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Abstract
Quantum state engineering and quantum computation rely on information erasure procedures that,
up to some fidelity, prepare a quantumobject in a pure state. Such processes occurwithin Landauerʼs
framework if they rely on an interaction between the object and a thermal reservoir. Landauerʼs
principle dictates that thismust dissipate aminimumquantity of heat, proportional to the entropy
reduction that is incurred by the object, to the thermal reservoir. However, this lower bound is only
reachable for some specific physical situations, and it is not necessarily achievable for any given
reservoir. Themain task of ourwork can be stated as theminimisation of heat dissipation given
probabilistic information erasure, i.e., minimising the amount of energy transferred to the thermal
reservoir as heat if we require that the probability of preparing the object in a specific pure state 1j be

no smaller than pmax

1
d-j . Here pmax

1j
is themaximumprobability of information erasure that is

permissible by the physical context, and 0d the error. To determine the achievableminimal heat
dissipation of quantum information erasure within a given physical context, we explicitly optimise
over all possible unitary operators that act on the composite systemof object and reservoir.
Specifically, we characterise the equivalence class of such optimal unitary operators, using tools from
majorisation theory, whenwe are restricted tofinite-dimensional Hilbert spaces. Furthermore, we
discuss howpure state preparation processes could be achievedwith a smaller heat cost than
Landauerʼs limit, by operating outside of Landauerʼs framework.

1. Introduction

1.1. Information erasure and thermodynamics
In his attempt to exorciseMaxwell’s demon [1, 2], Leo Szilard conceived of an engine [3] composed of a box that
is in thermal contact with a reservoir at temperatureT, and contains a single gas particle. By placing a partition in
themiddle of the box and determining onwhich side of this the particle is located, theMaxwellian demon can
attach to said partition aweight-and-pulley system so that, as the gas expands, theweight is elevated. By ensuring
that the partitionmoveswithout friction, and continuously adjusting theweight tomake the process quasi-
static, onemay fully convert k T log 2B ( ) units of heat energy from the gas intowork.Here, kB is Boltzmann’s
constant and log( · ) is the natural logarithm. In order to save the second law of thermodynamics the engine
must dissipate at least k T log 2B ( ) units of energy to the thermal reservoir as heat.While it was initially believed
that this heat dissipation is due to themeasurement act by theMaxwellian demon, following thework of
Landauer, Penrose, and Bennet [4–7] the responsible process was identified as the erasure of information in the
demon’smemory—the logically irreversible process of assigning a prescribed value to thememory, irrespective
of its prior state. That theminimumheat dissipation required to erase one bit of information cannot be any
smaller than k T log 2B ( ) is commonly known as Landauer’s principle, and saidminimumquantity as Landauer’s
limit. In general, Landauer’s principlemay be encapsulated by theClausius inequality
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Q k T S, 1.1B ( )D D

where QD is the heat dissipation to the thermal reservoir and SD is the entropy reduction in the object of
information erasure.

1.2. Thermodynamics in the quantum regime
Recent years have beenwitness to a growing interest in thermodynamics and statisticalmechanics in the
quantum regime (see [8, 9] for a review). This has lead to a lively debate regarding the definition of two central
concepts in thermodynamics—work and heat—within the framework of quantum theory. In classical physics,
thework done during a process is defined as the increase in useful, ordered energy. Conversely, the heat
dissipated during a process is the increase in unusable, disordered energy. In Szilard’s engine, for example, work
is characterised as the (deterministic) elevation of aweight, and hence the increase of its gravitational potential
energy. The heat dissipated, on the other hand, would be stored as kinetic energy in the randommotion of the
atoms that constitute Szilard’s engine, as well as the environment. This clear distinction fails in quantum
mechanics, which is an inherently probabilistic theory.

Broadly speaking, workmay be characterised in two different ways: (i) ò-deterministic work [10, 11]; and
(ii) averagework [12, 13]. In either case, onemay include thework storage device—a quantumanalogue of the
elevatedweight in Szilard’s engine—explicitly in the formalism, such as [14, 15]. This is not always done, and
onemay directly examine the energy change in the systemunder consideration. In the ò-deterministic
framework, thework of a process is defined as the difference in energymeasurement outcomes on the system (or
work storage device), observed prior and posterior to the process. The ò-deterministic work is then the
maximumvalue of work, thus defined, which occurs with a probability of at least 1 - .Meanwhile, average
work is given as either the difference in expectation values of energy, or the difference in the free energies, of the
system (orwork storage device) observed prior and posterior to the process. The difference in average energy can
be converted to the difference in free energy by subtracting the vonNeumann entropy of the system,multiplied
by the temperature, from its average energy.

Definitions of heat can similarly be broadly classified into two categories: (i)where the thermal reservoir is
treated extrinsically [12, 16]; and (ii)where the thermal reservoir is treated intrinsically [17, 18] . If the thermal
reservoir is treated extrinsically, whereby it does not explicitly appear in the framework as a quantum system
susceptible to change and examination, heat is a property of the systemof interest. Onemay therefore define heat
after having determinedwork—that is to say, given the change in total energy of the system, ED , and thework,

WD , the heat QD is given by thefirst law of thermodynamics as Q E WD = D - D . Alternatively, Landauer’s
principlemay be invoked to get a lower bound of heat dissipation, given that the systemhas undergone an
entropy change of SD . If the thermal reservoir is treated intrinsically, on the other hand, heat can be defined as
the average energy change of the reservoir itself. In otherwords, heat is averagework pertaining to the thermal
reservoir. A thermal reservoir, considered intrinsically, is a system that is initially uncorrelated from every other
system considered, and is prepared in aGibbs state.We note that, from this perspective, treating the thermal
reservoir with the BornMarkov approximationwould render it extrinsic; this is because the state of the
reservoir, in the coarse-grained picture, is assumed to never change. As such, defining heat dissipation during a
process as the average energy increase of the reservoir would lead one to conclude that no heat is dissipated at all.
Indeed, the physical justification for the BornMarkov approximation is that, at time-scalesmuch shorter than
that at which the system changes, the reservoir relaxes to its equilibrium state by interactingwith an unseen and,
hence extrinsic, environment. If this environment is explicitly accounted for quantummechanically, then the
total systemwill again evolve unitarily, and the energy increase of this environment has to also be accounted for.

In this article, we shall adopt the view that work is the change in average energy of the system.Moreover,
whenever a thermal reservoir ismentioned, wewill consider it intrinsically and include it as part of the system
under investigation. Thework storage device, however, is considered extrinsically: by thefirst law of
thermodynamics we take as a priori the notion that the change in average energy of the system—including the
reservoir if it is present—must come froman external energy source. This total change in average energy is
defined as thework done by the extrinsic work storage device. If the total system is composed of an object and
thermal reservoir, eachwith awell-definedHamiltonian, then the portion of this work that is taken up by the
object is called thework done on the object, and the portion taken by the reservoir is called the heat dissipated to the
reservoir. If the total system is thermal, then the entirety of thework done by the extrinsic work storage device is
defined as heat.

1.3. A quantummechanical Landauer’s principle
The surge of interest in quantum thermodynamics has included attempts to consider Landauer’s principle
quantummechanically [18–24].Most notable among such efforts is that of Reeb andWolf [25], who provide a
fully quantum statisticalmechanical derivation of Landauer’s principle by considering the process of reducing
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the entropy of a quantumobject by its joint unitary evolutionwith a thermal reservoir. Here, they consider heat
dissipation as the average energy increase of the reservoir, which is initially in aGibbs state and is not correlated
with the object. For a reservoir with aHilbert space offinite dimension d, they arrive at an equality formof
Landauer’s principle

Q k T S I S: , 1.2B ( )( )( ) ( ) ( )   r r bD = D + + ¢r¢ 

where I :( )  r¢ is themutual information between object and reservoir after the joint evolution, and

S ( ( )) r r b¢  is the relative entropy between the post-evolution state of the reservoir and its initial state at
thermal equilibrium. As themutual information and relative entropy terms are non-negative, this implies
Landauer’s principle.While equation (1.2) always yields the exact heat dissipation, it involves terms that are
cumbersome to calculate and, perhapsmore importantly, it is not a function of SD alone. As such, Reeb and
Wolf provide an inequality formof Landauer’s principle

Q k T S M S d, , 1.3B ( )( ) ( )D D + D

where M S d,( )D is a non-negative correction term that vanishes in the limit as d tends to infinity.

1.4. The need for a context-dependent Landauer’s principle
The study in [25] provides a lower bound of energy transferred to the thermal reservoir as heat dissipation, given
that the object’s entropy decreases by SD and that the reservoir’sHilbert space dimension is d. The crucial
point however is that this lower bound can be obtained for some physical context, but not all of them. By physical
context, wemean the tuple H T, , , ,( )    r . Here and r are respectively theHilbert space and state
of the object, while, H, andT are respectively theHilbert space,Hamiltonian, and temperature of the
reservoir. For example, oneway to achieve the lower bound of equation (1.3) is for the object and reservoir to
have the sameHilbert space dimension, allowing us to perform a swapmap between them; this will take the
mutual information term in equation (1.2) to zero. The next step of the optimisationwould be to pick a specific

r , H andT so as tominimise the relative entropy term. Conversely, for a given physical context such
inequalitiesmay prove less instructive. Indeed, if it is impossible to achieve the lower bound of equation (1.3) in a
given experimental setup, in what sense canwe consider this as the lowest possible heat dissipation due to
information erasure? In this study, therefore, we aim to approach the problemof information erasure from the
dual perspective: given a physical context, what is theminimumheat thatmust be dissipated in order to achieve a
certain level of information erasure. This context-dependent Landauer’s principle will be characterised by the
equivalence class of unitary operators that achieve our task. Of course, this first requires a re-examination of
what exactly wemean by information erasure.

1.5. Information erasure: pure state preparation and entropy reduction
In this article, we take information erasure to be synonymouswith pure state preparation; just as in classical
mechanics erasure (in the Landauer sense) involves themany-to-onemapping on the information bearing
degrees of freedom, then in quantummechanics this translates naturally as the irreversible process of preparing
the object in a pure state. Probabilistic information erasure, then, refers to the case where the probability of
preparing the object in the desired pure state is lower than unity. Although erasing the information of an object
as presently defined leads to a reduction of its entropy, the two processes are not quantitatively the same. If we
wish tomaximise the largest eigenvalue in the object’s probability spectrum, therebymaximising the probability
of preparing it in a given pure state, in general we need notminimise its entropy to do so; the only cases where
maximising the probability of information erasure leads tominimising the entropy are when the object has a
two-dimensionalHilbert space, or wherewe are able to fully purify the object and thereby take its entropy to
zero. In general, then, a given probability of information erasure is compatible withmany different values of
entropy reduction. By choosing the smallest entropy reduction, onewould expect that wemayminimise the
consequent heat dissipation, as per equation (1.2). Consequently, our desired task can be stated as the
minimisation of heat dissipation given probabilistic information erasure—that is to say, ofminimising the
amount of energy transferred to the thermal reservoir as heat if we require that the probability of preparing the
object in a specific pure state 1j be no smaller than pmax

1
d-j . Here pmax

1j
is themaximumprobability of

information erasure that is permissible by the physical context, and 0d the error.Wewill refer to the
equivalence class of unitary operators that achieve this as Uopt[ ( )]d . If the object also has a non-trivial
Hamiltonian, then to further reduce the total work cost of information erasure, conditional onfirstminimising
the heat dissipation, wemay further optimise the unitary operators within the equivalence class Uopt[ ( )]d so that
the state of the object ismade to be passive [26, 27], andwith as small an expected energy value as possible. This
reduced equivalence class is referred to as Uopt

p[ ( )]d .
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1.6. Information erasure and information processing
Reducing the heat dissipation due to information erasure is important for both classical and quantum
information processing devices. As recent studies suggest [28], heat dissipation is amajor limiting factor on the
continual growth in the computational density ofmodernCMOS transistors.Meanwhile for quantum
computation in the circuit-basedmodel, error correction requires a constant supply of ancillary qubits, in pure
states, for syndromemeasurements. Indeed, the authors in [29] show that in the absence of such a constant
supply the number of steps inwhich the computation can be performed fault tolerantly will be limited. Given a
finite supply of ancillary qubits, wemust constantly purify themduring the execution of the algorithm. If the
resulting heat dissipation leads to the intensification of thermal noise beyond the threshold for fault tolerance
[30], then the computationwill fail. A context-dependent Landauer’s principle will thus prove especially
important for information processing devices, in both classical and quantum architectures, where the structure
of the reservoirHamiltonianwill usually befixed. Furthermore, ourworkmay be useful for certain high-
performance, probabilistic (classical) information processing devices, that would operate at or near the
quantum regime. Although the current state of the art in information processing devices dissipates heat orders of
magnitude in excess of Landauer’s limit, our ever increasing ability to controlmicroscopic devices willmean that
achieving such theoretical limitsmay be possible in the not-too-distant future. Indeed, experiments already
exist, both in classical [31] and quantum [32] systems, which have achieved heat dissipation very close to
Landauer’s limit.

1.7. Layout of article
In section 2we shall characterise the equivalence class of unitary operators acting on the composite systemof
object and reservoir, as a result of which the object undergoes probabilistic information erasure and, given this,
the reservoir gains theminimal quantity of heat. If the object also has a non-trivial Hamiltonian, the unitary
operators can be further optimised so as to reduce the energy gained by the object. Here, we operate within
Landauer’s framework—the object and reservoir are initially uncorrelated and the composite system evolves
unitarily.We demonstrate, using a sequential swap algorithm introduced in section 2.5, the tradeoff between
probability of information erasure andminimal heat dissipation; an increase in probability of preparing the
object in a defined pure state is accompanied by an increase in theminimal heat thatmust be dissipated to the
thermal reservoir. In section 3we apply the general results to the case of erasing amaximallymixed qubit with
the greatest allowed probability of success. Two reservoir classes will be considered: (i) a d-dimensional ladder
system,where the energy gap between consecutive eigenstates is uniformlyω; and (ii) a spin chainwith nearest-
neighbour interactions, that is under a localmagnetic field gradient. For bothmodels, we shall also inquire into
the effect of energy conserving, pure dephasing channels on the erasure process. In section 3.3, we determine the
minimumquantity of heat thatmust be dissipated given full information erasure of a general qudit prepared in a
maximallymixed state, in the limit of utilising an infinite-dimensional ladder system, which is a harmonic
oscillator. In section 4we shall address how information erasure can be achieved at a lower heat cost than
Landauer’s limit, by operating outside of Landauer’s framework, but in such away that terms like heat and
temperaturewould continue to have referents in themathematical description. In appendix Awe provide a brief
overview of certain key results frommajorisation theory that will be used throughout the article. In appendix B
we explainwhat an equivalence class of unitary operators constitutes. Finally, in appendix Cwe provide proofs
for themain results.

2. Information erasurewithin Landauer’s framework

2.1. The setup
Weconsider a system composed of an object, , withHilbert space d  and reservoir,, withHilbert

space d  . Let theHamiltonian of the reservoir be the self-adjoint operator H
m

d
m m m1

∣ ∣
å l x x= ñá=

 ,

where m m≔ { }l l  is a non-decreasing vector of energy eigenvalues. Thismeans that i jl l  for any i j< .

Similarly, the objectHamiltonian is denoted H. The compound system is initially in the uncorrelated state

( ) r r r b= Ä , where o
l

d
l l l1

≔ ∣ ∣
år j jñá=

 is the initial state of the object, such that o ol l≔ { }  is a non-

increasing vector of probabilities. Thismeans that o oi j  for any i j< . Additionally, the reservoir is initially in

theGibbs state e tr eH H( ) ≔ [ ]
 r b b b- - at inverse temperature k T 0,B

1≔ ( ) ( )b Î ¥- . Figure 1 represents
the setup diagrammatically. Because of the ordering on the energy eigenvalues, wemay represent this state as

r
m

d
m m m1

( ) ≔ ∣ ∣
år b x xñá=

 , such that r rm m≔ { }  is a non-increasing vector of probabilities. For simplicity,

wewrite the initial state ρ in the equivalent form
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o r p , 2.1
l

d

m

d

l m l l m m
n

d d

n n n
1 1 1

( )
   

åå år j j x x y y= Ä º
= =

 

=



where the non-increasing vector p pn n≔ { }  is the ordered permutation of o rl m l m,{ }  , and n n{ }  y Î Ä
the associated permutation of l m l m,{ }j xÄ .We note that this state representation is unique if and only if

there are no degeneracies in the probability distribution p.We assume that the total system is thermally
isolated, so that the process of information erasurewill be characterised by a unitary operatorU. The state of the
system after the process is complete is therefore

U U p U U . 2.2
n

d d

n n n
1

≔ ( )† †
 

år r y y¢ =
=



Themarginal states of r¢ are tr≔ [ ] r r¢ ¢ and tr≔ [ ] r r¢ ¢ , where trA[ · ] represents the partial trace, of a
composite systemA+B, over the systemA.

As the pure state wewish to prepare the object in is arbitrary up to local unitary operations, for simplicity we
choose this to be ;1j this is the eigenstate of r with the largest eigenvalue, i.e., o1

. The probability of preparing

r¢ in the state 1j is defined as

p g U

p p U U

p g U

,

, 2.3

n

d d

n n n

n

d d

n n

1 1 1
1

1 1

1

( )( ) ≔

( ) · ( ) ( )

†
  

 

 

å

å

j r j r j y j j y¢ ¢ = Ä

= º

=



=

 



where g U( ) is a vector of positive numbers g U U Un n n1 1( ) ≔ ∣ (∣ ∣ ) ∣†
y j j yá ñá Ä ñ such that

g U d
n n ( ) å = . In general, wewish to achieve p p1

max

1
( ∣ ) j r d¢ -j , where pmax

1j
is themaximum

probability of information erasure permissible by the physical context, and p o0, max
1

1
[ ]d Î -j

 is the error. As

wewant the process to produce a larger p 1( ∣ )j r¢ than o1
, this will lead to a decrease in the vonNeumann

entropy of . The vonNeumann entropy of a state ρ is S tr log( ) ≔ [ ( )]r r r- .We define the reduction in
entropy of as S S S≔ ( ) ( ) r rD - ¢ .

The process is also assumed to be cyclic,meaning that the totalHamiltonian at the start of the process is
identical with that at the end. As such, the total average energy consumption of the erasure protocol will be

E H H H H

W Q

tr tr tr ,

. 2.4

( )( ) ( ) (≔ ( )

( )

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦       r r r r r r bD + ¢ - = ¢ - + ¢ -

= D + D

Apositive ED implies that the process requires energy from an external work storage device. Conversely, a
negative ED implies that the process produces energy that can, in turn, be stored in thework storage device.
Here, WD is the energy change in the object, whichwe call work done on the object, and QD the energy change
in the reservoir, or the heat dissipated to the reservoir. As shown in [25, 33], these terms can also bewritten as

W S S S, 2.5( ) ( )( ) ( ) ( )   b r r b r r bD = ¢ - - D 

Q S I S: , 2.6( )( ) ( ) ( )   b r r bD = D + + ¢r¢ 

where S tr log log( ) ≔ [ ( ( ) ( ))]r s r r s- is the entropy of ρ relative toσ, and
I A B S S S: A B( ) ≔ ( ) ( ) ( )r r r+ -r is themutual information of a state ρ of a bipartite systemA+B. Aswe are
only interested in cases where SD is positive, we can infer from the non-negativity of the relative entropy and
mutual information that QD is always positive for information erasure, even though WD may be negative.

Wewish tomake the physical interpretation that QD is energy that is irreversibly lost during the
information erasure process, and is hence qualitatively different in nature from WD . For this to be true, itmust
be impossible to extract work from the reservoir, after the process is complete, bymeans of a cyclic unitary
process involving the reservoir alone. This is satisfied if r¢ is passive, i.e., r ;

m m m m∣ ∣ år x x¢ = ¢ ñá that is to say,

if r¢ is diagonal in theHamiltonian eigenbasis, and its eigenvalues are non-increasing with respect to energy. If

r¢ is not passive, as shown by [34] it is possible to extract amaximumamount of work, given as

W Htr , 2.7max passive( )≔ ( )⎡⎣ ⎤⎦  r rD ¢ -

where passive
r has the same spectrum as r¢ , but is passive. Aswill be shown in the following sections, not only is

it possible for r¢ to be passive, but this is always satisfied in the case ofminimal heat dissipation.However, if the

dimension of is at least three, andwe have access toN copies of r¢ , itmay be possible, for a sufficiently large
N, to have the compound state N

r¢
Ä be non-passive. This is called activation. Consequently, by keeping the

reservoir systems after their utility in the erasure protocol, and then acting globally on this collection, wemay be
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able to retrieve some energy. The only passive state which cannot be activated, nomatter howmany copies we
have access to, is theGibbs state [26]. However, r¢ will not in general be in aGibbs state. To ensure that QD is
truly lost, irrespective of what reservoir is used, wemust impose an additional structure. The simplestmethod is
to impose the condition that the reservoir system is irrevocably lost after the process is complete. For example, if
the reservoir system is randomly chosen froman infinite collection of identical systems, butwe do not know
which particular systemwas used, then the probability of picking this system again at random, after the erasure
protocol, will be vanishingly small.

2.2.Maximising the probability of information erasure
In appendix C.1we prove that themaximumprobability of information erasure is

p p , 2.8
m

d

m
max

1
1

≔ ( )


åj
=



and the equivalence class of unitary operators that achieve this, denoted U g
maj[ ], is characterised by the rule

m d Ufor all 1 ,..., , , 2.9g
m mmaj 1{ } ( ) y j xÎ = Ä ¢

where m m{ }x¢ is an arbitrary orthonormal basis in. To seewhatwemean by an equivalence class of unitary
operators, refer to appendix B. In other words, tomaximise the probability of information erasure the unitary
operatormust take the d vectors my , that have the largest probabilities associatedwith them in the spectral

decomposition of ρ, to the product vectors m1j xÄ ¢ . Similar results, leading to the conclusion that pmax

1j
in

general cannot be brought to unity, have been reported in [25, 35–37].
A necessary and sufficient condition for pmax

1j
to be greater than the largest eigenvalue of the object’s initial

state, i.e, p o1 1( ∣ ) ≔j r , is that o r2 1
  be greater than o rd1 

  . If this were not the case, the d largest probabilities

pm
 would be the set o rm m1{ }  . Recall that themaximumprobability of information erasure is given by summing

over this set, which gives o1
. That is to say, p p o r o

m

d

m m

d
m

max
1 1 1 1

1
≔  å åº =j =


=

  . This implies that for a non-

trivial erasure process, whereby the probability of preparing the object in the state 1j is increased, we require
that

o

o

r

r
e , 2.10

d

1

2

1 d 1( ) ( )


< = b l l







- 

where the equality is a consequence of r e tr em
Hm≔ [ ]bl b - -

. Similar arguments weremade in [25], although
there the focuswas on providing a bound on the smallest eigenvalue of r¢ that could be obtained.

2.3.Minimising the heat dissipation
As the initial state of the reservoir isfixed, the heat dissipation isminimised by lowering the expected energy of
the post-transformationmarginal state of the reservoir, Htr[ ] r¢ . In appendix C.2we prove that QD is

minimised by the equivalence class of unitary operators U f
maj[ ]characterised by the rule

m d n m d md Ufor all 1 ,..., and 1 1 ,..., , , 2.11f
n l

m
mmaj{ } { }( ) ( )   y j xÎ Î - + = Ä

with the set l d1 ,...,l
m{ ∣ { }}j Î forming an orthonormal basis in for eachm. A unitary operator from

this equivalence class will ensure that r¢ is passive, and that itmajorises any other passive state that could have
been prepared. This is done by firstmaximising the probability of preparing the reservoir in the ground state 1x ,
by taking the d vectors ny , that have the largest probabilities associatedwith them in the spectral

decomposition of ρ, to the product vectors l
1

1j xÄ . After this, the probability of preparing the reservoir in

the next energy state 2x ismaximised in a similar fashion, and so on for all other energy eigenstates.

2.4.Minimal heat dissipation conditional onmaximising the probability of information erasure
If we compare the rule thatmaximises the probability of information erasure, given by equation (4.5), and the
rule thatminimises the heat dissipation, given by equation (2.11), we notice that they are incompatible. As such,
no unitary operator simultaneously exists in both equivalence classes: U Ug f

maj maj[ ] [ ] { }Ç = Æ . The two tasks
are in some sense complementary, and therewill be a tradeoff between them.Here, we shall prioritise; a unitary
operatorwill be chosen such that itmaximises the probability of information erasure and, given this constraint,
minimises the heat dissipation. In otherwords, wefind the equivalence class of unitary operators
U U0 g

opt maj[ ( )] [ ]Ì thatminimise QD . The zero in braces indicates that the error in probability of information

erasure, δ, is zero. To this endwefirst divide the vector of probabilities p to form the non-increasing vector of

cardinality d, denoted 0P, and the non-increasing vectors of cardinality d 1 - , denoted
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m d1 ,...,m{ ∣ { }}P Î , defined as

p m d

p l d

1 ,..., ,

1 ,..., 1 . 2.12

m

m d m d l

0

1 1 1

{ }{ }
{ }( )

≔

≔ ( )
( )

⎧⎨⎩
⎫⎬⎭




 



P Î

P Î -

 


+ - - +



We refer to themth element of 0P as m0( )P , and the lth element of m 1P as lm 1( )P .
In appendix C.3we prove that the equivalence class of unitary operators thatmaximise the probability of

information erasure and, given this constraint,minimise the heat dissipation, is characterised by the rules

U
p m

p l m
0 :

if ,

if and 1,
2.13

n m n

n l
m

m n m

opt
1 0( )

( )
( )

( )

( )
( )

⎧
⎨⎪
⎩⎪ 

y j x y r

y j x y r

Ä = P

Ä = P









where, for allm, eachmember of the orthonormal set l
m

l{ }j is orthogonal to 1j .
Effectively, the first line of equation (2.13) conformswith equation (2.9) and hencemaximises the

probability of information erasure. The orthonormal vectors m m{ }x¢ are chosen to be the eigenvectors of the
reservoirHamiltonian, however, in order tominimise the contribution to heat from this line. The second line is
an altered version of equation (2.11), therebyminimising the heat dissipation given the constraint posed by the
first line.We nowmake the following observations:

(a) If we choose l
m

l 1j j= + for allm, and such that l l{ }j are the eigenvectors of the object Hamiltonian

H in increasing order of energy, thenU 0opt ( )would also ensure that erasure to the ground state 1j would

be done in such away that p pi j( ∣ ) ( ∣ ) j r j r¢ ¢ for all i j;< the object is brought to a passive state,
although this state will in general not be thermal [26].We refer to this as passive information erasure, and the
resultant equivalence class of unitary operators as U U0 0opt

p
opt[ ( )] [ ( )]Ì . These unitary operators will

result in the smallest possible ED , conditional onfirstmaximising the probability of information erasure,
and thenminimising the heat dissipation; that is to say, U 0opt

p[ ( )]minimises WD for all unitary operators

in the equivalence class U 0opt[ ( )]. Figure 2 shows thematrix representatisson of U U0 0opt
p

opt
p( ) ( )†r r¢ = .

(b) Since the desired task is the maximisation of p 1( ∣ )j r¢ , we need not in general maximise SD because this
will lead to a greater amount of heat dissipation than necessary, as per equation(2.6). The only cases where
maximisation of p 1( ∣ )j r¢ necessarily leads to themaximisation of SD arewhen: (i) p 1;max

1
=j and (ii)

where 2  . In case (i) the entropy of the object is brought to zero, so SD is triviallymaximised. In
case (ii), we note that if o o1 2

  , where o1
 and o2

 are the spectra of 1
r and 2

r respectively, then

S S1 2( ) ( ) r r . If wemaximise p 1( ∣ )j r¢ in the case of being a two-level system, this will necessarily

minimise p 2( ∣ )j r¢ , which in turnwill result in the spectrumof r¢ tomajorise all possible spectra.

Consequently, S ( )r¢ will beminimised, and hence SD will bemaximised.
However, one can always say thatmaximising the probability of information erasure requires that we
minimise themin-entropy, Smin, defined as

S pmin log , 2.14
i

imin { }( )( ) ≔ ( )r -

where pi i{ } is the spectrumof ρ [38]. Themin-entropy is clearly given by the largest value in the spectrum.

Figure 1.The object withHilbert space d  and thermal reservoir  withHilbert space d  . The eigenbasis of the
reservoirHamiltonian H is m m{ }x , with the vector numbering being in order of increasing energy. The eigenbasis with respect to
which the object is initially diagonal is n n{ }j .
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Tominimise themin-entropy, therefore, wemustmaximise the largest value in the spectrum; this is the
definition ofmaximising the probability of information erasure.

(c) The only instance where d     , and U 0opt
p ( ) for passive, maximally probable information

erasure is a swap operation, is when d= 2. For larger dimensions, this is no longer the case.

(d) It is evident that r¢ is diagonal with respect to the eigenbasis of H, and that the spectrum of r¢ is non-

increasing with respect to the eigenvalues of H. In other words, r¢ is a passive state. However, its
spectrum ismajorised by that of ( )r b . As such, by corollary A.1, Q 0D . This conformswith
Landauer’s principle that information erasuremust dissipate heat.

2.5. The tradeoff between probability of information erasure andminimal heat dissipation
Wewould now like to relax the condition ofmaximising the probability of information erasure, and allow the
error δ to take non-zero values. The questionwewould now like to ask is: Howwill theminimal achievable QD
be affected by varying δ, and howmaywe then characterise the equivalence class of optimal unitary operators
Uopt

p[ ( )]d ? The answer for the extremal cases is trivial; we have already addressed the case of 0d = in section 2.4,

andwhen p omax
1

1
d = -j

, then Uopt
p[ ( )]d =  and Q 0D = . In appendix C.4we prove that the algorithmof

sequential swaps, shown infigure 3, will result in a non-increasing sequence of errors, j j≔ { }d d  ,

commensurate with a non-decreasing sequence of heat, Q Qj j≔ { }D D  . For each error jd
, the associated value

of heat QjD will beminimal. Furthermore, themarginal state of the object, r¢ , will always be passive. Each swap

operation acts on a subspace spanned by , ,i j k l{ } { }j j x xÄ . As the state is initially diagonal with

Figure 2. (a)The partitioning of p, the vector of eigenvalues of ρ arranged in a non-increasing order, into the vectors 0P and m 1P .
(b)The density operator U U0 0opt

p
opt
p≔ ( ) ( )†r r¢ , inmatrix representation, whereU 0opt

p ( ) is the optimal unitary operator for passive,
maximally probable information erasure. The post-transformationmarginal state of the object, r¢ , is passive. It is also the least
energetic passive state that is possible to prepare, given the constraints: (i) p p ;1

max

1
( ∣ )j r¢ = j and (ii) QD isminimal given (i).

Figure 3.A sequence of swap operations that results in a non-increasing sequence of errors, d, commensurate with a non-decreasing

sequence ofminimal heat QD . At each stage of the algorithm, the probability associatedwith the vector i jj xÄ is denoted as pi j, .
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respect to the basis l m l m,{ }j xÄ , and swap operations only permute the probabilities in the state’s
spectrum, the composite systemwill always be diagonal with respect to this basis at every stage of the algorithm.

Figure 4 depicts this process for the case where 3     , with 1

3 r =  . Here the diagonal entries

of the density operator r¢ are shown in each column,with the first column from the right representing the initial
state, and thefinal column representing the case of passive,maximally probable information erasure. The
algorithm for reducing error by increasing heatmoves from right to left, as shown by the arrows. The elements
surrounded by dashed circles, and coloured in red, are thosewhichmust be swapped to decrease δ, with the
resultant diagonal elements of the new state shown to the left.

To allow for a continuous change in δ, we need to generalise the swap operation to an entangling swap. That
is to say, for the vectors i1j xÄ and l mj xÄ , and the real number 0, 1[ ]g Î , we define

SW :
1 ,

1 .
2.15

i i l m

l m i l m

1 1

1

( )
⎧
⎨⎪
⎩⎪

j x g j x g j x

j x g j x g j x

Ä - Ä + Ä

Ä Ä - - Ä
g





Therefore, SW0 =  and as 1g  , SWg converges to the swap operation.Hence, for any error ,j j 1( )d d dÎ 
+
 ,

the optimal unitary operatorU p
opt ( )d would be given by following the algorithm for discrete errors up to jd

, and

then replacing the swap operationwhichwould give the error j 1d +
 with the entangling swap operation defined

above, with an appropriate choice of γ. This will ensure for a continuous decrease in δ and a continuous increase
in QD .

3. Examples: erasing a fullymixed qubitwithmaximal probability of success

We shall now consider the erasure of a qubit, withHilbert space 2  .We are also interested in examining
the scenariowhere no a priori information about the state of the object is known; the probabilities o1

 and o2
 are

both one-half. For simplicity, wemake the substitution d d º for the dimension of the reservoir’sHilbert
space. The action of the optimal unitary operator for passive,maximally probable information erasure, would
therefore be such that the diagonal elements of r¢, as depicted infigure 2(b) and from top to bottom in

decreasing order, are the probabilities p , ,..., ,
r r r r

2 2 2 2
d d1 1{ }º

   

.Wewill consider twomodels for the reservoir:

(a) A ladder system.
The ground state of the systemhas an energy of zero, and for everym,

H H . 3.1m m m m1 1 ( ) x x x x w- =+ +

Themth energy of such a system, in increasing order, is given as m 1m ( )l w= - . TheHamiltonian has the
operator norm H d 1d ( ) l w= = -  which growswith d. In the limit as d tends to infinity, this system
will be a harmonic oscillator of frequencyω, with a spectrumbounded frombelow by zero, and unbounded
from above.

Figure 4.The diagonal elements of U Uopt
p

opt
p≔ ( ) ( )†r d r d¢ , for

1

3
( ) r r b= Ä , resulting in p p1

max

1
( ∣ )j r d¢ = -j . QD is

minimised and r¢ is passivewith the smallest average energy possible given this constraint. Here 3     , and j j{ }d is a non-

increasing sequence of errors. The elements inside a dashed circle (red online) are thosewhichmust be swapped tomove from jd
 to

j 1d +
 .
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(b) A chain of spin-half systems, with nearest-neighbour interactions, that are under a linear magnetic field
gradient.
Here, the reservoir has theHilbert space k

N
k1  = Ä = , with k

2  for all k. TheHamiltonian is

H k J , 3.2
k

N

z
k

k

N

a x y z
a
k

a
k

1 1

1

, ,

1( ) ( )
{ }

 å å ås s s= Q + Ä
= =

-

Î

+

where a x y z, ,a{ ∣ { }}s Î are the Pauli operators. The operator a
ks acts nontrivially only onHilbert space

k . The parameters Q Î + and J Î + represent, respectively, an effectivemagnetic field gradient in the
z-axis and the nearest-neighbour spin-spin coupling strength. ThisHamiltonian conserves the total
magnetisation,

k z
kå s .

For each reservoir, wewish to determine howmuch heat is dissipated in excess of the improved lower bound
of Landauer’s inequality, determined in [25], given as

L Q S
S

d

1 2

log 1 4
. 3.3

2

2
≔ ( )

( )
( )

⎛
⎝⎜

⎞
⎠⎟b

D D - D +
D
- +

Weuse the simple formof this lower bound, which is not tight.

3.1. Comparison of reservoirs given unitary evolution
Figure 5(a) demonstrates the dependence of LD and pmax

1j
onβ and d, when the reservoir is a ladder systemwith

afixed frequency 1w = . Figures 5(b)–(d) depict the dependence of LD and pmax

1j
onΘ, J, andβwhen the

reservoir is a spin chain of lengthN.When varying any of these, the other two are left constant at the value of one.
We nowmake the following observations:

(a) When the reservoir is a ladder system, an increase in d increases pmax

1j
and also, generally, LD , for all finite

temperatures. In the limit asβ tends to infinity, 1 1( ) ∣ ∣r b x x= ñá andU 0opt
p ( ) effects a swapmap in the

Figure 5.Dependence of LD and pmax

1j
as a function of one parameter. (a)The reservoir is formed by a ladder systemwith energy

spacing 1w = . (b) and (c)Here the reservoir is formed by a chain ofN spins with nearest-neighbourHeisenberg coupling J and linear
magnetic field gradientΘ.
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subspace , ,1 2 1 2{ } { }j j x xÄ . As such, in this limit pmax

1j
and QD tend to unity and 2w

respectively.

(b) When the reservoir is a spin chain, asN increases, so does pmax

1j
. This can be explained by noting that pmax

1j

growswith d 1l l- , which is always greater than or equal to k2
k

N

1åQ = .

(c) For spin chains of even length, in the limit of large J, LD quickly diverges. However, there is some critical
value of J for odd-length chains such that an increase in J beyond this drastically reduces the rate at which

LD increases.

(d) The best case scenario is when the reservoir is a long chain, with J , bQ < and J b~ . For example, for a
chain of eleven spins, with 0.25Q = , and J 1b= = , we get p 1max

1
»j while L 0.12D » . Compare this

with the case where the reservoir is given by a ladder systemof dimension d 211= and 1b = . Here, in
order to achieve the same value of pmax

1j
, realisedwhen 0.1w » , we get L 0.29D » .

3.2. Comparison of reservoirs under energy-conserving,Markovian dephasing channels
Before this juncture, we have considered the active element of erasure—the unitary operator—as a bijection
between two orthonormal basis sets. To consider this as a bona fide dynamical process wemust conceive of the
time-ordered sequence H k N1 ,...,k{ ∣ { }}Î , whereHk is theHamiltonian of the composite system + in
the time period t t t,k k1( )Î - . If the system is thermally isolated, then this will be accompanied by the time-
ordered sequence of unitary operators U k Ne 1 ,...,t

t Hi
k

k k{ ∣ { }}= ÎD
- D where the time duration is defined as

t t tk k k 1≔D - - . The time-ordered application of these results in the unitary operatorUτ, where t tN 0t = - ,
which determines the total evolution of the system. If we identify H H H0 ≔  + as theHamiltonian of the
system at times prior to t0 and posterior to tN, whereby the new sequence ofHamiltonians can be aptly called a
Hamiltonian cycle, then

Q H U Utr tr , 3.4( )( ) ( )†⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦  r r bD = -t t

will refer to the amount bywhich the average energy of the reservoir, at times t tN> , will be greater than that at
times t t0< , andwill have the samemeaning as the heat term in equation (2.4). Implicit in this framework is the
notion that changing theHamiltonian acting on the systemwill take energy from, or put energy into, a work
storage device whichwe do not account for explicitly. If a non-unitary evolution is effected, however, we cannot
in generalmake such an identification. This is because a general completely positive, trace preservingmap can
always be conceived, via Stinespring’s dilation theorem [39], as resulting from a unitary evolution on the system
coupledwith an environment. Indeed, the energy consumption in such a case will be determined by the total
Hamiltonian of the systemplus the environment. If energy is allowed toflowbetween the system and
environment, then the energy increase of (plus the energy increase in)will not be identical to the energy
consumed from thework storage device; QD may be less or greater than the energy lost.

The only exception to this rule is when the unitary evolution between system and environment conserves the
energy of the two individually, whereby no energy is transferred amongst them. Thiswill result in the system to
undergo pure dephasingwith respect to the (time-local)Hamiltonian eigenbasis; we refer to such a generalised
evolution as an energy conserving one. The simplest realisation of such a scenario would require us to consider
the sequence ofHamiltonians to be accompanied by the time-ordered sequence of super-operators

k Ne 1 ,...,tk k{ ∣ { }}L ÎD , with the Liouville super-operators kL defined as

H: i ,
1

2
, , 3.5k k

n

d d

n
k

n
k

n
k

n
k

n
k

n
k

1

( )L ⎜ ⎟⎡⎣ ⎤⎦ ⎛
⎝

⎡⎣ ⎤⎦
⎞
⎠



år r f f r f f r f f+ G -
-

= +


where n
k

n{ }f is the eigenbasis ofHk, while ,[ · · ]- and ,[ · · ]+ are the commutator and anti-commutator

respectively, and 0,[ )G Î ¥ is the dephasing rate. In each time period t t t,k k1( )Î - the system evolves as
e tk k( )( )Lr rD while conservingHk; the system evolves by energy conserving,Markovian dephasing channels.

As such channels are unital, theywill cause the consequent heat dissipation to increase in proportion to the
entropy reduction in the object; energy conserving,Markovian dephasingwill be detrimental to the erasure
process [25].

For our twomodels, wewill consider the simplestHamiltonian cycle where the sequence ofHamiltonians
sandwiched byH0 is the singleton H1{ }. Furthermore, we setU e Hi 1=t

t- to equalU 0opt
p ( ), as determined by the

sequential swap algorithm given in section 2.5, when 1t = . Now,we let the system evolve instead as
e 1( )( )Lr rt . By again evolving the system for a period of 1t = , wemay ascertain how such an environmental

interaction affects both the probability of qubit erasure, and the heat dissipation.
Figure 6(a) shows the effect of dephasing on the erasure process, when the reservoir is a spin chain of length

N 2, 3, 4, 5{ }Î , with J 1bQ = = = . Similarly, figure 6(b) shows the effect of dephasing on the erasure
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process, when the reservoir is a ladder systemwith 1w = and 5b = . In both instances, an increase inΓ results
in a decrease in p 1( ∣ )j r¢ and, with the exception ofN = 2 and d 4 , an increase in QD . However, not all
ladder dimensions d, or spin chain lengthsN, are affected the sameway.

Wenote thatwhen the two reservoirs are dimensionally equivalent, i.e., when the ladder systemhas
dimensions d 2 , 2 , 2 , 22 3 4 5{ }Î , commensurate with spin chains of length N 2, 3, 4, 5{ }Î , they display the
same behaviour under energy conserving,Markovian dephasing channels. This is because the generator of their
evolution, the Liouville super-operator 1L, is the same in such cases. In both instances, an increase in dimension
leads to an increase in QD , while the probability of qubit erasure increases as wemove from d 22= to d 23= ,
decreasing again aswe increase further still to d 24= and d 25= .

What ismost striking, however, is that the ladder system seems to perform the best precisely when it is
dimensionally equivalent to a spin chain. Consider figures 6(c) and (d). Here, QD and p 1( ∣ )j r¢ are calculated
for dimensions d 2 ,..., 32{ }Î , while keeping all other parameters constant. For dimensions
d 2 , 2 , 2 , 22 3 4 5{ }Î , we observe that QD is smaller than that for all larger d, while p 1( ∣ )j r¢ attain the largest
global values. As such, wemake the following conjecture:

Conjecture 3.1. Let the reservoir be given by a d-dimensional ladder systemwith a constant energy spacingω. In
the presence of energy conserving,Markovian dephasing, reservoirs with d 2n= , with n Î and n 2 , allow
for the largest global probabilities of qubit erasurewhile, at the same time, dissipating less heat than all such
reservoirs of larger dimension.

3.3. Full erasure of a quditwith a harmonic oscillator
Here, we expound on the example of using a ladder system as a reservoir, but consider what happens aswe take
the limit of infinitely large d. In this limit wemay call the ladder system a harmonic oscillator. Let usfirst
consider the casewhere the object is a qudit, withHilbert space d  , prepared in themaximallymixed
state

Figure 6. (a) and (b) show the effect of dephasing rateΓ on QD and p 1( ∣ )j r¢ . The system is evolved for time 1t = . (a)The reservoir
is given by a spin chain of lengthN andwhere all the parameters are set to one. (b)The reservoir is given by a ladder system,with energy
spacing 1w = , and inverse temperature 5b = . (c) and (d) show, respectively, the effect of ladder systemdimension d on QD and
p 1( ∣ )j r¢ , at a constant value of 1G = . It appears that for dimensions d 2n= , with n Î and n 2 , QD is smaller than that of all
larger dimension values, while p 1( ∣ )j r¢ take the largest global values. In other words, the ladder system ismost robust to energy
conserving,Markovian dephasing, when it is dimensionally equivalent to a spin chain.
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d

1
. 3.6

l

d

l l
1

( )




år j j=
=

In appendix C.5we show that the heat dissipationwhen the reservoir is a harmonic oscillator is

Q
d d

lim
1

2
coth

2

1
. 3.7

d

( ) ( )
( )⎜ ⎟⎛

⎝
⎞
⎠

 w bw
b

D =
-

>
-

¥

QD approaches d k T1 B( ) - in the limit asω becomes vanishingly small, whereby the spectrumof H will be
approximately continuous.

Now let us focus on the case where the object is a qubit, but with an initial bias in its spectrum:

q q q1 ,
1

2
, 1 . 3.81 1 2 2( ) ( )⎟

⎡
⎣⎢

⎞
⎠r j j j j= + - Î

In appendix C.5.1we show that, in the limit asω tends to zero, QD will be

Q

q q
q

q

q

2 1 log
1

2 1
. 3.9

( )

( )
( )

⎛
⎝⎜

⎞
⎠⎟

b
D =

-
-

-

In the limit as q tends to one-half, QD approaches k TB as in our previous analysis. The concomitant entropy
reduction is, of course, always

S q
q

q
q

log
1

1 log
1

1
. 3.10( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟D = + -

-

By defining the function

Q S, 3.11≔ ( )bD D - D

as shown infigure 7, it is evident that except for the trivial case of q = 1, commensurate with S Q 0D = D = ,
the heat dissipationwill exceed Landauer’s limit .

4. Information erasure beyond Landauer’s framework

In section 2 the setup for information erasure had the compound systemof object and thermal reservoir—our
systemof interest—as a thermally isolated quantum systemwhose constituent parts are initially uncorrelated.
The system then undergoes a cyclic process described by a unitary operator, and the average energy increase of
the reservoir is defined as heat. Indeed, these are the basic assumptions under which Landauer’s principle holds.
To achieve heat dissipation lower than that discussed in section 2wemust operate outside of Landauer’s
framework by abandoning some of these assumptions. However, dissipating less heat than Landauer’s limit will
becomemeaningless if there is no referent of heat or temperature in themathematicalmodel. As such, if wewish
to avoidmaking category errors, there are restrictions on theways inwhichwemay change our assumptions.
That is to say, themodelmust continue to involve a system that is initially prepared in aGibbs state that is
uncorrelated from any other system considered. This way, the systemhas awell-defined temperature, andwe
may continue to consider its energy increase as heat. In addition, the processmust still be cyclic, i.e., the
Hamiltonian of the total system—in particular the thermal system—must be the same at the end of the process,

Figure 7.The difference between QbD and SD , denoted D, as a function of the initial bias in the qubit state, q. The two coincide only
in the trivial case of q= 1, commensurate with S Q 0D = D = .
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as it was at the beginning. If this condition is not satisfied, wemay observe any value of heat we desire by
appropriately changing thefinalHamiltonian.

One option available is tomove beyond unitary evolution. This can be achieved by introducing an auxiliary
system to the setup introduced in section 2 so that the unitary evolution of the totality results in the object and
reservoir to evolve non-unitarily; the auxiliary systemmust also have a trivial Hamiltonian, proportional to the
identity, for the resultant decrease in QD to always translate to a decrease in energy consumption. Although the
reservoirmust always be uncorrelated from the other subsystems for it to be thermalised relative to them [40],
the auxiliary system and objectmay have initial correlations. Unless these correlations are classical, then the
resulting dynamics of the object plus reservoir subsystemwould cease to be described by completely positive
maps [41, 42].

The other option available is tofirst consider a system that is in a thermal state and, therefore, has a
temperature. Subsequently, the systemmay be (conceptually) partitioned into two correlated subsystems, with
one of them taking the role of the object. The energy generation due to information erasure of the object, of
course,must then be determined over the total system itself. This is because the subsystems do not havewell
definedHamiltonians. Although there is technically no thermal reservoir to speak of, since the total systemwas
initially thermal, the average energy change thereofmay still be called heat in a consistentmanner as before.

4.1. Information erasurewith the aid of an auxiliary system
Consider a system composed of: the object, , withHilbert space ;d  the auxiliary system,, with
Hilbert space ;d  and the thermal reservoir,, withHilbert space d  . Let the initial state of the
systembe ( )r r bÄ , with ρ the state of + and ( )r b theGibbs state of the thermal reservoir. This
setup is represented diagramatically infigure 8.Wemay (probabilistically) prepare the object in a pure state by
conducting a cyclic process on the total system, characterised by a unitary operator, as before. By letting the
Hamiltonian of the auxiliary system, H , be proportional to the identity, wemay ensure that the total energy
consumption due to this process would be accounted for by the energy change of the object and thermal
reservoir alone. As before, the energy change of the thermal reservoir, QD , is heat.

In the extreme case, wemay consider that the unitary operator acts non-trivially only on the object plus
auxiliary subsystem; the thermal reservoir will thus not be involved, and no heat will be dissipated.Wewould
like to knowwhat the necessary and sufficient conditions for fully erasing the object would be in this case. The
mapping U Utr≔ [ ]†

  r r r¢ , withU acting on  Ä , will fully erase into the pure state 1j if and
only if

U U q , 4.1
n

R d

n n n1 1
1

( )†
 
år j j f f= Ä
=



where R is the rank of r¢ and, hence, the rank of ρ. The class of states that allow for such a transformation can,
without loss of generality, be represented as

q U U . 4.2
n

R d

n n n
1

1 1( ) ( )†
 
år j j f f= Ä
=



Therefore, a necessary and sufficient condition for full information erasure by unitary evolution, without using
the thermal reservoir, is for the rank of ρ to be less than, or equal to, d. To see how correlations between and

Figure 8.The augmentation of the basic setup by the inclusion of a third, auxiliary system  withHilbert space d  . As before,
the reservoir is initially in a thermal state and uncorrelated from the rest of the system. The initial state of the object and auxiliary,
however,may ormay not be correlated.
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 come into play, consider the simple case where d d 2 = = and, for 1 2, 1( )l Î , the following states:

1 ,

1 ,

1 ,
1

2
,

, 1 .

4.3

u.c. 1 1 2 2 1 1

c.c. 1 1 1 1 2 2 2 2

q.d. 1 1 1 1 2 2 1 2

p.e. 1 1 2 2

( )

( )

( )

( )

( ) ≔

∣ ∣ ∣
( )

r l j j l j j f f

r l j j f f l j j f f

r l j j f f l j j f f f f f

r y y y l j f l j f

= + - Ä

= Ä + - Ä

= Ä + - Ä 

= ñá ñ = Ä + - Ä

+ + 

All of these have a rank of atmost 2, and the reduced state 11 1 2 2∣ ∣ ( )∣ ∣r l j j l j j= ñá + - ñá which, with an
appropriate unitary operator, can be fully erased to 1 1∣ ∣j jñá . Each state, however, falls under a different class of
correlations: u.c.r is uncorrelated, c.c.r is classically correlated, q.d.r has quantumdiscord, and p.e.r is a pure
entangled state. The only casewhere the state of is also left intact, however, is when the two systems are
classically correlated. Notwithstanding, this cannot be seen as allowing for to act as a catalyst for information
erasure. For to be utilised in the information erasure of another object system, with the same unitary operator,
the twomust first be correlated; this process will have a thermodynamic cost itself [43]. In the case where and
 are in a pure entangled state, the unitary operatorwhich prepares in a pure state will also prepare in a
pure state. As discussed in [22], this will allow for to be cooled by transferring entropy from it to, resulting
in a negative QD .

In either scenario, the initial state ρ on the composite systemof + , which has a rank smaller than d,
can be seen as a thermodynamic resource. This is because it is a system that is highly out of equilibrium. Recall
that theHamiltonian of is considered to be trivial, being proportional to the identity. As such, if this system
was also at thermal equilibriumwith the inverse temperatureβ, thenwewould have ( ) r r b r= Ä

d

1


 r= Ä . Any unitary operator acting on such a systemwould not be able to increase the largest eigenvalue

of r . As such, information erasurewould not be possible.
In the case where the rank of ρ is greater than d, but smaller than d d , the reservoirmay be used to

facilitate information erasure using similar arguments as in section 2. This will allow for a larger pmax

1j
, and a

smaller consequent QD , than if was not present.

4.2.Object as a component of a thermal system
Consider a system composed of an object, , withHilbert space d  , and some other system, , with
Hilbert space d  . The composite systemhas theHamiltonian

H . 4.4
n

d d

n n n
1

( )
 

å l x x=
=



Let the initial state of the systembe in the thermal state pe tr eH H
n n n n( ) [ ] ∣ ∣år b x x= º ñáb b- -  with the non-

increasing vector of probabilities p pn n≔ { }  .Wewish to prepare the subsytem in the pure state ∣Y by some
cyclic process characterised by a unitary operatorU acting on  Ä . By lemmaC.1 themaximal probability
of achieving this is accomplished by choosingU from an equivalence class of unitary operators Umaj[ ]
characterised by the rule

U
n d

n d
:

if 1 ,..., ,

if 1 ,..., .
4.5

n j

n k

maj

{ }
{ }

∣
( )

⎧
⎨⎪
⎩⎪





x f

x n

Yñ Ä Î

Ï





Each of the vectors in k k{ }  n Î Ä are orthogonal to those in j j{∣ }fY Ä , so that the union thereof

forms an orthonormal basis that spans  Ä . As the systemwas initially thermal, the gain in its average
energy is heat, which obeys the identity

Q H
S S S

Str
1

. 4.6( ) ( ) ( ) ( )≔ ( )
( ) ( ( ))

( ) ( )⎡⎣ ⎤⎦r r b
r r b r r b

b b
r r bD ¢ - =

¢ + ¢ -
= ¢




Here, wemake the substitution U U≔ ( ) †r r b¢ . As unitary evolution does not alter the vonNeumann entropy,
this energy production is a function of the relative entropy alone; QD is therefore nonnegative and independent
of S S S≔ ( ) ( ) r rD - ¢ . To determine how QD can beminimised, wewrite S ( ( ))r r b¢ in the alternative
way
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q

S q
p

S

Slog

log
1

,

, 4.7U
p

n

d d

n
U

n1
( ) ( )( )

· ( ( )) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 

år r b r

r b

¢ = - ¢

= -

=






where qU is a vector of real numbers

q p U , 4.8
n
U

m

d d

m n m
1

2
≔ ∣ ∣ ( )

 

å x x
=



and plog log 1p n n≔ { ( )}  a non-decreasing vector. In appendix C.6we prove that tominimise QD , after

havingmaximised the probability of preparing in the pure state ∣Y , wemust choose the unitary operator
U U Umaj

1
maj[ ] [ ]Î Ì so that qU is non-increasingwith respect to the energy eigenvalues ofH, and that it

majorises all such possible vectors. If we are free to choose whatHamiltonian to construct for the system, then
the heat dissipationmay be furtherminimised by choosing the eigenvectors ofH, that have support on

j j{∣ }fY Ä , to be chosen from this set itself. In otherwords, the optimal value of QD is achievedwhen the

eigenvectors ofH are uncorrelatedwith respect to the :  partition.
Let us consider a simple example, where d d 2 = = , and the eigenvectors ofH are given as

1 ,

1 ,

1 ,

1 . 4.9

1 1 1 2 2

2 1 1 2 2

3 1 2 2 1

4 1 2 2 1 ( )

x g j f g j f

x g j f g j f

x g j f g j f

x g j f g j f

= Ä + - Ä

= - Ä - Ä

= Ä + - Ä

= - Ä - Ä

+ +

+ +

- -

- -

Moreover, let 01l = and 1n n1l l- =+
  for all n. Conformingwith equation (4.5), the unitary operator

U :

,

,

,

,

4.10

1 1

2 2

3 1

4 2

∣

∣
( )

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

x f

x f

x f

x f

Yñ Ä ¢

Yñ Ä ¢

Y Ä ¢¢

Y Ä ¢¢

^

^









will then prepare in the state ∣Y , with p p pmax
1 2= +Y
 .Wemay thenminimise QD by choosingU from the

equivalence class Umaj
1[ ]. This can be achieved if we choose the vectors ∣Y , 1f ¢ , and 1f ¢¢ respectively from the

sets ,1 2{ }j j , ,1 2{ }f f , and , ;1 2{ }f f what particular permutation does this depends on the
temperature and the values of g. In the special case of g g g= =+ - , for example, we find that irrespective of

the temperature, when 1 2g > this is achievedwhen 1∣ jY = , 1 1f f¢ = , and 1 2f f¢¢ = . Conversely

when 1 2g < this is realisedwhen 2∣ jY = , 1 2f f¢ = , and 1 1f f¢¢ = .

Figure 9 shows the dependence of both SD and Q S bD - D on the entanglement of theHamiltonian
eigenvectors n n{ }x , with 1 2, 3 4, 1{ }g g g= = Î+ - . The system is always evolved usingU Umaj

1[ ]Î . As γ
tends to one, thereby resulting in uncorrelatedHamiltonian eigenvectors, both QD and SD decrease, vanishing

Figure 9.Optimal information erasure of system , with the composite systemof + initially in a thermal state. As the
entanglement in the eigenvectors of theHamiltonian vanishes, where 1g  , both QD and SD decrease. This is done, however, in

such away that Q S
1

b
D - D becomes negative at intermediate temperatures, thereby resulting in the ‘violation’ of Landauerʼs limit.
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in the the limit asβ tends to infinity. However, for intermediate temperatures, QD becomes so low that it
‘violates’ Landauer’s limit. This is similar to the possibility of extractingwork from the correlations between a
quantum system and its environment, which are initially in a thermal state [44].

5. Conclusions

In this article, we have developed a context-dependent, dynamical variant of Landauer’s principle.We used
techniques frommajorisation theory to characterise the equivalence class of unitary operators that bring the
probability of information erasure to a desired value andminimise the consequent heat dissipation to the
thermal reservoir. By constructing a sequential swap algorithm,we demonstrated that there is a tradeoff between
the probability of information erasure and theminimal heat dissipation. Furthermore, we showed that except
for the cases where the object is a two-level system, orwhenwe are able to fully erase the object’s information, we
maymaximise the probability of information erasurewithout alsominimising the object’s entropy; this allows
for amore energy-efficient procedure for probabilistic information erasure.

We also investigatedmethods of reducing heat dissipation due to information erasure by operating outside
of Landauer’s framework.However, wewanted this departure to preserve the referent of heat and temperature
in ourmathematical description; dissipating less heat than Landauer’s limit becomesmeaningless when there is
no temperature or heat to speak of. Therefore, we arrived at two alterations to Landauer’s frameworkwhich
would not result in a category errorwith respect to heat and temperature. Thefirst avenuewas to introduce an
auxiliary system to the object and reservoir, while the secondwas to consider the object as a subpart of a system
in thermal equilibrium. In thefirst instance, thefigure ofmerit was identified as the rank of the system in the
object-plus-auxiliary subspace; if the rank of this state is less than the dimension of the auxiliaryHilbert space,
then full information erasure is possible with atmost zero heat dissipation to the reservoir. In the second
instance, information erasure can be achievedwith possibly less heat than Landauer’s limit when the
eigenvectors of the systemHamiltonian, that have support on the pure state wewhich to prepare the object in,
are product states.

The primary question we have not addressed in this study, and shall leave for future work, is the
inclusion of time-dynamics into what we consider as the physical context; the optimal unitary operator for
information erasure is considered here as a bijection between orthonormal basis sets. In most realistic
settings, however, one is restricted in the Hamiltonians they can establish between the object and reservoir.
As such, the optimal unitary operator may not always be reachable, resulting in a smaller maximal
probability of information erasure, a larger minimal heat dissipation, or both. Furthermore, an interesting
question to address is the number of times that we must switch between the Hamiltonians, that generate the
unitary group, in order to obtain the optimal unitary operator, and how this would scale with the reservoir’s
dimension. This would provide a link between the present work and the third law of thermodynamics [45]
from a controltheoretic [46] viewpoint.
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AppendixA.Majorisation theory

Herewe shall introduce someuseful concepts from the theory ofmajorisation [47]. Given a vector of real numbers
a ai i

N≔ { } Î , where i runs over the index set I N1 ,...,≔ { }, wemay construct the ordered vectors a ai i≔ { } 

and a ai i≔ { }  bypermuting the elements in a. Thenon-decreasing vector a is defined such that for all i j I, Î
where i j< , we have a ai j . Conversely the non-increasing vector a is defined such that for all i j I, Î where

i j< , we have a ai j . The vector a is said to beweaklymajorised by b frombelow,denoted a bw , if andonly if

for every k IÎ , b a
i

k
i i

k
i1 1

å å=


=
. Conversely, a is said to beweaklymajorised by b fromabove, denoted

a bw , if andonly if for every k IÎ , a b
i

k
i i

k
i1 1

å å=


=
. The stronger condition of a beingmajorised by b,

denoted a b , is satisfied if both a bw and a bw (or alternatively, if one of these conditions is met
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together with a b
i i i iå å= ). A sufficient condition for a bw is if for all i IÎ , a bi i . Similarly, a

sufficient condition for a bw is if for all i IÎ , a bi i . We now introduce a theorem that will be central to
many results in this article.

TheoremA.1. For two vectors a and b, in N , their inner product obeys the relation

a b a b a b .· · ·    

For a proof we refer to theorem II.4.2 in [48]. This leads to the simple corollary:

Corollary A.1.Consider the pairs of vectors a a,1 2{ }and b b,1 2{ }, such that a a1 2 and b b1 2 . It follows from
theoremA.1 that a b a b1 1 2 2· ·   , and a b a b2 2 1 1· ·   .

Appendix B. An equivalence class of unitary operators

Herewe expound on the sense inwhich equation (2.9) characterises an equivalence class of unitary operators,
instead of just one unique unitary operator. The arguments here translate to the other equivalence classes of
unitary operatorsmentioned in the article. Here, two unitary operatorsU andV are said to be equivalent so far as
the probability of information erasure is concerned, if and only if

U U V Vtr tr . B.11 1 1 1( ) ( ) ( )† †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦j j r j j rÄ = Ä 

First of all, a degeneracy in the probability distribution pwillmean that the representation of ρ, as given in
equation (2.1), will not be unique. If, for example, we have p pi j= , then iy and jy in equation (2.1) can be

replaced by any orthonormal pair of vectors ,{∣ }y y^ that span the same subspace. As such, replacing

U g
i imaj 1y j x= Ä ¢ withU g

imaj 1∣y j x= Ä ¢ , and similarlyU g
j jmaj 1y j x= Ä ¢ with

U g
jmaj 1y j x= Ä ¢^ , would give a different unitary operator, but the same probability of information

erasure. As such, both unitary operators belong in the same equivalence class with respect to the probability of
information erasure, denoted Umaj[ ]. Additionally, as the probability of information erasure is unaffected by the

orthonormal basis m{ }x¢ in the transformation rules of (2.9), then any choice of this basis will define a different
unitary operator that, nonetheless, belongs to the same equivalence class Umaj[ ].

AppendixC. Technical proofs

C.1.Maximising the probability of information erasure
Recall that the probability of preparing r¢ in the state 1j is defined as

p g U

p p U U

p g U

,

, C.1

n

d d

n n n

n

d d

n n

1 1 1
1

1 1

1

( )( ) ≔

( ) · ( ) ( )

†
  

 

 

å

å

j r j r j y j j y¢ ¢ = Ä

= º

=



=

 



where g U( ) is a vector of positive numbers g U U Un n n1 1( ) ≔ ∣ (∣ ∣ ) ∣†
y j j yá ñá Ä ñ such

that g U d
n n ( ) å = .

LemmaC.1.Themaximumprobability of information erasure is p p
m

d

m
max

11

å=j =
 . The equivalence class of

unitary operators that achieve this, denoted U g
maj[ ], is characterised by the rule

m d Ufor all 1 ,..., , , C.2g
m mmaj 1{ } ( ) y j xÎ = Ä ¢

where m m{ }x¢ is an arbitrary orthonormal basis in.

Proof.By theoremA.1we know that p g U p g U· ( ) · ( )   . LetU g
maj be amember of an equivalence class of

unitary operators such that g U g Ug g
maj maj( ) ( )=  and g U g U g

maj( ) ( )  for allU acting on  Ä .

Therefore, by corollary A.1we get p g U p g U g
maj· ( ) · ( )    , and hence p 1( ∣ )j r¢ ismaximised byU g

maj.

Because g U 0, 1n ( ) [ ]Î for all n, and g U d
n n ( ) å = , thefirst d elements in g U g

maj( ) must be one, and the
rest zero. ,
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C.2.Minimising the heat dissipation
Wemay always write the post-transformationmarginal state of the reservoir as

r U , C.3
m

d

m m m
1

( ) ( )



år x x¢ = ¢ ¢ ¢
=



with r U r Um m( ) ≔ { ( )}¢ ¢  a non-increasing vector of probabilities and m m{ }x¢ an arbitrary orthonormal basis
in. Because ( )r b isfixed,minimising QD is achieved byminimising the average energy of this state, given as

r UH r U Htr , C.4
m

d

m m m
1

( ) ( ) · ( )⎡⎣ ⎤⎦  



å lr x x¢ = ¢ ¢ ¢ º ¢ ¢
=

 

wherel¢ is a vector of real numbers Hm m m≔ ∣ ∣l x x¢ á ¢ ¢ ñ. To determine how QD can beminimised, wefirst
provide a recursive proof of the Ky Fan principle [48] to show that the set of eigenvalueslmajorises all
possiblel¢.

LemmaC.2.l l¢  for all orthonormal bases m m{ }x¢ Î .

Proof.To show this, it is sufficient to show that
m m m må ål l= ¢ and wl l¢  for all m m{ }x¢ . Thefirst

condition is trivial, as Htr
m m [ ]å l¢ = and is independent of m m{ }x¢ . To show that wl l¢  , it is sufficient to

prove that for allm and m m{ }x¢ , m ml l¢ . This can be done by showing that theminimal value attainable by

1l¢ is 1l
 and, given this constraint, theminimal value attainable by 2l¢  is 2l

, and so on.Onemay always write

m m m m mx a x b x¢ = + ^ where mx
^ is the orthogonal complement to mx in. Consequently, we have

H Hm m m m m m m
2 2∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ l a x x b x x¢ = á ñ + á ñ ^ ^ . It is evident that H H1 1 1 1 1∣ ∣ ∣ ∣ ≕ x x x x lá ñ á ñ^ ^ . There-

forewe know that 1l¢ isminimised by setting 11
2∣ ∣a = . In the next step, the fact that 01 2∣x xá ¢ ¢ñ = and that our

previous step sets 1 1x x¢ = implies that 01 2∣x xá ñ =^ . This in turn implies that

H H2 2 2 2 2∣ ∣ ∣ ∣ ≕ x x x x lá ñ á ñ^ ^ , so that H2 2∣ ∣x xá ¢ ¢ñ isminimised by setting 12
2∣ ∣a = . This argument can

bemade recursively for allm. ,

Nowwe are able to characterise the equivalence class of unitary operators thatminimise QD .

LemmaC.3. QD isminimised by the equivalence class of unitary operators U f
maj[ ] characterised by the rule

m d n m d md Ufor all 1 ,..., and 1 1 ,..., , ,f
n l

m
mmaj{ } { }( )   y j xÎ Î - + = Ä

with the set l d1 ,...,l
m{ ∣ { }}j Î forming an orthonormal basis in for eachm.

Proof.By corollary A.1 and lemmaC.2, r U r U( ) · ( ) ·l l¢ ¢ ¢   . Therefore Htr[ ] r¢ isminimal when for all

m, m mx x¢ = . In such a case, we have

p f U m

r U p U U

p f U m

,

, , , C.5
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= =



=



=

 



where f U m,( ) is a vector of positive numbers f U m U U,n n m m n( ) ≔ ∣ ( ∣ ∣) ∣†
y x x yá Ä ñá ñ such that

f U m d,
n n ( ) å = for allm. LetU f

maj be amember of the equivalence class of unitary operators such that

r U r U f
maj( ) ( )¢ ¢  for allU acting on  Ä . By corollary A.1 it would then follow that

r U r Uf
maj( ) · ( ) ·l l¢ ¢   , resulting in theminimisation of Htr[ ]r¢ and hence QD . Tofind r U f

maj( )¢ , we

first need tomaximise r U1 ( )¢ and then, given this constraint,maximise r U2 ( )¢ , and so on. This, in turn, is
achieved by choosingU f

maj so that f U f U, 1 , 1f f
maj maj( ) ( )=  and f U f U, 1 , 1f

maj( ) ( )  for allU. Note that for

eachm, f U m, 0, 1n ( ) [ ]Î for all n, and f U m d,
n n ( ) å = . Hence, thefirst d entries of f U , 1f

maj( ) are taken

to one and the rest to zero. Because of the constraint posed by the orthogonality of the vectors U n n{ }y ,

however, the first d elements of f U , 2f
maj( )must be zero, and tomaximise r U2 ( )¢ the best we can do is to only

take the second d entries of f U , 2f
maj( ) to one, with the rest being zero. This argument is thenmade recursively

for allm. ,
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C.3.Minimal heat dissipation conditional onmaximising the probability of information erasure
Let us divide the vector of probabilities p to form the non-increasing vector of cardinality d, denoted 0P, and
the non-increasing vectors of cardinality d 1 - , denoted m d1 ,...,m{ ∣ { }}P Î , defined as

p m d

p l d

1 ,..., ,

1 ,..., 1 . C.6

m

m d m d l

0

1 1 1

{ }{ }
{ }( )

≔

≔ ( )
( )

⎧⎨⎩
⎫⎬⎭




 



P Î

P Î -

 


+ - - +



We refer to themth element of 0P as m0( )P , and the lth element of m 1P as lm 1( )P .

TheoremC.1.The equivalence class of unitary operators thatmaximise the probability of information erasure and,
given this constraint, minimise the heat dissipation, is denoted as U 0opt[ ( )]. This is characterised by the rules

U
p m

p l m
0 :

if ,

if and 1,
C.7

n m n

n l
m

m n m

opt
1 0( )

( )
( )

( )

( )
( )

⎧
⎨⎪
⎩⎪ 

y j x y r

y j x y r

Ä = P

Ä = P









where, for all m, eachmember of the orthonormal set l
m

l{ }j is orthogonal to 1j .

Proof.Thefirst line conformswith the conditions imposed by lemmaC.1 and, as such, results in
p p1

max

1
( ∣ )j r¢ = j . However, here we are restricted to the case m mx x¢ = for allm, therebyminimising the

contribution to heat dissipation by corollary A.1 and lemmaC.2. The second line, by virtue of not affecting
p 1( ∣ )j r¢ , is evidently allowed for a unitary operator in the equivalence class U g

maj[ ]. This rule takes the d

largest remaining probabilities to states l
1

1j xÄ , therebymaximising the probability associatedwith 1x , and

so on for the other states mx . By the same line of reasoning as in lemmaC.3, therefore, the contribution to heat
dissipation from this line isminimal. ,

C.4. The tradeoff between probability of information erasure andminimal heat dissipation
Let usmake the following observations:

(a) For any value of QD , p 1( ∣ )j r¢ is maximised when the eigenvectors of r¢ that have support on 1j are

given by the set l l{ }j . This follows from corollary A.1, which implies that

p o o
l l l1 1

2
1( ∣ ) ∣ ∣ ∣ åj r j j¢ = á ¢ñ¢ ¢, where o

l l l l∣ ∣ år j j¢ = ¢ñá ¢¢ .

(b) For any value of p 1( ∣ )j r¢ , QD is minimised when the eigenvectors of r¢ are given by the set m m{ }x .
This follows from lemmaC.2.

Observations (a) and (b), together, show that in general the optimal case will require that, for all n,
U n l l

n
l l

nåy g j x= Ä . Here 0l
n g are the Schmidt coefficients, and el

n
n l

l
n

x s x= fi with ns a

permutation on the set l l{ }x and 0, 2l
n [ )f pÎ a phase.

Consider now the algorithm for sequential swaps between two-dimensional subspaces of and
shown infigureC1.

During each step of the algorithm,we denote the (updated) probability p U Ul m step step( ∣ )†j x rÄ as pl m, .
Here,Ustep represents the unitary operator that results from conducting the algorithmup to some
particular step.

LemmaC.4.The sequential swap algorithm produces a non-increasing sequence of errors, j j≔ { }d d  ,

commensurate with a non-decreasing sequence of heat, Q Qj j≔ { }D D  , such that the resultant state r¢ is always
passive.

Proof. For every iteration of step (2), each swap operation increases p 1( ∣ )j r¢ , sowe obtain the non-increasing

sequence of errors d by construction. Furthermore, each swap increases p i( ∣ )x r¢ , while decreasing p m( ∣ )x r¢ .
To show that this always leads to an increase in heat by corollary A.1, wemust show that, for each swap, i m> .
Every swap in each iteration of step (2) effects a permutation on the set p p p, ,...,i m d m1, 2, ,{ }


. Initially,

p o ri i1, 1=  .We note that if o r o ri l m1 <    with l 2 , then by necessity i m> . As such, the swaps for the first

iteration of step (2), that involve state 1 2j xÄ and lead to a permutation in p p p, ,..., d1,2 2,1 ,1{ }


, result in a

decrease in p 1( ∣ )x r¢ and an increase in p 2( ∣ )x r¢ , which indeed leads to a non-decreasing sequence of heat.

And so on recursively for all i. To show that r¢ is always passive, we need to show that after each swap,

20

New J. Phys. 18 (2016) 015011 MHMohammady et al



p U U p p U U pi m i m j m j mstep step , step step ,( ∣ ) ( ∣ )† †å åj r j r= = for all i j< . This follows from the fact that

pi m i,{ } are always in non-increasing order, and that every element in pi m i, 2{ } is greater than or equal to all those

in pi m i, 2{ }¢ if m m< ¢. ,

Now,wewish to show that the non-decreasing sequence of heat QD  is optimal for the associated non-
increasing sequence of errors d.

TheoremC.2. If an error δ can be achieved using the sequential swap algorithm, the consequent heat dissipation will
be optimal. Achieving the same δwith the presence of entanglement in the vectors U n nstep{ }y will either increase

QD , WD , or both.

Proof.By corollary A.1, lemmasC.2 andC.4, the heat dissipation due to the sequential swap algorithm is
minimal if we are restricted to swap operations. If we are not restricted to performing swap operations, we could
also achieve the same error δ by allowing for entanglement in the vectors U n nstep{ }y . To show that this will
result in a greater amount of heat dissipation, it is sufficient to show that doing sowould increase pi m, and

decrease pi m, ¢, for some i, such that m m> ¢. Likewise, wemay show that this would increase the average energy

of r¢ , and hence increase WD , by demonstrating that the process would increase pi m, and decrease pj m, , for

somem, such that i j> .
Here is a sketch of the proof. First start with U U0 0p p

opt opt( ) ( )†r r= , which coincides with the smallest error

0jmax
d = , where jmax represents thefinal step in the swap algorithm.Here, we have p pd

j
d1,

max

 
=  and

p pj
d2,1 1

max


= +
 . Thefirst step of the sequential swap algorithm, run backwards, gives us p pd

j
d1,

1
1

max

 
=-

+
 and

p pj
d2,1

1max


=-  , with p pj d d1 1max  

d = --
 

+
 . All other values are the same as before. Now instead of the swap

operation, have

U 1 , C.8j d d i m1 1max
( ) 

y g j x g j x= Ä + - Ä-

and

U 1 , C.9j d m d i d i m1 1 1 1max ( ) ( )( )  
y g j x g j x= - Ä - Ä- + - - +

with all otherUj n1max
y- defined byU 0p

opt ( ).With some choice of i m, ,g , we can again obtain

p p p p1 , C.10d
j

d d m d i d1,
1

1 1 1
max

( )( ) ( )
( )    

g g= + - =- 
+ - - +


+



and hence the same value of j 1max
d -
 as before. This, however, will lead to

p p p , C.11j
d d2,1

1
1

max ( )
 

=-
+

 

and

p p p p1 . C.12
i m
j

d d m d i d m d i,
1

1 1 1 1
max

( ) ( )( ) ( )
( ) ( )    

g g= - +- 
+ - - +


+ - - +



In otherwords, using the new entangling unitary operator, instead of the sequential swap algorithm,will result
in p2,1 to decrease, and pi m, to increase. If i = 2 and m 2 , this will result in a larger Q j 1max

D -
 . Conversely, if

m = 1 and i 3 , this will increase the average energy of the object, and thereby increase WD . If both i 3
and m 2 , then both QD and WD will be larger. The same line of reasoningwould apply for entanglement of
higher Schmidt-rank. ,

C.5. Full erasure of amaximallymixed quditwith a harmonic oscillator
Here, we expound on the example of using a ladder system as a reservoir, but consider what happens aswe take
the limit of infinitely large d. In this limit wemay call the ladder system a harmonic oscillator. Furthermore, we
consider the object as a qudit, withHilbert space d  , prepared in themaximallymixed state

d

1
. C.13

l

d

l l
1

( )




år j j=
=

Consider a harmonic oscillator of frequencyω, with the ground state energy, 1l
, defined as zero. As such, the mth

smallest energy is m 1m ( )l w= - . Given afixed andfiniteω, in the limit as d tends to infinity therewill be
infinitelymany eigenvalues of H that become formally infinite, and hence infinitelymany probabilities rm



vanish. As such, we have
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lim , C.14
d

1 1 ( )r j j r¢ = Ä ¢
¥

whereby p 1max

1
=j . In addition

r

d
lim , C.15

d m

m

j

d

d m j d m j
1 0

1( ) ( )




 å år x x¢ =
¥ =

¥ 

=

-

- -

and a resulting heat dissipation of

Q
r

d
r

d d

lim ,

1

2
coth

2

1
. C.16

d m

m

j

d

d m j
m

m m
1 1

1

1
( )

( ) ( )
( )⎜ ⎟⎛

⎝
⎞
⎠
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b
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-

>
-
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-
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=

¥
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QD approaches d k T1 B( ) - in the limit asω becomes vanishingly small, and hence the optimal case is
achievedwhenwe take the double limit of d going to infinity whileω goes to zero.

Of course, the ‘rate’ at whichwe take the limit d  ¥must be greater than that at whichω approaches zero.
As shown infigureC2 (a), for the case of d 2 = , if we increase dwhile decreasingω in such away so as to keep
H constant, both the probability of qubit erasure and the heat dissipation decrease. Precisely, thismay be
achieved if we define the frequency as H d 1≔ ( )w -  . In the limit as d tends to infinity andω vanishes, the

spectra of H and ( )r b become continuous. That is to say, 0m m1l l- +
  and r r 0m m 1- 

+
 , for allm.

Wemay therefore simplify our calculations by replacing sumswithRiemann integrals. First, we note that in this
case themaximumprobability of qudit erasure is

p
x

x

lim
e d

e d

1

e
. C.17

d

x

H
x

j

d0

max 0

0
0

1

H
d

j H
d

1
( )




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

ò

ò å
= =

w j

b

b

¥

-

-
=
- - b 

 

 

FigureC1.The sequential swap algorithm.

FigureC2.Comparison between two differentmethods of taking the double limit of d , 0w ¥  , and their effect on pmax

1j
and

LD , when d 2 = (a)Here the frequencies are d1 1( )w = - . Therefore theHamiltonian norm is 1 for all d. For any givenβ, as d
grows larger, therebymakingω smaller, both LD and pmax

1j
decrease. (b)Here d 2 1n= + for frequencies n1w = with n Î .

Therefore theHamiltonian norm is n2n . For a sufficiently largeβ, as n grows larger, therebymakingω smaller, LD decreases while
pmax

1j
increases.
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Moreover the heat dissipation is

Q
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These functions take the values of 1 and d k T1 B( ) - , respectively, precisely when H  is infinitely large.
Therefore, ifω and d decrease and increase, respectively, in such away so that H also increases, then in this
limit we achieve the optimal case of full information erasurewith theminimal heat dissipation of d k T1 B( ) - .
Oneway of ensuring this, as shown infigure C2(b), is to define the dimension of the reservoir as d 2 1n= + ,
where n is a natural number, while defining the frequency as n¯w w= . TheHamiltonian normwill be

H
n

2
, C.19

n

¯ ( ) w= 

which, in the limit as n tends to infinity, becomes infinitely large.

C.5.1. Full erasure of a qubit with an initial bias. We have shown that when thewhole harmonic oscillator is
used as a reservoir we can fully purify a qubit in amaximallymixed state, where the entropy reduction is

S log 2( )D = , with a heat cost of Q k TBD > . Here wewish to evaluate the optimal QD for arbitrary initial states
of the qubit and, hence, arbitrary entropy changes SD . To this end, define the initial state of the object as

q q q1 ,
1

2
, 1 . C.201 1 2 2( ) ( )⎟

⎡
⎣⎢

⎞
⎠r j j j j= + - Î

The non-increasing vector of probabilities p can therefore bewritten as

p qr qr q r q r,..., , 1 ,..., 1 ,... , C.21
k k1 1{ }( ) ( ) ( )= - -    

where the ordering implies that

q

q

r

r1
e . C.22

k

k1 1 ( )( )
-

= bw



-

After the joint evolutionwith an infinite-dimensional reservoir, the above sequence p describes the

spectrumof r¢ , with the first entry associatedwith eigenvector 1x , and so on. In the limit of infinitesimally

smallω, the energy spectrumof the reservoir and, hence, the probabilities r can be approximated as a
continuum.Wemay therefore evaluate QD by

Q
Q n x x

x

q q
q

q

q

Q n q x x q x x

e d

e d

2 1 log
1

2 1
,

e d 1 e d , C.23
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whereΩ is the energy ‘width’which satisfies q q1 e( )- = bW. In the limit as q tends to one-half, QD
approaches 1 b as in our previous analysis.
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C.6.Object as a component of a thermal system
In this case, the heat dissipation is

q

Q H U U S U U

q
p

S

Slog

tr
1

,

1
log

1
,

1
, C.24U
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where qU is a vector of real numbers

q p U , C.25
n
U

m

d d

m n m
1

2
≔ ∣ ∣ ( )

 

å x x
=



and plog log 1p n n≔ { ( )}  a non-decreasing vector.We nowdetermine the properties thatU Umaj[ ]Î must

satisfy so as tominimise QD conditional onmaximising p ( ∣ )rY ¢ .

PropositionC.1. For a fixedHamiltonian, QD givenmaximally probable information erasure isminimised by

choosingU from an equivalence class of unitary operators U Umaj
1

maj[ ] [ ]Ì such that q qU Umaj maj
1 1

=
and

q qU Umaj
1   for allU Umaj[ ]Î .

Proof.As S S( ) ( ( ))r r b¢ = and logp
 arefixed by the initial conditions, then QD isminimised byminimising

q logU
p·  . This is achieved byUmaj

1 as a consequence of theoremA.1 and corollary A.1. ,

Of course, wemay alsominimise QD by engineering theHamiltonian itself.

PropositionC.2. QD givenmaximally probable information erasure will beminimised if all nx that have support

on j j{∣ }fY Ä are given from the set j j{∣ }fY Ä .

Proof.As shown during the proof of the Klein inequality in [49], given a constant spectrumof ρ andσ, S ( )r s is
minimisedwhen ρ commutes withσ. Since QD takes its smallest value byminimising S U U( ( ) ( ))†r b r b , to

achieve thisU U( ) †r b must commutewith ( )r b . By construction,U n jmaj
1 ∣x f= Y Ä for all

n d1 ,...,{ }Î . So, if U 0m nmaj
1∣ ∣ ∣ ∣x xá ñ > , tominimise QD wemust have m j j{∣ }x fÎ Y Ä .

,
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creating correlationsNew J. Phys. 17 065008
[44] Gelbwaser-KlimovskyD, ErezN, Alicki R andKurizki G 2013Work extraction via quantumnondemolitionmeasurements of qubits in

cavities: non-markovian effectsPhys. Rev.A 88 022112
[45] Masanes L andOppenheim J 2014A derivation (and quantification) of the third lawof thermodynamics arXiv:1412.3828
[46] D’AlessandroD 2007 Introduction toQuantumControl andDynamics (London, Boca Raton, FL: Chapman andHall, CRC)
[47] Marshall AW,Olkin I andArnold BC 2011 Inequalities: Theory ofMajorization and Its Applications (Berlin: Springer)
[48] Bhatia R 1997Matrix Analysis (Berlin: Springer)
[49] SagawaT 2012 Lectures onQuantumComputing, Thermodynamics and Statistical Physics (London:WSPC)

25

New J. Phys. 18 (2016) 015011 MHMohammady et al

http://arXiv.org/abs/1502.02673
http://dx.doi.org/10.1103/PhysRevLett.115.120403
http://dx.doi.org/10.1103/PhysRevLett.114.060602
http://dx.doi.org/10.1103/PhysRevA.61.062314
http://dx.doi.org/10.1103/PhysRevE.83.030102
http://dx.doi.org/10.1038/ncomms8669
http://dx.doi.org/10.1038/nature10123
http://dx.doi.org/10.1038/nature10123
http://dx.doi.org/10.1038/nature10123
http://dx.doi.org/10.1103/PhysRevLett.102.250602
http://dx.doi.org/10.1063/1.4884475
http://dx.doi.org/10.1088/1367-2630/16/10/103011
http://dx.doi.org/10.1007/BF01614224
http://dx.doi.org/10.1007/BF01614224
http://dx.doi.org/10.1007/BF01614224
http://dx.doi.org/10.1103/physreve.92.042147
http://dx.doi.org/10.1109/JPROC.2003.818324
http://dx.doi.org/10.1109/JPROC.2003.818324
http://dx.doi.org/10.1109/JPROC.2003.818324
http://dx.doi.org/10.1109/JPROC.2003.818324
http://arXiv.org/abs/1301.1995
http://dx.doi.org/10.1137/s0097539799359385
http://dx.doi.org/10.1137/s0097539799359385
http://dx.doi.org/10.1137/s0097539799359385
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1038/nature10872
http://arXiv.org/abs/1412.6490
http://dx.doi.org/10.1088/1367-2630/12/1/013013
http://dx.doi.org/10.1088/1367-2630/12/1/013013
http://dx.doi.org/10.1209/epl/i2004-10101-2
http://dx.doi.org/10.1038/srep05192
http://dx.doi.org/10.1103/PhysRevE.84.041109
http://dx.doi.org/10.1038/srep01824
http://arXiv.org/abs/1203.2142
http://dx.doi.org/10.1090/S0002-9939-1955-0069403-4
http://dx.doi.org/10.1090/S0002-9939-1955-0069403-4
http://dx.doi.org/10.1090/S0002-9939-1955-0069403-4
http://arXiv.org/abs/1401.7997
http://dx.doi.org/10.1088/1751-8113/41/20/205301
http://dx.doi.org/10.1103/PhysRevLett.102.100402
http://dx.doi.org/10.1103/PhysRevLett.102.100402
http://dx.doi.org/10.1088/1367-2630/17/6/065008
http://dx.doi.org/10.1103/PhysRevA.88.022112
http://arXiv.org/abs/1412.3828



