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Abstract – We develop a kinetic theory for twisted density waves (phonons), carrying a finite
amount of orbital angular momentum, in large magneto-optical traps, where the collective pro-
cesses due to the exchange of scattered photons are considered. Explicit expressions for the
dispersion relation and for the kinetic (Landau) damping are derived and contributions from the
orbital angular momentum are discussed. We show that for rotating clouds, phonons carrying
orbital angular momentum can cross the instability threshold and grow out of noise, while the
usual plane-wave solutions are kinetically damped.

Copyright c© EPLA, 2016

Introduction. – It is an established fact that electro-
magnetic radiation can carry a finite amount of angu-
lar momentum, due to the resulting contributions from
the spin and orbital-angular-momentum degrees of free-
dom. Although the spin is always an intrinsic variable,
orbital-angular-momentum (OAM) may be either intrin-
sic or extrinsic [1] and spin to orbital-angular-momentum
conversion may occur in specific conditions [2]. More re-
cently, attention has been given to the exchange of orbital
angular momentum between EM radiation and different
systems, such as electrostatic waves in plasmas [3], non-
linear media [4], acoustic vortices in optical fibers [5] or
even sub-meter–sized metallic objects [6]. Aside from
optical orbital angular momentum, vortex phonons have
also been proposed to manipulate particles and small ob-
jects [7,8]. In magnetic crystals, for example, spin-orbit
coupling can promote the excitation of phonons carrying
a finite amount of orbital angular momentum [9].

The manipulation of OAM have become attractive in
cold atomic systems as well since the observation of op-
tical pumping of OAM in Cs atoms [10] and the vortex
nucleation in Bose-Einstein condensates [11], by means of
Laguerre-Gauss (LG) beams. Cold atoms confined in large
magneto-optical traps are particularly interesting, as the

atomic dynamics is significantly altered due to the appear-
ance of a collective interaction mediated by the multiple
scattering of light [12,13]. In this regime, the atoms expe-
rience a Coulomb-like long-range interaction [14], allowing
for an analogy with a one-component trapped plasma [15].

In this paper, we theoretically describe a combined
effect of OAM and the multiple-scattering of light: the
onset of a dynamical instability in rotating clouds of
cold atoms triggered by the OAM of the hybrid phonons
—the elementary excitations in large magneto-optical
traps (MOT). Hybrid phonons, with properties similar to
both plasma and acoustic waves [16], have been at the
origin of a large set of exotic phenomena such as phonon-
lasing [17], classical rotons [18], photon bubbles [19] or the
dynamical Casimir effect [20]. In our setup, and contrary
to what happens with light —where the phase singulari-
ties are imposed by phase modulation— the collective ex-
citations (phonons) in cold atoms acquire OAM due to
the rotation of the cloud, as a consequence of the total
angular-momentum conservation.

The experimental setup we have in mind consists of a
large laser-cooled gas, with a typical total number of atoms
N ∼ 109–1011. Via a slight misalignment of the trap-
ping laser beams, as described in the experiments by Sesko
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Fig. 1: (Color online) Illustration of the experimental setup.
(a) The transverse beams (darker red), which are slightly mis-
aligned, and have a lower intensity than the beams along the
longitudinal direction (lighter red). (b) Perspective and (c) top
views of the density profile for a rotating trap. The central
cloud (blue) is surrounded by atoms located at the shell of
mean radius R and width w which rotate at the angular ve-
locity Ω, as a consequence of the misalignment of the trap-
ping laser along the transverse direction. (d) Poloidal velocity
distribution function. The speed distribution of the atoms of
the rotating shell contains a positive derivative (bump-in-tail),
which will originate the instability.

et al. [12], we produce a ring-shaped structure (see fig. 1).
The external ring of atoms then rotates at a constant an-
gular velocity Ω of the order of the thermal velocity of the
effective plasma frequency ωp [16]. The modification we
require in respect to usual experimental configurations is
that the laser beam intensity along the longitudinal direc-
tion should be smaller than the transverse ones, such that
the cloud is cigar shaped. As a result, the equilibrium of
cooling and trapping produces the configuration of a cigar
ring-like structure as illustrated in fig. 1. The rotation
of the cloud transfers angular momentum to the excita-
tions (phonon) on top of the equilibrium configuration.
We therefore show that such “twisted” phonons lead to a
kinetic instability, a type-I0 oscillatory instability [21], in
a rotating cloud of cold atoms in the multiple-scattering
regime. As we shall demonstrate, this instability is for-
mally analogous to the bump-on-tail instability observed
in fluids and plasmas [22,23], as the rotation induces an
offset in the poloidal velocity distribution, allowing for
the instability to develop due to the resonant exchange
of energy between the velocity distribution and the oscil-
lations. The important difference with respect to other
system stems from the fact that only twisted phonons can
trigger the instability in our case, while zero OAM ex-
citations are usually enough for the bump-on-tail sort of
kinetic instabilities.

Kinetic description. – The complete kinetics of cold
atoms in magneto-optical traps is described by a Vlasov-
Poisson equation of the form

(

∂

∂t
+ v · ∇ +

F

m
· ∇v

)

W (r,v, t) = I[W (r,v, t)], (1)

where W (r,v, t) is the distribution function normalized
to the total number of particles N =

∫

dr
∫

dvW (r,v, t).

The total force F = Ftrap + Fc accounts for the cooling
and trapping terms, Ftrap ≃ −κr−αv, with κ and α being
the spring constant and the cooling rate, respectively, and
the collective force Fc = −∇Vc [14–16,24] with

∇2Vc (r, t) = −Q

∫

dvW (r,v, t), (2)

where Q = σL (σR − σL) I/c represents an effective charge
of the atoms, with σR and σL the scattering and absorp-
tion cross sections [12,13,25,26], respectively, and I the
light intensity. The term I[W ] in eq. (1) represents the
collision integral and describes the source of hot reser-
voir atoms and the collisions between them [27]. As we
are interested in small deviations from equilibrium only
(thus ruling out far-from-equilibrium effects) which oc-
cur at much slower time-scales than the dynamics of hot
atoms, we may safely neglect the contribution of the col-
lision integral. Moreover, for large traps (typically with
N ∼ 109–1010), and appropriate laser detuning, the den-
sity profiles are approximately constant [28,29], or at least
slowly varying at the scale of the fluctuations we are about
to describe. As such, we should invoke the local-density
approximation (LDA) which amounts to neglect the trap-
ping inhomogeneities. This assumption is justified by the
scales λ of the fluctuations considered here, λ ≪ L, where
λ is the excitations wavelength and L the typical size of
the system.

In order to account for small amplitude fluctuations
around the LDA equilibrium W0, we linearize eqs. (1)
and (2), with W = W0 + δW and Vc = Vc,0 + δVc, yielding

(

∂

∂t
+ v · ∇

)

δW =
δFc

m
· ∇vW0, (3)

and

∇2δVc = −Q

∫

dv δW (v) . (4)

In what follows, we consider a cigar-shaped trap elongated
along the z-direction, in the absence of rotation (see fig. 1).
Experimentally, this aspect ratio is obtained by decreasing
the intensity of the trapping lasers along the z-direction.
In this case, a slowly varying amplitude density fluctuation
propagating along the z-axis as eikz must be solution of the
following equation:

∇2δVc ≃
(

∇2
⊥ − k2 + 2ik

∂

∂z

)

δVc. (5)

Under this approximation, the potential δVc also satis-
fies the paraxial equation (∇2

⊥ + 2ik ∂
∂z )δV = 0 [3]. Such

a condition reduces Poisson’s equation (4) to k2δVc =
Q

∫

dvδW (v). The solution to the paraxial equation can
be given as a linear combination of Laguerre-Gauss (LG)
modes as

δVc (r, t) =
∑

pl

δVplFpl (r, z) eilθeikz−iωt (6)
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with δVpl being the mode amplitude (assumed to be small)
and the integers p and l the radial and azimuthal mode
numbers, respectively. The orthogonality of the LG modes
reads

〈Fpl | Fp′l′〉 = δpp′δll′ , (7)

where the mode functions Fpl(r, z) are given by

Fpl (r, z) = Cplζ
|l|L|l|

p e−ζ/2 (8)

with ζ ≡ r2/w2(z) and w(z) the wave beam waist.
The normalization constants Cpl are given by Cpl =

1
2
√

π
[ (l+p)!

p! ]1/2, with the usual Laguerre polynomials

Ll
p (ζ) =

eζ

p!ζl

dp

dζp

[

ζl+pe−ζ
]

. (9)

The fluctuations of the collective force are determined
by δFc = −ikeffδVc, where the effective (paraxial) wave
vector keff reads [30]

keff = − i

Fpl

∂Fpl

∂r
er +

l

r
eθ +

(

k − i

Fpl

∂Fpl

∂z

)

ez. (10)

The introduction of keff, as defined above, allows us to
keep the formalism in the usual form of the standard
derivations in the framework of a linearized kinetic the-
ory formalism, as it incorporates all the structure of the
OAM of the modes inside its own definition. By setting
l → 0 in eq. (10) we recover the usual plane-wave wave vec-
tor k (associated with the gradient) and keeping the main
equations unchanged. Similarly, the fluctuations δW can
also be decomposed into a superposition of LG modes as

δW (v) =
∑

pl

δWpl (v) Fpl (r, z) eilθeikz−iωt. (11)

By plugging this expansion in eq. (3), multiplying both
sides by Fpl and integrating we get

δWpl =
∑

p′l′

Mplp′l′
δFc,p′l′

m (a + ib)
· ∇vW0

=
δFc,pl

m (a + ib)
· ∇vW0.

(12)

Regarding this last step, note that from the orthogonality
relations in eq. (7) there follows Mplp′l′ ≡ 〈Fpl | Fp′l′〉 =
δpp′δll′ . We then projected the dynamics of the system
in the pl subspace, which simply means that we want to
perceive the dynamics of each pl mode separately. In the
actual experiment, the perturbations of the system will
always be given by a linear combination of several pl modes
although, as we shall see, their dynamics and stability
properties are decoupled, at least at the linear level we
are investigating here. We also have, δFc,pl = −qeffδVpl

and
qeff = −iqrer + lqθeθ + (k − iqz) ez, (13)

with

qj =

∫ ∞

0

Fpl
∂Fpl

∂j
rdr, qθ =

∫ ∞

0

F 2
pldr, (14)

where j = {r, z}. The real quantities a and b are defined
as a = (ω−kvz)− lqθvθ and b = (qrvr +qzvz). Notice that
no mixture between the model p and l is then expected at
this level, which is the sufficient description to understand
the nature of low-lying excitations. From eq. (12) and
the decomposition of δW in LG modes, and noting that
a+ib = (ω−qeff·v), we finally derive the kinetic dispersion
relation

1 −
ω2

p

k2

∫

qeff · ∇vW̃0

(ω − qeff · v)
dv ≡ 1 + χ(ω) = 0, (15)

where we have defined the quantity W̃0(v) =
W0(v, r)/n0(r) as normalized to the LDA density n0(r),
and the effective plasma frequency ω2

p = Qn0/m [15,16].
This kinetic dispersion relation encodes the dynamics of
twisted (l 
= 0) excitations above the equilibrium. Notice
that, by the proper definition of keff, and consequently
qeff, we were able to hide the structure of the orbital an-
gular momentum inside these quantities, thus keeping the
dispersion relation in eq. (15) in its standard form for plane
waves. Depending on the details of the velocity distribu-
tion W̃ (v), the OAM momentum may change the stability
conditions of the system, as shown below.

Twisted Landau damping. – Let us now show how
the details of the velocity distribution of the cold gas deter-
mine its stability conditions. Assuming that |qr|, |qz| ≪
|lqθ|, and separating the susceptibility into its real and
imaginary part χ(ω) = χ′(ω)+ iχ′′(ω), we rewrite eq. (15)
in the more explicit way

χ′ (ω) =
ω2

p

k2

[

P
∫

∂W0/∂vz

(vz − uz)
dv + P

∫

∂W0/∂vθ

(vθ − uθ)
dv

]

,

(16)
where P denotes the Cauchy principal part of the integral.
The two poles in the integration occur, respectively, for
uz = (ω − lqθvθ)/k and uθ = (ω − kvz)/lqθ. On the other
hand, for the imaginary part of the susceptibility we can
write

χ′′ (ω) = −π
ω2

p

k2

[

(

∂W0

∂vz

)

vz=uz

+

(

∂W0

∂vθ

)

vθ=uθ

]

. (17)

For low enough temperatures, it is plausible to assume
excitations with a phase speed much larger than the width
of the distribution, uz ≫ vz and uθ ≫ vθ, which allows us
to expand the denominator in eq. (16) as

P
∫

∂W0/∂vj

(vj − uj)
dv ≃ 1

u2
j

∫

W0 (vj)

(

1 + 3
v2

j

u2
j

)

dv, (18)

with j = {z, θ}. The real part of the mode frequencies can
be readily obtained by setting χ′(ω) = 0, which read

ω2 = ω2
p

(

1 +
1

η2

)

+ 3c2
sk

2, (19)

where we have defined the speed of sound as c2
s = 〈v2〉 =

〈v2
z〉 + 〈v2

θ〉 1
η4 with 〈v2

j 〉 =
∫

v2
j W0(v)dv and j = {z, θ}.
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Fig. 2: (Color online) Real (left panel) and imaginary (right
panel) part of the dispersion relation for η2 = 2 (gray line)
and η2 = 5 (red dashed line). The usual phonon dispersion
(corresponding to the plane-wave limit η2

→ ∞) [15,16] (black
solid line) is presented here for comparison.

The paraxial parameter η, accounting for the OAM of the
excitation, is given by η = k/lqθ. Assuming that axial
propagation is dominant, η > 1 —where the paraxial ap-
proximation makes sense— we get a small correction to
the hybrid phonon modes derived in [16].

Let us now examine the kinetic (Landau) damping of
the twisted excitations. For that purpose we go back to
eq. (17) and note that the damping rate, γ, is given by

γ =
χ′′ (ω)

(∂χ′/∂ω)
≃ ωχ′′ (ω) . (20)

The overall damping rate is the sum of two contributions,
γ = γz +γθ, from the longitudinal and perpendicular sub-
spaces, respectively. We can now assume a Maxwellian
distribution of the form

W̃0,j (vj) = 1/cs

√
πe−v2

j /c2

s , (21)

with j = {z, θ} and finally obtain

γ = − 2
√

πωp

(kλD)3

[

e−1/(kλD)2e−1/η2

+ ηe−η2/(kλD)2e−η2
]

,

(22)
with λD = cs/ωp being an analogue of the Debye length,
denoting the typical size of the hybrid phonons in the trap.
In the limit of zero OAM, η2 → ∞, we recover the ex-

pected result γ = − 2
√

πωp

(kλD)3 e−1/(kλD)2 . These results, as

well as the dispersion relation given by eq. (19) are illus-
trated in fig. 2. As we can observe, γ is negative for all
modes, which corresponds to the Landau damping mech-
anism. However, excitations carrying OAM are shown to
be less damped than the plane-wave solutions. In what
follows we shall demonstrate that, in the case of a ro-
tating cloud of cold atoms, and for a particular range of
achievable experimental conditions, the vortex phonons
can cross the instability threshold and grow out of noise
while the plane-wave solutions remain kinetically damped.

Bump-on-tail instability. – Rotating clouds of
cold atoms, resulting from small misalignments in
the trapping beams, often present ring-shaped density
profiles [12,31–33], which are well described by a radial

density function n(r) = n0e
−(r−R)2/w2

, where R is the
ring radius and w its width (see fig. 1). In this case, the

Fig. 3: (Color online) Left panel: kinetic damping rate for
η2 = 2 and different poloidal velocities, β = 2 (black line) and
β = 3 (red line). The shaded region corresponds to an instabil-
ity. The gray line corresponds to the non-rotating cloud, β = 0.
Right panel: kinetic damping rate for constant poloidal veloc-
ity, β = 2, and different paraxial parameters, η2 = 2 (red line)
and η2 = 5 (black line). The plane-wave solution, η2

→ ∞

corresponds to the gray line.

system can be approximately described by a rotating rigid
body, vθ(r) = Ωr [12], where Ω is the angular frequency of
rotation. By plugging this condition in the previous den-
sity function, we can derive a normalized poloidal velocity
distribution function

W̃0 (vθ) =
1

∆cθ
√

π
e−(vθ−ΩR)2/∆c2

θ , (23)

with ∆cθ = wΩ denoting the width of the distribution.
The interpretation of the latter as a distribution function
is justified by the typical scales of the experiments [12].
For a rotating frequency of Ω ∼ (2π)100 Hz and a ring
width w ∼ 0.5 mm, we get ∆cθ = wΩ ∼ 0.3 m/s. Such
a velocity distribution width is of the same order of the
thermal velocity of a 87Rb MOT at T = 200 µK (cs ∼
0.25 m/s). A typical ring radius of R ∼ 2 mm corresponds
to a poloidal velocity of ΩR ∼ 1 m/s. Plugging the new
poloidal velocity distribution in eq. (17), and noting that
we can approximate λD = cs/ωp ≃ ∆cθ/ωp, which signif-
icantly simplifies the calculation, yields a new expression
for the kinetic damping term,

γΩ = − 2
√

πωp

(kλD)
3

[

e−1/(kλD)2e−1/η2

+ η

(

1 − β

η
(kλD)

)

e−η2/(kλD)2e−η2(1−β/η)2

]

, (24)

with β = Ω/cs. Note that, for β = 0, which corresponds
to a regular Maxwell-Boltzmann distribution for non ro-
tating clouds, we recover the previous result of eq. (22),
as expected, where small oscillations in the homogeneous
solution are always damped. These results are illustrated
in fig. 3 and stability diagrams in terms of the appropri-
ate parameters, η2 and β, are sketched in fig. 4 and fig. 5.
A type-I0 (k 
= 0, ω 
= 0) [21] oscillatory modulational
instability can then occur in rotating clouds, where the
rotation velocity can be understood as an external control
parameter. Experimentally, the rotation velocity can be
controlled via the misalignment of the trapping beams and
their intensity.

13001-p4



Bump-on-tail instability of twisted excitations in rotating cold atomic clouds

Fig. 4: (Color online) Stability diagram for vortex phonons in
the (β, η2)-plane for kλD = 2 (top left), kλD = 2.5 (top right),
kλD = 5 (bottom left) and kλD = 10 (bottom right). The
colored region corresponds to the range of parameters for which
a modulational instability occurs. Blue regions correspond to
higher growth rates.

Fig. 5: (Color online) Stability diagram for vortex phonons in
the (β, kλD)-plane for η2 = 3 (left panel) and in the (η2, kλD)-
plane for β = 2 (right panel).

Conclusion. – We have developed a kinetic theory for
elementary excitations —hydbrid phonons— carrying or-
bital angular momentum in large magneto-optical traps,
taking into consideration the collective effects emerging
from the exchange of scattered photons. The resulting
kinetic dispersion relation, formally similar to that of a
plane wave, was shown to depend on an effective wave
vector, qeff, in which the helical structure of the wave-
front is embedded. Explicit expressions for the disper-
sion relation and kinetic damping rates were derived for a
cold gas in thermal equilibrium. The contribution from
the orbital-angular-momentum states was encoded into
the dimensionless paraxial parameter η = k/lqθ, which
is basically the ratio between the longitudinal and az-
imuthal wave vectors, k, and qθ, respectively. By set-
ting η → ∞ we recovered the expected result for a plane
density wave.

The case of a rotating cloud of atoms in a ring-shaped
structure was considered, in which a new poloidal ve-
locity distribution function was introduced and justified
based on the typical experimental scales for the system
temperature, radius and angular velocity. A positive
damping term from the poloidal velocity distribution can
be large enough to compensate for the negative axial
damping, in realistic experimental scenarios. In this way,

vortex phonons with a finite orbital angular momentum
were shown to cross the instability threshold while the
plane waves remain kinetically damped. This opens the
possibility of easily detecting this vortex instability in
rotating clouds of cold atoms in large magneto-optical
traps. Note that the instability mechanism resembles
the “bump-on-tail” instabilities usually found in plasma
physics scenarios, with non-equilibrium velocity distribu-
tions where regions of positive slope, ∂W0/∂v > 0, act
as free energy source for the waves, feeding the instabil-
ity. In our case, the “bumpy-tail” velocity distribution
emerges from the rotation of the cloud and, by scanning
through the β parameter, a kinetic instability should be
triggered and easily detected through standard fluores-
cence, or absorption imaging techniques. As a final remark
we note that the ring-shaped structure is not mandatory
for the instability to occur, as the essential ingredient
is always a rotation and a “bump” in the poloidal ve-
locity distribution, where angular momentum from this
region is transferred to the twisted wave. In order to ob-
serve the onset of instability in such a situation, a fil-
tered image of the fluorescence of the outer shell should
be recorded. A real-time analysis should therefore contain
oscillations in the fluorescence signal, at the frequency of
the most unstable mode. The measurement of the most
unstable mode can then be performed by taking multiple
realizations of the Fourier transform of the fluorescence
signal.
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