those nodes quickly. Additionally, by identifying
the number of nodes N that is involved in the modes Wi>2, and
by fitting to N¢, the scaling reduces to a ~ 0.5.

The second feature in our result is the agreement between
the scaling of p; and the property of the network. From Table I,
we see that p;>, decays as N grows. This corresponds to
the decay of the fraction of nodes that are neighbors of the
largest hub node, N'/#=D/N. The result suggests that the
modes p;>» correspond to the nodes that are neighboring to
the hub, or the nodes heavily influenced by the hub. This
argument is also supported by the change of the distributions
depending on 8 (see Fig. 4). As § increases, edges will be less
concentrated on the large-degree nodes, allowing the network
to become closer to a random graph. This effect is observed
as the shrinking of the u;>> modes when g increases. We note
that these scalings obtained from numerical simulations are
only guaranteed for N = 2000-10 000, the region where we
executed the simulations.

As a conclusion of this section, the distribution of the
search time 7 obtained by marking different nodes in
the network strictly reflects the structure of the network;
the randomness and scale-free property (i.e., existence of the
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FIG. 5. Dependence on the network size N of the average values
of the search time distribution w1, ..., u4 for networks with m = 10
and (a) B = 2.5, (b) B = 3, and (c) B = 3.5, respectively. The black
solid line of N3 is drawn as a reference.

hub) lead to a multimode log-normal distribution of 7. The
existence of the hub allows the quantum walker to localize es-
pecially quickly on the nodes that are the neighbors of the hub.
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FIG. 6. The correlation between the search time 7 and six different network centrality measures, which are (a) degree centrality,
(b) eigenvector centrality, (c) closeness centrality, (d) betweenness centrality, (¢) RW closeness centrality, and (f) RW betweenness centrality.
All of the scatter plots are in log-log scale, and each data point corresponds to each node of the network with parameters N = 2000, m =
5, B = 3. Data points have different symbols depending on the shortest path distance between the largest degree hub node and the marked
node /nup ., as well as depending on whether the marked node has parallel edges to the hub or not for ly ., = 1. €, in the legend represents
the number of parallel edges between the hub and the marked node (or equivalently the weight Ay, ). In (2), the mean first-passage time of
the classical random walk H (hub, w) (a walk from the hub to the marked node w) is also plotted. The best correlation between the centrality
measures and the quantum search time is seen from (b) eigenvector centrality, followed by (c) closeness centrality. The Pearson correlation
coefficient r of the centrality measures and the search time (both in logarithmic scale) is shown inside the figures.

IV. CHARACTERIZATION OF THE SEARCH THROUGH
NETWORK CENTRALITY MEASURES

In this section, we interpret the search time 7 and the
dynamics of the spatial search by investigating some centrality
measures of the network. This will bridge the knowledge in
complex network science and quantum dynamics. We investi-
gate the correlation between the search time and six different
centrality measures: degree centrality, eigenvector centrality
[44], closeness centrality [45], betweenness centrality [46],
random-walk closeness centrality [47], and random-walk be-
tweenness centrality [48]. The essential result we show here
is that the search time is dependent on how close the marked
node is to all other nodes in the network, in terms of the
shortest path distances.

The scatter plots where the search time T is plotted against
different centrality measures are shown in Fig. 6. Figure 6(a)
shows the case of degree centrality C¢ = szv Ayi/(N —1),
which measures the fraction of nodes that are connected to
the node w. This plot shows that when the marked node has
a large degree, the quantum walker will likely be localized
on that node quickly, but if the node has a low degree,
the search time is almost independent of the degree. This

feature is quite different from the case of the classical random
walk, where the difference can be seen by comparing with
the mean first-passage time H (hub, w) computed numerically
and plotted in the same figure. The mean first-passage time
H(i, j) is defined as the average time for the classical random
walker to visit node j for the first time, starting the walk
from node i. We can interpret H (hub, w) as the average time
to search the marked node by starting the classical random
walk from the hub node. From Fig. 6(a), we can confirm that
the time it takes to search a node using the random walk
is proportional to its degree [32], as well as revealing that
the search using the quantum walk clearly shows a different
feature.

Figure 6(b) shows the case of eigenvector centrality C;, =
[{A1|w)], which is a centrality measure based on the leading
eigenvector of the adjacency matrix. The plot shows a high
correlation as expected from Eq. (8). We also see a good
correlation in Fig. 6(c), which shows the case of closeness
centrality C; = (N — 1)/ le\;}) Iy j, where [,,; is the shortest
path distance between nodes w and j. This measure represents
how fast one can move from the node w to all other nodes
using the shortest paths.
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TABLE II. Exponent « of the average search time 7 o« N* for
nodes with different distances from the hub /b ,,. Networks with
parameters N = 2000-10 000, m = 5, 8 = 3 are used to obtain «.

Ihub.w 1 2 3

o 0.120 £ 0.019 0.638 £0.122 1.127 £ 0.205

Figure 6(d) shows the betweenness centrality C? =
Zi#w# o0;j(w)/o;;, where o;; is the number of shortest paths
from node i to j, and o;;(w) is the number of shortest paths
that goes through node w among them. The random-walk
closeness centrality C; = N/ Zj H(j, w) in Fig. 6(e) is an
alternative measure of the closeness centrality, where path
lengths between nodes are measured based on the random-
walk process. The random-walk betweenness centrality CI? in
Fig. 6(f) is an alternative measure of betweenness centrality,
where instead of counting only the shortest paths, all paths
contribute to the measure with a certain weight. All three of
these measures are correlated with the search time in a similar
way to the degree centrality.

The results presented in Fig. 6 tell us that the quantum
walk or the spatial search is a dynamic relying on the shortest
paths of the network, unlike the classical random walk. In the
case of the classical random walk, the walker chooses one
neighbor randomly at each time step, and thus it is natural
to understand that a node having a larger degree will have a
higher probability to receive the walker, leading to a shorter
time of the search. In contrast, since the quantum walker
spreads to all of the neighbors as a superposition state, the
length of the shortest paths between the nodes determines
the time for the complex amplitudes to reach from one node
to another, rather than the degrees. As indicated by the high
correlation to the closeness centrality Cf, if the marked node
w is averagely close to all other nodes (i.e., if it has high CY),
the quantum walker can localize on that node faster since the
complex amplitudes of the quantum walker can be collected
from the whole network with a shorter time.

The importance of the distances is emphasized by distin-
guishing the data points in Fig. 6 based on the shortest path
distance between the hub node and the marked node (see the
legend of the figure). The data are well clustered depending on
Ihub,w- Especially when the marked node is adjacent to the hub
(lhub,w = 1), these nodes have small shortest-path distances
with the other nodes by going through the hub, leading to the
shortness of T'.

We also examined how the scaling of the search time 7'
N depends on the distance between the hub and the marked
node lyyp - We computed multiple samples of T;, from the
networks with parameters N = 2000-10000, m =5, 8 =3
and we took the average of T,, for each /. The obtained
scaling « is shown in Table II. Although we get large standard
deviations of T, since the factor determining the search time
is not only lpy, 4, the scaling « roughly increases linearly as
Ihub,w grows.

Note that the especially short 7 when the marked node is
adjacent to the hub is not due to the localized initial state of
the quantum walker. The quantum walker does not instanta-
neously hop from the hub to the marked node, but instead

has to traverse the entire network and acquire some phase to
localize on the marked node. In fact, from Eq. (8) we can see
that the optimal evolution time T = 7w /AE is independent of
the initial state. The initial state determines the fraction of the
complex amplitude that stays in the two-dimensional subspace
spanned by |Ey) and |E}), and thus only affects the maximum
success probability P(7).

Although the high correlation between the search time and
the eigenvector centrality is expected from Eq. (8), there are
small corrections from the factor | (w|®)|, which is essentially
the success probability P. In our results, we did not see a
particularly high correlation between the centrality measures
and P. The best correlation we could observe was with the
eigenvector centrality, with correlation coefficient r = 0.363.

V. DISCUSSIONS

In this paper, we have analyzed the performance of the
continuous-time spatial search algorithm on the Bollobés
model, which is a scale-free network. We found that the
search time is faster as the marked node is more central in the
network, where this is measured by the closeness centrality
of the node. Such a feature results from the power-law degree
distribution and the existence of the large-degree hub node of
the scale-free network. Interestingly, the degree of the marked
node does not crucially matter for the search time, but the
shortest path distances between the marked node and the rest
of the nodes determine the search time. We can interpret
that the search time is dependent on how fast the marked
node can collect the complex amplitudes globally from the
network (and thus the global structure matters). This is in
contrast to searching by a classical random walk, which is
highly dependent on how many edges are locally connected
to the marked node. We also observed that the distribution of
the search time in a network follows a multimode log-normal
distribution, which reflects well the structure of the scale-free
network. We characterized the interesting relationship be-
tween the network structure and the performance of the spatial
search algorithm, which could not have been discovered using
regular or homogeneous graphs.

The localized property of the leading eigenvector of the
adjacency matrix was advantageous in a way that we could
select an initial state that was fully localized on a single
node, instead of a superposition state. We can generally say
that if the search Hamiltonian Eq. (3) without the €, |w)(w|
term has a localized ground state, one can choose a local-
ized initial state. This may be advantageous in experimental
implementations, since preparing a superposition state with
arbitrary amplitudes and relative phases can be difficult [36].
However, such a localized leading eigenvector also creates
differences in the optimal measurement time t depending
on the marked node. This fundamentally limits the ability
to perform the spatial search algorithm, since we need some
amount of information about the node that is searched for
in order to estimate the measurement time. However, as the
distribution of the search time is well separated into classes
depending on whether the node is adjacent to the hub, one
can make a reasonable guess of t by limiting the nodes to
be marked within one class. In addition, we can naturally
translate the dynamics of the spatial search algorithm into
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an efficient state transfer protocol between the hub node and
a single marked node [25,49], which is a simple and useful
application.
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