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A scheme for measuring complex temperature partition functions
of Ising models is introduced. Two applications of this scheme
are presented. First, through appropriate Wick rotations, those
amplitudes can be analytically continued to yield estimates for
partition functions of Ising models. Bounds on the estimated
error are provided through a central-limit theorem whose validity
extends beyond the present context; it holds for example for
estimations of the Jones polynomial. The kind of state preparations
and measurements involved in this application can be made
independent of the system size or the parameters of the
system being simulated. Second, the scheme allows to accurately
estimate non-trivial invariants of links. Another result concerns
the computational power of estimations of partition functions for
real temperature classical ferromagnetic Ising models. We provide
conditions under which estimating such partition functions
allows to reconstruct scattering amplitudes of quantum circuits,
making the problem BQP-hard. We also show fidelity overlaps
for ground states of quantum Hamiltonians, which serve as a
witness to quantum phase transitions, can be estimated from
classical Ising model partition functions. Finally, we discuss how
accurate corner magnetisation measurements on thermal states
of two-dimensional Ising models lead to fully polynomial random
approximation schemes (FPRAS) for the partition function.

© 2013 Elsevier Inc. All rights reserved.

∗ Corresponding author. Tel.: +61 2 98504445.
E-mail addresses: iblisdir@ecm.ub.edu (S. Iblisdir), gavin.brennen@mq.edu.au, gbrennen@gmail.com (G.K. Brennen).

0003-4916/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.aop.2013.11.001

http://dx.doi.org/10.1016/j.aop.2013.11.001
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2013.11.001&domain=pdf
mailto:iblisdir@ecm.ub.edu
mailto:gavin.brennen@mq.edu.au
mailto:gbrennen@gmail.com
http://dx.doi.org/10.1016/j.aop.2013.11.001


206 S. Iblisdir et al. / Annals of Physics 340 (2014) 205–251

1. Introduction

Statistical mechanics provides formal recipes to study interacting many-body systems. Quantities
that can be experimentally probed, such as the free energy or the specific heat, can in principle be
derived in a straightforwardmanner. More often than not, however, computing these quantities turns
out to be impossible in a limited time. As canbe seen fromvery idealised systems, our ability to actually
apply these recipes is very limited. During the last ten years, significant efforts have been devoted to
investigating whether quantum mechanics could help in this respect. Various methods, all involving
the superposition principle, have been proposed to compute the Jones polynomial at particular values
of its variable [1], partition functions of classical statistical models [2–4], the Tutte polynomial [5], or
more generally to contract tensor networks [3].

In this work, we will mainly focus on a collection of classical two-level systems, each attached to
a fixed position corresponding to a vertex of some lattice Λ, with edges E(Λ). The state of a particle
located at vertex i is associated with a number σi taking values in {−1,+1}. The energy of the system
is given by an Ising Hamiltonian function, associating an energy with each classical configuration of
the system σΛ:

H(σΛ) = −


i

hiσi −

⟨i,j⟩

Ji,jσiσj. (1)

The first sum in this equation runs over all vertices of Λ. The quantity hi models represents some
local field felt by a spin located at position i. The second sum represents interactions between pairs
of neighbour particles (edges of the lattice). The strength and sign of these interactions may vary
from pair to pair. This model was introduced by Lenz as an idealisation of systems where magnetic
interactions prevail [6]. Although innocent looking, it exhibits an extremely rich structure. On a regular
lattice, close to a phase transition, its long range behaviour is similar to that of very interesting field
theories [7] while the problem of computing its partition function,

Z(β) =


{σ }

exp

−βH({σ })


, (2)

belongs the NP-hard complexity class [8].
It is the purpose of this paper to present schemes that allows to accurately estimate Z(β) for

imaginary values of β (Section 2), through manipulation of a suitable quantum mechanical system.
Quantum circuits for this task have been previously proposed in Refs. [9,10]. However with our
scheme,wewill see how to evaluate partition functions of real systems, through analytic continuation
(Section 4). A central-limit theorem is derived that allows to estimate the discrepancy between
the partition function we wish to estimate and the estimate provided by the quantum algorithm.
Interestingly, this theorem is also valid for a wide class of quantum algorithms, including well-known
proposals to use a quantum computer in order to evaluate the Jones polynomial [1]. As we shall see,
the kind of preparation and measurement necessary for this estimation can in principle be made in
constant time, i.e. independent of the system size or the parameters being simulated. This feature is
particularly appealing in view of possible practical implementations. We will then see that imaginary
temperature partition functions are interesting in their own right, because they provide non-trivial
invariant of knots (Section 5). Section 6.1 deals with computational complexity issues. We investigate
the (quantum) computational power of the Ising model, and show how the ability to estimate real
temperature partition functions of this model allows to efficiently simulate a quantum computer.
One application of this is the estimation of the wavefunction overlap, termed fidelity, between
ground states of a quantum Hamiltonian in the vicinity of a quantum phase transition. We also show
that some much simpler tasks have computational power. In particular, the ability to detect corner
magnetisations of disordered Ising models leads to fully polynomial random approximation schemes
thereof. Many of the quantum algorithms presented here involve repetitions of either constant depth
or linear depth circuits and moreover many of the operations can be performed without individual
qubit addressability. This is potentially a real boon to experimental implementations in architectures
such as trapped atoms in optical lattices or superconducting qubit arrays where individual addressing
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is not so easy but many qubits are available. In additional some of the circuits provide for a trade off
in space and time, i.e. one can perform either constant depth circuits in d + 1 spatial dimensions
or linear depth circuits in d dimensions. Constant depth quantum circuits have attracted attention
since the discovery of simple examples (depth-1 circuits) that are expected to be difficult to simulate
classically [11]. Furthermore, there is some evidence that fault tolerance thresholds could be improved
for constant depth (or more generally logarithmic depth) quantum circuits [12,13].

2. Complex temperature partition functions

We wish to study a classical system defined on some d-dimensional lattice Λ. For that purpose,
we consider an associated situation, where a two-level system is located on each vertex of Λ. The
computational basis for each quantum particle, {|+⟩, |−⟩}, will be associated with classical individual
spin configurations. Our construction relies on controlled phase gates acting on nearest neighbours,
that is, elements ⟨k, l⟩ of E(Λ), the set of edges of the lattice. Their action is best described in
computational basis:

Ck,l : |σk, σ
′

l ⟩ → eiφk,l(σk,σ
′
l )|σk, σ

′

l ⟩. (3)

Importantly, these phase gates all commute with each other:

∀⟨k, l⟩, ⟨x, y⟩ ∈ E(Λ), [Ck,l, Cx,y] = 0. (4)

Obviously, each function φ⟨k,l⟩ can be expressed as

φ⟨k,l⟩(σk, σ
′

l ) =


s=±1


s′=±1

φk,l(s, s′)δsσkδs′σ ′
l
.

With the definitions Jk,l ≡
1
4


sk,sl

φk,l(sk, sl)sksl, hk ≡
1
4


sk,sl

φk,l(sk, sl)(sk + sl), κk ≡
1
4


sk,sl

φk,l(sk, sl), we see that a collective action of controlled phase gates across all edges of the lattice can
be described in the computational basis as1


⟨k,l⟩∈E

C α
k,l


k∈Λ

|σk⟩ = exp

iα

k∈Λ

κk + iα

k∈Λ

hkσk + iα


⟨k,l⟩∈E

Jk,lσkσl


×


k∈Λ

|σk⟩. (5)

In particular, if each quantum particle is initialised in the state

| +x⟩ ≡
1

√
2
(|+⟩ + |−⟩), (6)

we see that the mean value of a product of phase gate operators takes the form of a partition function
at imaginary temperature iα:

A(α) ≡ ⟨+
⊗|Λ|

x |


⟨k,l⟩∈E

Cαkl | +
⊗|Λ|

x ⟩

=
1

2|Λ|


{σ }

e−iαH(σ ), (7)

with H of the form given by Eq. (1).

1 Note to a reader interested in reproducing the calculations: the identity δσσ ′ =
1+σσ ′

2 has been repeatedly used.
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It is actually possible to get partition functions of a classical (d + 1)-dimensional system through
evolution of a d-dimensional quantum system. For that, we use two additional kinds of gates besides
the controlled phase gate. The first kind is single qubit rotations:

Uk : |+⟩ → cos θk|+⟩ + sin θk|−⟩,

Uk : |−⟩ → − sin θk|+⟩ + cos θk|−⟩.

As discussed in Appendix A, other choices are possible. The second is single qubit phase gate:

Pk(ϕk) : |σk⟩ → eiϕkσk |σk⟩. (8)

Next, we observe that the matrix elements of Uk can be expressed in exponential form for almost all
values of the parameters θk:

⟨σ ′

k|Uk|σk⟩ = exp

J↓k σkσ

′

k + i
π

4
σ ′

k − i
π

4
σk + B(θk)


, (9)

with θk ∉ {kπ2 : k ∈ Z} and where:

J↓k = −
1
2
ln(tan θk)− i

π

4
, (10)

and

B(θk) =
ln(cos(θk))

2
+

ln(sin(θk))
2

+ i
π

4
. (11)

These individual rotations {Uk, k ∈ Λ} are applied on all lattice sites simultaneously. For bookkeeping,
it is convenient to assume there is an external clock recording the moment t where simultaneous
rotations are applied, and ticking at exactly this time. There is nothing particular to this clock, it is just
a way to label the change of variables necessary to describe the action of the Uk gates:

k∈Λ

Uk(t)|σ(t)⟩ = G(t)


{σ(t+1)}

exp


k∈Λ

J↓k (t)σk(t)σk(t + 1)

+ i
π

4


k∈Λ

(σk(t + 1)− σk(t))


|σ(t + 1)⟩, (12)

where G(t) = exp(


k∈Λ B(θk(t))).
Now let us consider a d-dimensional lattice Λ of particles each prepared in the state (6). Let us

assume that a layer evolution operator

L(t) =


k∈Λ

Pk

−
π

4


k∈Λ

Uk(t)


⟨k,l⟩∈E

Cαk,l(t)

k∈Λ

Pk
π
4


(13)

is applied (m − 1) times on this initial state, leading to the final state
m−1

t=1 L(m − t)| +x⟩
⊗|Λ| (see

Fig. 1).
The overlap of this state with the initial state | +

⊗|Λ|

x ⟩ takes again the form of an Ising partition
function, but now defined on an enlarged lattice Λ̂ = Λ× {1, . . . ,m}:

A(α,Θ) ≡ ⟨+
⊗|Λ|

x |

m−1
t=1

L(m − t)| +⊗|Λ|

x ⟩

=
1
2n


σ

exp[−H(σ )], (14)
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Fig. 1. Example of the quantumalgorithmon a 1D chain of qubits to compute the partition function of a 2D classical Isingmodel
at imaginary temperature. (a) The quantumalgorithmbeginswith qubits in the chain initialised in state | +x⟩ and proceedswith
alternating sequences of parallel nearest neighbour two qubit gates Ck(t) diagonal in the computational basis {|±⟩} and parallel
local rotations Uk(t) (supplemented by single qubit phase gates). (b) The corresponding classical Ising model with spatially
dependent horizontal and vertical bond strengths and local magnetic fields.

where, Θ denotes collectively all individual rotations performed on the system, and where, up to an
additive constant

m
t=1 lnG(t), the classical Hamiltonian H with imaginary couplings is

− H(σ ) = iα
m

t=1


k∈Λ

hk(t)σk(t)+ iα
m

t=1


⟨k,l⟩∈E

Jk,l(t)σk(t)σl(t)

+

m−1
t=1


k∈Λ

J↓k (t)σk(t)σk(t + 1). (15)

Eq. (14) is proven by inserting identity operators and identifying single-particle quantum basis states
|±⟩ with single particle classical spin configurations |σ ⟩:

⟨+
⊗|Λ|

x |

m−1
t=1

L(m − t)| +⊗|Λ|

x ⟩ =
1
2n


σ(1)...σ (m)

m−1
t=1

⟨σ(m − t + 1)|L(m − t)|σ(m − t)⟩.

3. Implementation

At the core of the discussion held in the previous section lies the ability to measure the scalar
product between n-particle states |Φ⟩ and |Ψ ⟩. We will describe two measurement protocols
addressing this problem. The first is the simpler and allows to detect |⟨Φ|Ψ ⟩|

2, while the second truly
yields ⟨Φ|Ψ ⟩.

Protocol 1
1. Prepare an n-particle system A in the state |Ψ ⟩, and an n-particle system B in the state |Φ⟩.
2. Prepare an ancillary register R of n qubits in the state |GHZ⟩ =

1
√
2
(| + · · · +⟩ + | − · · · −⟩).

3. Perform a bit-wise controlled swap gate with each qubit Rj of the register as a control and Aj, Bj as
targets, i.e. if qubit Rj is in the state |−⟩ then apply SWAP(Aj, Bj). We get

1
√
2


| + · · · +⟩R|Ψ ⟩A|Φ⟩B + | − · · · −⟩R|Φ⟩A|Ψ ⟩B


.

4. Measure the first n − 1 qubits of R in the basis {| ±x⟩} = {
1

√
2
(|+⟩ ± |−⟩)}. Denote mj = ±1 the

(equiprobable) outcomes of measurement on register qubit j and define χ =
n−1

j=1 mj. The state
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for the last qubit of the register and the system AB is

1
√
2


|+,Ψ ,Φ⟩ + (−1)χ |−,Φ,Ψ ⟩


. (16)

5. Measure the Pauli operator σ x of the last ancillary qubit Rn. The expectation value is

⟨σ x
n ⟩ = (−1)χ |⟨Φ|Ψ ⟩|

2. (17)

Protocol 2
1. Prepare an n-particle system A in the state |Φ⟩.
2. Prepare an ancillary register R of n qubits in the GHZ state.
3. Evolve the qubits in register A conditioned on the state of the ancilla to prepare

1
√
2


| + · · · +⟩R|Φ⟩A + | − · · · −⟩R|Ψ ⟩A


.

This can be done by replacing all instances of quantum gates in the evolution of |Φ⟩ →

| +
⊗n
x ⟩ → |Ψ ⟩ into bitwise controlled gate operations. The single qubit phase gates become

controlled phase gates: |+⟩Rk⟨+| ⊗ 1Ak + |−⟩Rk⟨−| ⊗ PAk . Similarly, the single qubit rotations
become: |+⟩Rk⟨+| ⊗ 1Ak + |−⟩Rk⟨−| ⊗ UAk . The collisional gates are controlled by one of
neighbouring ancillary qubits, e.g.: |+⟩Rx⟨+|⊗1Ax,Ay +|−⟩Rk⟨−|⊗CAx,Ay . Such three qubit diagonal
gates can be decomposed into at most 6 nearest neighbour controlled phase gates [14].

4. Measure the first n − 1 qubits of R in the basis {| ±x⟩}. Denote mj = ±1 the outcome of measure-
ment on register qubit j and let again χ =

n−1
j=1 mj. The state for the last qubit of the register and

the system A is

1
√
2


|+,Φ⟩ + (−1)χ |−,Ψ ⟩


. (18)

5. Measure σ x on the last ancillary qubit Rn. The expectation value is

⟨σ x
n ⟩ = (−1)χℜ[⟨Φ|Ψ ⟩]. (19)

6. Repeat steps 1–4 but on the last qubit Rn measure instead the Pauli operator σ y where the basis
{| ±y⟩} = {

1
√
2
(|+⟩ ± i|−⟩)}. The expectation value is

⟨σ y
n ⟩ = (−1)χℑ[⟨Φ|Ψ ⟩]. (20)

We note that it is actually not necessary to prepare size n ancillary registers in aGHZ state for either
measurement protocol, since one ancillary qubit making controlled swaps or controlled interactions
like a serial tape head over the quantum registers would suffice. The penalty is a potentially linear
slowdown and the need to transport the ancilla qubit over the register for every gate in the circuit.
The |GHZ⟩ state can be prepared in one plane using global, i.e. spatially homogeneous, pulses in the
plane [15–17]. Furthermore, by coupling the quantum register with a common bosonic mode, |GHZ⟩

states can be prepared in constant time [18]. The idea is to place all the spins inside a high Q cavity
(with decay rate κ) with a resonance field frequency close to the transition between the qubit states
and some other excited state. When the coupling between the field and qubits is spin dependent and
dispersive (e.g. a differential light shift induced by polarisation section rules or by spin dependent
detuning) then the interaction is modelled as:

Vz = gzaĎa


j

σ z
j , (21)

where gz is the dispersive coupling strength. Then |GHZ⟩ can be produced either using strong coupling
with a quantised state of light or via a geometric phase gate using coherent state displacements. We
outline the latter as follows:

• Initialise all the spins in | +x⟩ and the cavity mode in the vacuum state |α = 0⟩.
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• Perform the following nine step interaction sequence:

D(−β−κτ )e−iτVZD(−α−κτ )


j

σ x
j


e−iτVz


j

σ x
j


D(β)e−iτVzD(α),

where D(α) = eαa
Ď
−α∗a is a coherent state displacement, and e−iτVz is the unitary evolution

generated by Vz .When the parameters satisfy: gzτ = π/2, and |αβ|(e−3κτ/2
+e−κτ/2) = π/4, then

the cavity returns to the vacuum and the global rotation U = e−i π4


j σ
z
j is applied to the qubits.

• Apply the global operation


j e
i π

2
√
2
(σ x

j +σ z
j ) to the spins.

The state of the qubits is then 1
√
2
(|++ · · · +⟩− i|−− · · · −⟩)which is locally equivalent to |GHZ⟩ and

functions just as well for the simulation protocols above. The overall process fidelity, whichmeasures
how close the lossy process is to the target unitary U = e−i π4


j σ

z
j , satisfies [19]

Fpro ≥ 1 −
π2κ

2|gz |


1 +

πκ

2|gz |


.

Note that this is a constant depth circuit thanks to the non-local coupling of the field to the qubits.
Of course as the number of spins increases the size of the cavity must also increase, and the strength
of the field, spin coupling decreases as 1/

√
Volwhere Vol is the cavity volume. Consequently, there is

ultimately a process time which scales as
√
n where n is number of qubits. However, in practice this

could be quite fast compared to a sequential circuit for generating |GHZ⟩.
Since the measurement of ⟨Φ|Ψ ⟩ is informationally more complete than that of |⟨Φ|Ψ ⟩|

2, the
reader might wonder why we have bothered to describe a separate procedure to measure the latter
quantity. The reason is that Protocol 2 is experimentally more demanding than Protocol 1 since all
the gates must be promoted to controlled gates based on the state of the ancilla. For most of the
discussion to follow we assume information is obtained from Protocol 2, while results for partition
function reconstructions using Protocol 1 are presented in Appendix A.

So far, we have considered the case of planar boundary conditions. If the classical system is
periodic in space (i.e. the latticeΛ is periodic) then the above quantum algorithm is simply modified
in the couplings Jk,l(t) to account for this. If the classical system is periodic in the time direction,
then a few modifications are needed. To relate the measurement of the quantum system to the
classical partition function, the boundary states |σk(m)⟩ and |σk(1)⟩ must be identified. So rather
than computing the scattering matrix element ⟨+

⊗|Λ|

x |W | +
⊗|Λ|

x ⟩, where the unitary W is defined
asW =

m−1
t=1 L(m− t), as we have described so far, wewant the trace: Tr[W ]. This is found by using

the measurement Protocol 2 but with the register A prepared in the completely mixed state 1
2n . The

polarisation measurements of the last ancilla of the register then yield the real and imaginary parts
of Tr[W ]

2n . Also note by the cyclic property of the trace, the phase gates Pk are no longer needed in the
quantum evolution.

Consider the implementation of this measurement for a 3D classical Ising model using a quantum
register encoded in a plane. For Protocol 1 three parallel planes are needed, one (the top plane)
prepared in a |GHZ⟩ state, and the centre (c) and bottom (b) planes both prepared in | +

⊗n
x ⟩. The centre

plane is prepared in


⟨k,l⟩∈E C
α
k,l| +

⊗|Λ|

x ⟩ or evolved in
m−1

t=1 L(m − t)| +⊗|Λ|

x ⟩, and the subsequent
C − SWAP gates between registers can be implemented in parallel bitwise between pairs (ck, bk) using
a sequence of at most 12 nearest neighbour collisional gates [14]. Finally the measurement of the
top register only requires collecting the parity of measurement outcomes of n − 1 qubits in the
bulk (without addressability) and an addressable measurement of Xn for one qubit on a corner. For
Protocol 2 two registers are needed: the top one prepared in |GHZ⟩ state and the bottom prepared in
| +

⊗n
x ⟩. During the quantum evolution all gates acting on the bottom register (say qubit bk) are to be

controlled by the neighbouring qubit on the top plane (qubit tk). For a rotation gates Uk(t) this means
to instead apply the controlled gate |+⟩tk⟨+| ⊗ 1bk + |−⟩tk⟨−| ⊗Uk(t). Such a gate can be done using
at most 3 controlled collision gates between tk and bk. For the two qubit gates Ck,l(t)we need to apply
|+⟩tk⟨+| ⊗ 1bk,bl + |−⟩tk⟨−| ⊗ Ck,l(t). This three qubit diagonal gate can be realised using at most 12
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collisional gates between nearest neighbours tk, bk and bk, bl. Since not all the gates now commute it
is necessary to do this in two stages over non overlapping pairs of nearest neighbours in the bottom
register. Measurement of the top register proceeds as for Protocol 1. Regarding addressability, it is
necessary to be able to address the different planes along ẑ but addressability can be relaxed in the
x̂ − ŷ direction.

4. Partition functions

The schemes of Section 2 can be used to provide estimates for real temperature partition functions
of classical models. We proceed by analytic continuation of the quantum amplitudes (or their
modules) provided by the protocols described in Section 2. The general idea is to view the partition
function as a polynomial of order linear in the system size whose coefficients are the same as the
those obtained from the quantum amplitude estimation but with real instead of complex variables,
and then to Wick rotate these variables.

Let α and θ denote two complex variables, and consider a function F of the form

F : C × C → C : (α, θ) → F(α, θ)

=

N1
ν1=−N1

N2
ν2=−N2

cν1,ν2e
iν1αeiν2θ , (22)

where N1,N2 < ∞. Clearly, F is an analytic function, so the coefficients {cν1,ν2} define F on the whole
complex plane. If F is known for αj1 = α(j1) = 2π j1

N1
, j1 = 0 . . . 2N1, θj2 = θ (j2) = 2π j2

N2
, j2 =

0 . . . 2N2, then a Fourier transform yields

cν1ν2 =
1

(2N1 + 1)(2N2 + 1)

2N1
j1=0

2N2
j2=0

e−2iπ j1ν1/(2N1+1)e−2iπ j2ν2/(2N2+1)
× F(αj1 , θj2). (23)

Plugging this expression in Eq. (22), one finds sums of geometric series. Summing them yields

F̂(α, θ) =

2N1
j1=0

2N2
j2=0

F(αj1 , θj2) w
(N1)(α − αj1)w

(N2)(θ − θj2), (24)

where

w(N)(x) ≡
1

2N + 1
sin

(2N + 1) x2


sin x

2

. (25)

Now consider the quantum amplitudes introduced in Section 2, in the case where hk(t), Jk,l(t) ∈

{−1,+1}, ∀k ∈ Λ, ∀⟨k, l⟩ ∈ E(Λ), ∀t = 1 . . .m, and where all ‘‘vertical’’ couplings J↓ are set
equal. (For the case of non uniform vertical couplings, see Appendix A.) In that case, these quantum
amplitudes are certainly of the form (22), with N1,N2 growing at most polynomially with the number
of vertices of the classical model being under consideration. For suitable complex values of α, θ , the
probability amplitude A(α, θ) of the d-dimensional quantum system can be put in correspondence
with the real partition function of the (d + 1)-dimensional classical system. Namely, for

α⋆ = iβ, θ ⋆ =
1
i
ln


1 + e2βJ↓

1 − e2βJ↓
, g(θ ⋆) ≡

1
2
ln sin 2θ ⋆ +

iπ
4

−
1
2
ln 2, (26)

one finds that A(α⋆, θ ⋆) = e|Λ|mg(θ⋆) Z Ising(β)/2|Λ|. In the definition of α⋆, we recognise the familiar
Wick rotation. The role of the other parameter, θ ⋆, is to analytically continue the unitary quantumme-
chanical transfer matrix, between successive times, to the (non-unitary) statistical mechanical trans-
fer matrix. In summary, in order to get information about the partition function of a d-dimensional
classical system, we estimate the probability amplitude A(α, θ) for well-chosen values of α and θ .
From the collected data, we reconstruct the dependence of the function A on its variables (α, θ), as



S. Iblisdir et al. / Annals of Physics 340 (2014) 205–251 213

just explained. Finally, analytic continuation of the variables (α, θ) to the suitable values (26) yields
an estimate for the desired partition function.

Let us analyse the errors appearingwhen the valuesA(αj1 , θj2) are not known exactly but estimated
by some quantities ϕj1j2 . The identity (24) allows to get a priori error estimate. To simplify the
discussion, let us start with the case where partition functions are estimated using a one-time-step
protocol. Then, m = 0,N1 = poly(|Λ|) ≡ N and N2 = 0. Defining δϕ⋆ = max{|ϕj − A(αj)|, j =

0 . . . 2N}, we see, through error propagation, that the error at inverse temperature β ,∆A(iβ) satisfies

∆A(iβ) ≤

2N
j=0

|w(N)(iβ − αj)|δϕ
⋆. (27)

In the limit of large values of β , the r.h.s. of this equation essentially behaves as δϕ⋆eβN , indicating that
the measurement accuracy should shrink exponentially, with the inverse temperature and the size of
the system, in order to maintain the error over our estimate for partition functions below some fixed
prescribed threshold.

A bound on the error independent of β can also be derived easily. Indeed, for the Hamiltonians we
are considering, the partition function can be written as

Z Ising(β) =

N
k=−N

ξk e−kβ ,

where all coefficients ξk are non-negative integers whose magnitude is at most 2m|Λ| (number of
classical configurations associated with the system). It would therefore be sufficient to be able to
estimate these coefficientswith a relative accuracy of 2−m|Λ| in order to be able to reconstruct Z Ising(β)
perfectly. The bound appearing on the r.h.s. of (27) is independent of the actual values for the link
couplings and magnetic fields of the precise Ising model being simulated. We therefore expect it to
be pretty loose.

To get a sharper understanding of how errors behave, we made some numerical simulations. In
Fig. 2 we show how the error behaves by studying different quantities such as the logarithm of
the partition function, the energy and the specific heat. In particular we simulated a model with
uniform couplings and zero magnetic fields and a model with ±1 couplings (with 50% probability)
and uniformmagnetic field. One can appreciate how, in the uniform case, the error over the partition
function goes to zero for zero and infinite temperature. In Appendix A, we show that error over each
Fourier coefficient ξk is well behaved for large and small values of k (close to ±N), but blows up for
intermediate values k (close to 0). This fact is consistent with our numerical observations and the
well known duality present in this model [20]. For the non-homogeneous case, we have found that
the errors in the partition function starts by growing exponentially with β , then remains constant.
This observation is consistent with the fact that there is no known low temperature/high temperature
duality relation. The errorswe have found are alsomuch larger. Our numerics indicate that, in the non-
homogeneous case, the magnitude of the partition function is dominated by those ξk corresponding
to intermediate values of k, much more so than for the homogeneous case.

Previous attempts at using quantummechanics to compute approximations of partition functions
exhibit errors comparable to ours. A quantum algorithm based on Fourier sampling was introduced
in [21] to estimate partition functions and free energies of quantum Hamiltonians, which includes
the classical Ising model in the case of all diagonal interactions. There it was found that the number
Fourier components needed to be sampled scales polynomially with the lattice size, but in order to
obtain a multiplicative approximation of the partition function, the requisite accuracy of estimation
of each coefficient scaled exponentially with the system size. An algorithm, based on using a quantum
computer to contract tensor networks yields similar approximation scales [3]. Even preparing a
quantum state which coherently encodes a classical thermal state of an Ising appears to be difficult,
e.g. in Ref. [22] the authors provide an algorithm which does so but is exponential in the square root
of the system size (see also [23]).

To conclude this section, we study the possibility to use the data provided by the quantum
experiments in order to construct a bound for the error on the estimated partition function. Our
motivation is that, possibly, the a posteriori error analysis might be finer than the error bounds
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a

b

Fig. 2. Example of reconstructed partition functions for Ising model. The reconstructed quantities are the negative of free
energy per spin ln(Z(β)/(Nβ)) (red), energy per spin E/N (green), and specific heat per spin H(β)/N (blue) as a function of
temperature andnormalised by the number of spins. The plots show the average value of the quantitiesmentioned above,which
is identical to the true value up to numerical machine precision, with error bars representing the a-priori standard deviation.
(a) 10× 10 classical Ising model with uniform ferromagnetic couplings (J = 1) and zero magnetic field. (b) 8× 8 classical Ising
model with non uniform couplings (J = ±1 with equal probability) and uniform magnetic field h = 1. For the simulation, we
supposed to have experimental data with standard deviation equal to 10−3 . (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

provided by plain error propagation. To simplify the discussion,wewill again restrict ourselves to one-
step protocols. Extension to the general case is straightforward. Let us expand the quantity A(iβ) as

A(iβ) =

2N
j=0

(ℜw(N)(iβ − αj)+ iℑw(N)(iβ − αj))(ℜA(αj)+ iℑA(αj)), (28)

and focus on, say,

ARR(iβ) ≡

2N
j=0

ℜw(N)(iβ − αj) ℜA(αj). (29)

The three other bits of A(iβ) are treated likewise. As was shown in the previous section, each quantity
ℜA(αj) is obtained bymeasuring the polarisation of a qubit in a precise direction. Such ameasurement



S. Iblisdir et al. / Annals of Physics 340 (2014) 205–251 215

process can be viewed as drawing a random variable whose outcomes are {+1,−1}, andwhosemean
value is the polarisation we are interested in. LetM denote the number of Bernoulli trials involved in
determining each probability amplitude, and let us denote Xj(k) the outcome of the k-th trial used in
the determination of ℜA(αj). For fixed j, the random variables Xj(k) have the same distribution for all
k, characterised by Prob[Xj(k) = −1] = pj.

Our estimate for ARR(iβ) is

ARR(iβ) =
1
M

M
k=1

2N
j=0

ℜw(N)(iβ − αj) Xj(k). (30)

If we assume there is no (uncontrolled) systematic error in the quantum experiments, then the true
value of ARR(iβ) is of course given by

ARR(iβ) =

2N
j=0

ℜw(N)(iβ − αj)(1 − 2pj). (31)

Let E2(pj) and E3(pj) denote appropriate estimates for ⟨

ℜA(αj) − Xj(k)

2
⟩ and ⟨|ℜA(αj) − Xj(k)|3⟩

respectively, constructed from an appropriate estimatepj for pj.
With such estimates, we define two random variables as follows:

DM(ε) =
1

√
M

2N
j=0

|ℜw(N)(iβ − αj)|
3

E3(pj)+ 8εj




2N
j=0

|ℜw(N)(iβ − αj)|2

E2(pj)− 4εj

3/2 ,

λM(ε) =

√
M

2N
j=0

|ℜw(N)(iβ − αj)|2

E2(pj)+ 4εj


where the deviations εj are of the form

εj =
1

4 + s
E2(pj).

In this definition, s is a parameter we are free to choose at our convenience.
The following central limit theorem holds for the statistics of errors:

Theorem 4.1 (Central Limit). Let F∗ denote the cumulative distribution of a zero-mean, unit-variance
Gaussian probability distribution, and let ∆ denote some strictly positive real number. The (composite)
random variable

L({Xj(k)}) ≡

1 − 2F∗(−λM(ε)∆)− 1.12DM(ε)


takes a finite value and lower bounds the quantity Prob


|ARR(iβ) − ARR(iβ)| < ∆


with probability at

least

P ({εj},M,N) ≡

2N
j=0


1 − 2e−ε2j M


−

2N
j=0


pMj + (1 − pj)M


.

The proof of this result builds on the Berry–Esséen theorem [24] and is given in Appendix B.
Interestingly, the only essential ingredient involved in this proof is the fact that we are trying to
estimate a quantity (here a piece of a partition function) as a finite linear combination of Bernoulli
random variables. For that reason, this proof and a similar central-limit theorem are equally valid
for any quantum algorithm that aims at approximating a quantity Q by an estimate of the form

y ΓyXy, where eachXy is a Bernoulli randomvariable. In particular, our analysis carries through to the
algorithm proposed in Ref. [1] to compute the Jones polynomial at non-trivial values of its parameter.
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Fig. 3. Convention for determining the sign of the edge coupling assigned to each crossing (top). Example of the lattice obtained
following the procedure outlined in the text for one of the possible shadings (bottom). Plain lines represent, say, positive
couplings, while dashed lines represent negative couplings.

This result is interesting in that it actually allows to estimate with tunable statistical confidence
and a posteriori, i.e. after the quantumexperiment is performed, the discrepancy between our estimate
and the value we are trying to estimate.

5. Link invariants

Prior work [5] has provided polynomial time quantum algorithms for the Tutte polynomial
including the calculation of the Jones polynomial at the specific values considered here. In this section
we note that in fact these link invariants can be estimatedwith repeated application of constant depth
quantum circuits.

There exist several well-established connections between knot theory and statistical mechan-
ics [25]. One of them is the following. For every knot it is possible to construct a graph such that
the partition function of a Potts model defined on that graph is a link invariant for certain (imaginary)
temperatures. This invariant turns out to be the Jones polynomial evaluated at specific values, mod-
ulo a known calculable factor. As the quantum algorithm for computing partition functions described
in Section 2 is efficient for imaginary temperatures, it follows that it may also be used to distinguish
among different links, when the associated statistical model only involves nearest neighbour interac-
tions. In this section we outline the method to compute the statistical-mechanics knot invariant for
any given link. We also compute these invariants for some primary link with few crossings for which
the Potts model involves only a few sites and is within reach of current technology.

Let us start with a brief reminder on a recipe to construct statistical mechanical invariants, given a
single component knot or a multicomponent link. We consider the planar projection of a given knot
and shade the regions of the diagram in an alternating way such that there are no adjacent shaded
regions (there are two ways to do this for any knot). We associate a lattice with vertices V and signed
edges E ,Λ = (E, V ) to the diagram in the followingway. Every shaded region of the diagramwill be a
vertex ofΛ and every crossing of the diagram that separates two shaded regionswill be an edge linking
the two vertices associated with those regions. The sign for the coupling of the edge is determined by
the convention in Fig. 3. For every edge i ∈ E we associate a weight W±

i


σ , σ ′


, where σ , σ ′ are

q-valued spins located at the vertices joined by the edge. Let us define a partition function given a set
of weights Wi on L,

ZL =


{σ }


i∈E

Wi, (32)

where the sum is over all possible configurations of the spins on the vertices.
ZL is invariant under ambient isotopy provided the weights Wi satisfy certain conditions, the

derivation of which is discussed in [25]. It has been proven that the choice W±

i = exp

±βδσ ,σ ′


where σ = 1, . . . , q is compatible with these conditions if

β = cosh−1

q − 2
2


, (33)

holds. In particular, the Potts partition function ZL for q = 1, 2, and 3 at temperatures β = i2π/3,
iπ/2, and iπ/3 respectively is a knot invariant. Note that the existence of a quantum algorithm to
compute the link invariants for these complex temperatures was already pointed out in Ref. [26].
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Fig. 4. Planar diagrams for some examples of primary knots and links (top) and the associated partition functions (bottom). Of
the two possible graphs for each knot (one for each choice of shading) we have chosen the less trivial one. All the knots lead to
statistical mechanics models with nearest neighbour interactions except for the Borromean ring, 63

2 .

We have determined the lattices L for six examples of knots and links (see Fig. 4) and computed ZL
for a Potts model defined on Lwith q = 1, 2 and 3 for the values of β where the partition function is a
knot invariant (see Table 1). The invariant corresponding to the value q = 1, 2 are actually trivial.
The case where q = 3 is more interesting. A classical algorithm to compute this invariant exists
which works in a time that scales polynomially with the number of crossings [27]. In turn, using a
generalisation to three-level systems of the scheme presented in Section 2 allows to estimate the
quantum invariant ZL in constant time with an additive error that scales like 1/

√
R where R is the

number of repetitions of the experiment, now independent of the number of crossings.

6. Computational power of classical models

The analysis presented in Section 4 demonstrates how one can sample from a family of quantum
circuits with fixed topology in d dimensions to construct a partition function of a classical spin system
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Table 1
Knot invariants computed from the Potts model partition functions defined on
the lattices in Fig. 4. The temperatures at which the partition functions have been
evaluated are given in the text.

q = 1 q = 2 q = 3

31 ei
5π
6 4ei

5π
8 3

2


7
√
3 − i


ei

1π
4

41 −ei
π
3 4 −

15
2


1 −

√
3i


62 −1 −8ei
π
4 3 (15 − 22i)

52
1 −ei

5π
6 8ei

3π
8 3

2


9
√
3 + 29i


ei

3π
4

22
1 −ei

2π
3 0 3

2


3 +

√
3i


63
2 −1 8

√
2 −3


9
√
3 + 4i


with fixed topology in d + 1 dimensions. One could ask whether the reverse can be done, i.e. given a
classical partition function can one then reconstruct the outcomes of a related quantum circuit for a
family of coupling parameters? Evenmore, is it possible that given the ability to compute the partition
function of a suitably large classical system and for a suitable set of temperatures, one can reconstruct
the outcome of measurements on arbitrary quantum computations of polynomial length in some
fixed register input size? This has been partially answered in Ref. [2] where the authors show that
the problem of computing the partition function of several classical spin models including the planar
Ising model with magnetic fields all with complex couplings is BQP-complete. Such classical models
do arise for some problems, e.g. the use of the Potts model with complex couplings to compute link
invariants as discussed in Section 5. In Ref. [28] it was further shown that there is an equivalence
between classical partition functions with real couplings and quantum amplitudes for a certain class
of quantum circuits known as Clifford circuits. When this mapping exists the graph underlying the
classical theory is planarwith nomagnetic fields and can be estimatedwith a polynomial time classical
algorithm [29]. Also, deciding if a certain quantumcircuit belongs to this equivalence class is classically
easy. These results are consistentwith theGottesman–Knill theoremwhich states that Clifford circuits
admit classical simulations in polynomial time [30].

It is desirable to obtain the connection between classical partition functionswith real couplings and
the output of any polynomial sized quantum circuit. We do so in this section and also describe some
applications: one for investigating quantum phase transitions given the ability to compute classical
partition functions, and another for computing partition functions given the ability to prepare and
measure corner magnetisation on physically prepared classical thermal states.

6.1. Estimating quantum computations from Ising model partition functions

We show the following:

Theorem 6.1. Estimation of the partition function Z(β) of a two dimensional ferromagnetic, consistent
Ising model at inverse temperature β on a square lattice of size n × m with m = O(poly(n)) with non
uniform couplings and magnetic fields with additive error δ(n,m, β) < exp(nm(49β − 190)/2) is BQP-
hard, i.e. it is at least as hard as simulating an arbitrary polynomial time quantum algorithm on n qubits.
By ferromagnetic we mean the couplings Ji,j in Eq. (1) are all positive and by consistent the magnetic fields
hi are all non-negative or all non-positive. To simulate a quantum algorithmmeans to do the following: for
a unitary W built from a quantum circuit composed of O(poly(n)) one and two qubit gates on a length n
register, provide an estimate of a complex scattering matrix element satisfying ⟨+⊗n

x |W | +⊗n
x ⟩ − ⟨+

⊗n
x |W | +

⊗n
x ⟩

 ≤
1

O(poly(n))

with a probability that is exponentially in n close to 1.

Proof. The proof follows in several stages. First we write an arbitrary polynomial sized quantum
circuit in a convenient spatially translationally invariant form. Then we show that the scattering
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matrix element is equivalent to a complex temperature classical Ising model on a square lattice.
Finally, we show that sampling the partition function overmany real temperatures of a ferromagnetic
Ising model, one can reconstruct the scattering matrix element.

There are many possible equivalent quantum circuits which construct a given unitary. We pick
a quantum circuit with a coupling graph given by a one dimensional chain of qubits with open
boundaries. In order to perform a universal gate set, one needs a quantum circuit with gates either
inhomogeneous in space or time or both. We pick circuits which are homogeneous in space only
as they are simple to parameterise and it is pedagogically satisfying that each step in the quantum
algorithm can be thought of as a Wick rotated transfer matrix generated by a spatially homogeneous
quantum Hamiltonian. Several models exist for universal quantum computation which use 1D
architectures with global interactions [15,17]. We pick a convenient one due to Raussendorf [16]
which involves encoding quantum information in a 1D redundified data register, i.e. the data register
is redundified in a second register which is spatially mirrored with respect to the first. This method
has the advantage that all gates acting on the system are translationally invariant and the initial
state is translationally invariant, e.g. | +

⊗n
x ⟩. The only requirements are uniform Ising interactions

between nearest neighbours and global single qubit gates. Addressability is afforded by temporal
addressing via judiciously chosen homogeneous local operations. Readout can be done again using
global operations with the assistance of interspersed ancillary qubits or instead by using ancillary
levels of each qubit [31]. The overall overhead incurred using global operations in this mirror encoded
state is linear in n [16].

Consider a quantum register of an even number n of logical qubits, encoded by a chain of 2n qubits.
The encoding has a mirror structure, i.e. the wavefunction of the system is at all times of the form
|ψ⟩1...n ⊗ |ψ⟩2n...n+1. The first ingredient in our proof of the BQP-hardness of the Ising model is the
following lemma:

Lemma 6.2. Let

σ αtot(θ) =

2n
j=1

ei
θ
2 σ

α
j , α = x, y, z,

CPtot =

2n−1
j=1

CPj,j+1, Hadtot =

2n
j=1

Hadj,

(34)

denote a set of translationally invariant (global) operations, where Had = e
i π

2
√
2
(σ x

j +σ z
j ) denotes a single

qubit Hadamard gate and CP = eiπ |11⟩⟨11| the controlled phase gate. The subset

G = {CPtot, σ
z
tot(π/8),Hadtot} (35)

is universal for quantum computation.

Proof. This is proved in Appendix C. �

This lemma implies that for any ε > 0, there exists a sequence of operators {Lt ∈ G : t =

0 . . .m − 1}, such that 
+⊗n

x

W +⊗n
x


−

+

⊗2n
x

 m−1
t=0

Lt
+⊗2n

x

 ≤ ε, (36)

wherem = O(poly(log 1
ε
, n)). Let σtot label classical configurations for the 2n-qubit chain (element of

the computational basis). The action of σ z
tot(π/4) and CPtot (up to a global phase) can be expressed as

σ z
tot(π/8)|σtot⟩ = ei

π
16
n

k=1 σk |σtot⟩,

CPtot|σtot⟩ = e
i π4

2n−1
k=1 (σk+σk+1)+

2n−1
k=1 σkσk+1


|σtot⟩,

(37)
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while the matrix elements of a Hadamard gate (up to a global phase) read

⟨σ |Had|σ ′
⟩ =

1
√
2
ei
π
4 (σ+σ ′)ei

π
4 σσ

′

. (38)

These expressions will help us to express the quantum amplitude ⟨+
⊗2n
x |

m−1
t=0 Lt | +

⊗2n
x ⟩ as an Ising

partition function. It is convenient to introduce the following class of operators:

Ts =

CPtot

e0(s)
σ z
tot(π/8)

e1(s)2nHad
1−δs,0
tot ,

where the exponents e0(s) and e1(s) take values in {0, 1}. Up to constant factors, it is clear that the
operators σ z

tot(π/8), Hadtot and CPtot can each be expressed either as a single T -type operator or as a
product of at most 2 T operators. Consequently, we can write

+
⊗2n
x

 m−1
t=0

Lt
+⊗2n

x


=

1
2nM


+

⊗2n
x

 M−1
s=0

Ts
+⊗2n

x


, (39)

where M ≥ 1. If M = 1 then the overlap is: ⟨+
⊗2n
x |

m−1
t=0 Lt | +

⊗2n
x ⟩ = 2−nZ1D( iπ16 ) where Z1D is

the partition function for a classical Ising model in 1D with magnetic fields. Since one dimensional
Isingmodels are exactly solvable for any temperature, including complex temperatures, then so is the
overlap. Non exact estimations of scattering matrix element occur for M > 1. Since each layer oper-
ator Lt can be expressed as a product of at most two such operators Ts, we see that M is polynomial
in n (since we assume that W is a polynomial depth quantum circuit). This last form of the quantum
scattering amplitude, together with the identities (37) and (38) allow to express the quantum scat-
tering amplitude as the partition function of an Ising model at imaginary temperature. Up to a global
irrelevant phase, we have

+
⊗2n
x

 m−1
t=0

Lt
+⊗2n

x


=

1
2n(M+2)


{σ }

e−
iπ
16H(σ ), (40)

where H(σ ) denotes a Hamiltonian of the form (1), defined on a square (2n) × M lattice. Simple in-
spection shows that all couplings (resp. fields) appearing in this Hamiltonian are positive integers,
whose magnitude do not exceed 4 (resp. 17).

Let us now assume we are provided with the following resource:
IsingEstimator: Given an inverse temperature, β , and an inhomogeneous Ising Hamiltonian,

defined on a two-dimensional square lattice of size nx ×ny, a device provides an estimateZ(β) for the
partition function, Z(β), that satisfies

Prob[|Z(β)− Z(β)| ≤ ε δ(nx, ny, β)] ≥
3
4
, (41)

in a time that is polynomial in nx, ny, β, 1/ε.
Our goal now is to study how we could design the function δ so that this resource allows for an

efficient estimation of scattering amplitudes of quantum circuits. Since all magnetic fields and cou-
plings appearing in the definition of the classical Hamiltonian associated with a quantum circuit are
integers, the r.h.s. of (40) can certainly be written as

1
2n(M+2)


{σ }

e−
iπ
16H({σ })

=
1

2n(M+2)

+M ′
k=−M ′

ck eikπ/16,

for some coefficients ck. The value of the integerM ′ is atmostmaxσ H(σ ). The r.h.s. of the last equation
can equivalently be written as

1
2n(M+2)


{σ }

cke−
iπ
16H(σ ) =

e−iM ′π/16

2n(M+2)
P (eiπ/16),

where P is a degree-(2M ′) polynomial. For all β ≥ 0, our resource allows to compute an estimateP (e−β) ≡ e−βM ′Z(β) for P (e−β) that obeys |P (e−β) − P (e−β)| ≤ εe−βM ′

δ(2n,M, β). Using a
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Lagrange polynomial interpolation based on K points {

e−βj , P (e−βj)


, j = 0 . . . K−1} (K ≥ 2M ′

+1),
we reconstruct the polynomial P as

P (z) =

K
j=0

P (e−βj)ℓj(z), ℓj(z) =


k≠j

z − e−βk

e−βj − e−βk
, z ∈ C.

This reconstructed polynomial is in turn used to estimate our quantum amplitude as ⟨+
⊗2n
x |

m−1
t=0 Lt

| +
⊗2n
x ⟩ =

e−iM′π/16

2n(M+2)
P (eiπ/16). The error over this estimate can be bounded as+⊗2n

x

 m−1
t=0

Lt
+⊗2n

x


−


+⊗2n

x

 m−1
t=0

Lt
+⊗2n

x


≤

1
2n(M+2)

K−1
j=0

ε δ(2n,M, βj)e−M ′βj |ℓj(eiπ/16)|.

It would be desirable to pick the integer K and the temperatures βj in such a way that the r.h.s. of this
last inequality is minimised. Presumably, calculus of variations might make this task doable. We have
proceeded in a simpler way and made the choice

e−βj = j/K , j = 0 . . . K − 1.

Then,

|ℓj(eiπ/16)| =


k≠j

|Keiπ/16 − k|
k≠j

|j − k|
.

A closed form for the denominator on the r.h.s. of this expression can be easily worked out:
k≠j

(j − k)

 =

j−1
k=0

(j − k)×

K−1
k=j+1

(k − j) = j! (K − j − 1)!

For the numerator, we observe that
k≠j

|Keiπ/16 − k| =
KK

|Keiπ/16 − j|
×

K−1
k=0

|eiπ/16 − k/K |

=
KK

|Keiπ/16 − j|
exp

K−1
k=0

ln


cos

π

16
−

k
K

2

+ sin2 π

16

 .
The argument of the last exponential is:

1
2

K−1
k=0

ln


cos
π

16
−

k
K

2

+ sin2 π

16


×

K
K
<

K
2

 1

0
ln


cos
π

16
− x

2
+ sin2 π

16


dx

< −0.744K .

Plugging these results in our bound for the error on the quantum amplitude, we find that, in the limit
of large K ,+⊗2n

x

 m−1
t=0

Lt
+⊗2n

x


−


+⊗2n

x

 m−1
t=0

Lt
+⊗2n

x


<

ε

2n(M+2)

K−1
j=0

δ(2n,M, βj)(j/K)M
′

KK e−0.744K

|Keiπ/16 − j|j!(K − j − 1)!
.
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Considering the case where K = 2M ′
+ 1, having an error

δ(2n,M, β) ≤ sin
 π
16


e(β+1.488)M ′

2n(M+2)Γ ((2M ′
+ 1)e−β

+ 1)

×Γ ((2M ′
+ 1)(1 − e−β))(2M ′

+ 1)−2M ′

is therefore sufficient for efficient reconstruction of quantum amplitudes. Note that the maximum
energies from vertical and horizontal bonds in the lattice is 4(2n(M − 1)+ (2n− 1)M) and the max-
imum local field energy is 2n(M − 2)8+ 2n8+ 2nM + 4M((2n− 2)2+ 2). Then we have the bound:
M ′

≤ 50nM − 12M − 24n. To work out how large δ(2n,M, β) is compared to the partition func-
tion, we can compute the needed accuracy for a function of the error δ(2n,M, β ′) (we use a scaled
temperature β ′

= β/ ln 2 to simplify the expression)

ferror(2n,M, β ′) ≡ −
ln δ(2n,M, β ′)

β ′2nM

> −
M ′ ln 2
2nM

+
M ′ ln 2(0.7387 + 2 log2(2M ′

+ 1)− 2 log2 M ′)

β ′nM
.

For large system sizes,

ferror(2n ≫ 1,M ≫ 1, β ′) > −25 ln 2 +
50 ln 2(2.7387)

β ′
.

Finally we get a bound for the permissible additive error in the estimation:

δ(2n,M, β) < exp(nM(49β − 190)). (42)

Writing nx = 2n, ny = M , we find that estimating Z(β) for a polynomial number (linear in ny) of
temperatures with additive error δ(nx, ny, β) on each provides the requisite estimate of the quantum
scattering matrix element of a unitary W constructed from a poly(n) sized quantum circuit. It is well
known [3] that computing the scatteringmatrix element of a unitaryW on n qubits translates into the
ability to compute the output probability distribution on the last qubit acted on by a unitary Q built
from a poly(n) sized circuit on n− 1 qubits. This is done by choosingW = Q ĎCNOT (n− 1, n)Q where
CNOT (n − 1, n) acts between the n − 1st qubit and the nth qubit not acted on by Q . Since computing
the probability distribution of a fixed qubit with 1/poly(n) accuracy amounts to solving any problem
in BQP then the complexity of the estimate of Z(β) for an arbitrary temperature is BQP-hard. This
completes the proof of Theorem 6.1. �

We have found how much relative error we can tolerate in an estimation of a classical partition
function and still accurately estimate quantum scattering amplitudes. How does this compare to
known accuracy of classical algorithms which provide estimates of these partition functions? In
Ref. [32] Jerrum and Sinclair construct a fully polynomial randomised approximation scheme (FPRAS)
for computing the partition function of an arbitrary classical ferromagnetic Ising model that is
consistent. Specifically they provide a classical algorithm that computes an estimate Ẑ(β) of the
partition function Z(β) =


{σ }

e−βH({σ }) for the ferromagnetic Hamiltonian H({σ }) on N spins, with
a multiplicative error ε and success probability

Prob

|Ẑ(β)− Z(β)| ≤ εZ(β)


≥

3
4

in a run time polynomial in N, 1/ε. This probability of success can be boosted to 1 − δ in a
number log(1/δ) of repetitions [32]. Since the classical Hamiltonian in Eq. (40) is ferromagnetic,
then when δ(2n,M, β) ≥ Z(β), IsingEstimator is no more powerful than FPRAS. In other words,
if the tolerable error of IsingEstimator could be equal to or greater than Z(β) for the relevant
temperatures needed to reconstruct the scattering matrix element, then BQP-hard problems could be
computed in polynomial time via FPRAS. This is not expected to be the case so we almost certainly
have the requirement that the inequality in Theorem 6.1 is δ(2n,M, β) < Z(β) over some significant
range of temperatures and that it is smaller by an exponential in the problem size M ′. Note it is
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known that the problem of exactly computing the partition function for even a ferromagnetic classical
Ising model is #P-complete [32]. This complexity class is the same as that for counting the number
of satisfying assignments of a Boolean function and counting optimal Travelling Salesman tours.
Approximating the partition function with multiplicative error for an antiferromagnetic Ising model
on a square lattice isNP-hard and for the ferromagneticmodel butwith general fields is approximation
preserving reducible to the complexity class #BIS [33]. The latter is as hard as computing the number
of independent sets, (an independent set is a set of vertices that does not contain both endpoints of
any edge), in a bipartite graph which is thought to be of intermediate complexity between #P and
FPRAS.

6.2. Ising models to compute quantum ground state overlaps

We now consider an application of the mapping between classical partition functions and
quantum scattering matrix amplitudes: measuring ground state wavefunction overlaps of quantum
Hamiltonians. It has been argued in Ref. [34] that wavefunction overlaps, termed fidelity overlap, can
be a good witness to quantum phase transitions when the ground states straddle a phase transition
point. In an ideal laboratory, this problem could be split into two: prepare two quantum registers in
the desired states andmeasure the overlap using, for example, the protocols in Section 3. A possibility
for the preparation step is to initialise the quantum system in the ground state |Ψ0⟩ of some simple
Hamiltonian Ĥ0, and to evolve this Hamiltonian to the target Hamiltonian Ĥ⋆. A fundamental result
of quantummechanics, known as the adiabatic theorem, is that if the Hamiltonian is modified slowly
enough, the state obtained at the end of the evolution will be very close to the true ground state
|G⟩ [35]. Crucially, the time of the evolution need only grow polynomially with the inverse of the
minimum gap of the system, γ .

The purpose of this section is to exhibit situations for which the adiabatic evolution need not be
actually implemented. We are going to show that, in a precise sense, ‘‘time can be replaced with
space’’. Roughly speaking, we are going to show that, instead of performing measurements on a
quantum system of a given size, say ‘‘size’’ that has been evolved for a time ‘‘time’’, we can equivalently
measure partition functions of classical Ising models prepared on a system of size O(size × time).

To make things precise, we will focus on the quantum transverse Ising model, described by the
Hamiltonian2:

Ĥ⋆ = −h⊥


i∈Λ

σ x
i − J


⟨i,j⟩∈E(Λ)

σ z
i σ

z
j − h


i∈Λ

σ z
i , (43)

where Λ denotes some d-dimensional lattice, and E(Λ) denotes the set of edges of Λ. We are going
to view this Hamiltonian as a particular member of a family of time-dependent operators labelled by
some time index, t . This family is

Ĥ(t) = Ĥ0 + Ĥ1(t), t ∈ [0 : T ] (44)

where

Ĥ0 = −h⊥


i∈Λ

σ x
i ,

Ĥ1(t) = −
t
T
J


⟨i,j⟩∈E(Λ)

σ z
i σ

z
j −

t
T
h

i∈Λ

σ z
i .

(45)

Without loss of generality, we will assume that h⊥ > 0. In that case, |Φ0⟩ ≡ | +
⊗|Λ|

x ⟩ is of course
the (unique) ground state of Ĥ0. Evidently, Ĥ(T ) = Ĥ⋆. The starting point of our construction is a
discretisation of an adiabatic evolution.

2 We use the hat on the operator to emphasise that this is a quantum Hamiltonian.
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Theorem 6.3. Let T satisfy the inequality

T ≥ T∗(Ĥ, δ) =
105

δ2


|h| · |Λ| + |J| · |E(Λ)|

3
γ 4

, (46)

where γ = mint∈[0:T ] gap Ĥ(t), where gap Ĥ(t) denotes the difference between the two lowest eigenval-
ues of Ĥ(t). Let L denote a positive integer, and let us define the discretisation step as

τ ≡ T/L. (47)

The quantity by which the state UL−1UL−2 . . .U0| +
⊗|Λ|

x ⟩ deviates from the true ground state |G⟩ of H⋆ is
at most

∆ = δ + T


2

|h| · |Λ| + |J∥| · |E(Λ)|


L

+ KL

|h| · |Λ| + |J∥| · |E(Λ)|


· |h⊥| · |Λ|τ 2, (48)

where K is some constant. Each unitary Uk is defined as

Uk = e−iτ Ĥ0e−iτ Ĥ1(kτ). (49)

This theorem, whose proof is given in Appendix D, will help us to study fidelity overlaps,

f = ⟨G̃|G⟩,

where |G⟩ is the ground state of Ĥ⋆ and |G̃⟩ is the ground state of some other Hamiltonian ˆ̃H
⋆

. For T (T ′)

and L(L′) large enough to build an approximation to |G⟩(|G̃⟩), f can be replaced in good approximation
with

f ≃ ⟨+
⊗|Λ|

x |W Ď
0W

Ď
1 . . .W

Ď
L′−1 × UL−1UL−2 . . .U0

+⊗|Λ|

x


. (50)

For the transverse Ising model exemplified here the fidelity estimate which gives witness to a
quantum phase transition is for the case |G⟩ being the ground state of Ĥ⋆ with couplings h = 0 and

|G̃⟩ being the ground state of ˆ̃H
⋆

with couplings h′
= 0, J ′ = J , and h′

⊥
= h⊥ + δh⊥. Near the critical

point, h⊥ = J , there is a strong dip in the fidelity especially pronounced for δ⊥h/J ∼ 0.2 [36].
We are going to use a classical argument of quantum field theory [37], in a simple form adapted

to our purposes, and show that the overlap (50) can be expressed as a partition function for a d + 1-
dimensional many body system at finite (complex) temperature, described by a suitable classical Ising
Hamiltonian. The operator e−iτ Ĥ0 can be expressed as the transfer matrix of a classical system, using
the identity [38]

T (β) =


σσ ′

eβσσ
′

|σ ⟩⟨σ ′
| = eβ(1 + e−2βσ x). (51)

Since on the other hand,
e−iτh⊥σ

x
= cos(τh⊥)(1 − i tan(τh⊥)σ

x),

it would be natural to make the identification e−2β
= −i tan τh⊥, giving β = iπ4 −

1
2 ln tan(τh⊥),

in order to relate the quantities to a classical model. Rather we are going to express the single-site
unitary operator e−iτh⊥σ

x
in terms of two operators T . For ε > 0, let us define β±(ε) through

e−2β±(ε) = ∓i(1 ± ε). (52)
One checks that

T (β+(ε)) T (β−(ε)) = (2 − ε2)e(β+(ε)+β−(ε))


1 − i

2ε
2 − ε2

σ x

. (53)

This choice of using two transfer matrices is not strictly necessary but it guarantees that the amount
by which β+ and β− need deviate from the imaginary axis is small whichmakes the connection to the
traditional classical to quantum mappings [37] more transparent.
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So, for

2ε
2 − ε2

= tan(τh⊥), (54)

we see that the operator e−iτ Ĥ0 can be expressed as a product of two classical Ising transfer matrices:

e−iτ Ĥ0 =


1 − ε2

ε4 + 4

|Λ|
x∈Λ

Tx(β+(ε))

y∈Λ

Ty(β−(ε)).

This latter identity allows to express each operator Uk in terms of classical Ising transfer matrices.
Introducing closure relations and bearing inmind that the operator Ĥ1(t) is diagonal in computational
basis, the matrix elements of each operator Uk can now be expressed as a sum over paths on three
copies of the latticeΛ:

Uk =


σ(k)


σ(k+1)


σ(k+2)

eLσ(k),σ (k+1),σ (k+2) |σ(k + 2)⟩⟨σ(k)|.

Here σ(k) denotes a classical spin configurations over one copy of Λ, and the interaction L, defined
over a latticeΛ×Λ×Λ, is

Lσ(k),σ (k+1),σ (k+2) = β−


j∈Λ

σj(k)σj(k + 1)+ β+


j∈Λ

σj(k + 1)σj(k + 2)

− i
kτ 2

T


J


⟨i,j⟩∈E(Λ)

σi(k)σj(k)+ h

j∈Λ

σj(k)

.

This interaction looks like a classical spin interaction with alternating complex couplings β+, β− in
the ‘‘time’’ direction which transfers between different copies of the lattice Λ and complex coupling
within the latticeΛ. Wewould like to be able to chose variable couplings along the ‘‘space’’ and ‘‘time’’
directions so we define a new interaction (assuming J ≠ 0)

Hσ(k),σ (k+1),σ (k+2) = β−


j∈Λ

σj(k)σj(k + 1)+ β+


j∈Λ

σj(k + 1)σj(k + 2)

+βk
 

⟨i,j⟩∈E(Λ)

σi(k)σj(k)+
h
J


j∈Λ

σj(k)

.

A similar Hamiltonian can be written to represent evolution by gatesW Ď
k :

H ′
σ(k),σ (k+1),σ (k+2) = β ′

+


j∈Λ

σj(k)σj(k + 1)+ β ′

−


j∈Λ

σj(k + 1)σj(k + 2)

+β ′(L′
+ L − 1 − k)

 
⟨i,j⟩∈E(Λ)

σi(k + 3)σj(k + 3)+
h′

J ′

j∈Λ

σj(k + 3)

.

Now we can write a Hamiltonian on the enlarged lattice Λ̂ = {1, . . . , 2(L + L′)+ 1} ×Λ,

−H({σ }) =

L−1
k=0

Hσ(2k+1),σ (2k+2),σ (2k+3) +

L′+L−1
k=L

H ′
σ(2k+1),σ (2k+2),σ (2k+3),

which takes exactly the form of a classical (d + 1)-dimensional Ising Hamiltonian but with complex
couplings. The associated partition function depends on the vector of couplings β⃗ ≡ {β+, β−,
β ′

+
, β ′

−
, β, β ′

}

Z(β⃗) =


{σ }

e−H({σ })

and is a sum over classical configurations defined over Λ̂.
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Substituting this expression in Eq. (50), we see that the fidelity overlap can be approximated by

f =
1

2|Λ|


1 − ε2

ε4 + 4

L|Λ|
1 − ε′2

ε′4 + 4

L′|Λ|

Z(β⃗⋆), (55)

where, ε′ is a solution to 2ε′/(2− ε′2) = tan(τ ′h′

⊥
) appropriate for the quantum Hamiltonian ˆ̃H

⋆

and
the vector of complex variables β⃗⋆ ≡ {β⋆

+
, β⋆

−
, β ′⋆

+
, β ′⋆

−
, β⋆, β ′⋆

} is

β⋆
±

= ±


iπ
4

+
1
2
log

1 ±


3 − cos(2τh⊥) csc(τh⊥)/

√
2 − cot(τh⊥)



β
′⋆
±

= ∓


iπ
4

+
1
2
log

1 ±


3 − cos(2τ ′h′

⊥
) csc(τ ′h′

⊥
)/

√
2 − cot(τ ′h′

⊥
)


β⋆ =
iJT
L2

β ′⋆
= −

iJ ′T ′

L′2
,

(56)

which were obtained by solving Eqs. (52) and (54). Note for τh⊥ ≪ 1, β⋆
±

= ±iπ4 ±
τh⊥

2 − O(τ 2h2
⊥
),

which is the statement that the analytic continuation is performed to nearly purely imaginary
couplings strengths along the ‘‘time’’ direction.

As described in Section 4 we can write the partition function in a power series in exponentials of
the coupling parameters. For simplicity we assume J = J ′ = 1, h′

= h = 0 in which case:

Z(β⃗) =

m1
g1=−m1

m2
g2=−m2

m3
g3=−m3

m4
g4=−m4

m5
g5=−m5

m6
g6=−m6

c{gj}e
βg1+β ′g2+β+g3+β−g4+β ′

+
g5+β ′

−
g6 , (57)

where:

m1 = m2 = L|Λ|, m3 = m4 = L′
|Λ|, m5 = L(L − 1)(|Λ| − 1)/2,

m6 = L′(L′
− 1)(|Λ| − 1)/2. (58)

In Appendix E it is shownhow the coefficients cg1,g2,g3,g4,g5,g6 can be obtained by sampling the partition
function for O(poly(L2|Λ|, L′2

|Λ|)) number of real coupling strengths β⃗ which then gives an estimateZ(β⃗). In order to obtain an estimate f̂ of the fidelity overlap, we then need to perform an analytic
continuation:

f̂ =
1

2|Λ|


1 − ε2

ε4 + 4

L|Λ|
1 − ε′2

ε′4 + 4

L′|Λ| Z(β⃗⋆). (59)

Suppose we demand the error in the estimation of the fidelity to be ε = O(1/poly(|Λ|)):

|f̂ − f | ≤ ε,

and that the additive error in the estimation of the classical partition function satisfies

Prob[|Z(β⃗)− Z(β⃗)| ≤ ε δ(β⃗)] ≥
3
4
. (60)

Then it is shown in Appendix E that the following precision will suffice:

δ(β⃗) ≤ 16TT ′L(L − 1)L′(L′
− 1)|Λ|

6e(β++β−−6.4)L|Λ|e(β
′
+

+β ′
−

−6.4)L′|Λ|

× e

β
2 −1.6


L(L−1)(|Λ|−1)e


β′

2 −1.6

L′(L′−1)(|Λ|−1)

. (61)
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Fig. 5. Representation of the d + 1 dimensional classical Ising spin lattice with couplings that encode information of the
wavefunction overlap on a d dimensional quantum spin lattice Λ. Here the overlap is ⟨Ψ̃ ⋆

|Ψ ⋆
⟩ which is an approximation

to the fidelity f = ⟨G̃|G⟩, where |G⟩ is the ground state of a Hamiltonian Ĥ and |G̃⟩ is the ground state of ˆ̃H
⋆

. The sequence
UL−1 . . .U0 provides for adiabatic evolution, in small time steps τ , of a time dependent Hamiltonian Ĥ(t) from the product
state | +

⊗|Λ|

x ⟩ to |Ψ ⋆
⟩ (which is an approximation to |G⟩), and similarly for the sequenceWL′−1 . . .W0 , in steps τ ′ , which builds

an approximation |Ψ̃ ⋆
⟩ of |G̃⟩ from | +

⊗|Λ|

x ⟩. Note that the number of gates L and L′ to reach target ground states could differ
as will the couplings generically. Each gate is a composition of diagonal gates with dimensionless coupling κ(t) and two non
diagonal gates with dimensionless couplings β± . The temporal evolution of quantum gates can be represented on a classical
spin lattice of one extra dimension with bond couplings as indicated on the left. For the Hamiltonian in Eq. (44) κ(kτ)means
dimensionless row couplings βk between nearest neighbour spins, local fields of strength βkh/J , and couplings β± between
rows. The parameters for adiabatic evolution to |Ψ̃ ⋆

⟩ are indicated with primes.

To summarise, the required precision in the partition function estimation shows an exponential
dependence on quadratic and cubic quantities in the system size. The origin of this dependence lies
on the number of Fourier frequencies needed to reconstruct the partition function. This number is
obtained by summing the amplitude of the bonds in the lattice (represented in Fig. 5) associated
with each coupling. The interactions corresponding to vertical (horizontal) bonds need a number
of Fourier frequencies which is quadratic (cubic) in the system size. This different behaviour
ultimately comes from the chosen adiabatic time dependence on the total Hamiltonian of the system
(Eq. (44)).

The reconstruction of the fidelity overlap described above required sampling over a large range for
the six ‘‘temperatures’’ β⃗ = {β1, β2, β3, β4, β5, β6

}. We can further ask how precisely we need to
sample the classical partition function ifweonly sample over a finite intervals. Since, for finite systems,
the partition function is analytic this is indeed possible. Defining the interval for each temperature
as

∆j =
e−β

j
min − e−β

j
max

2mj
(62)
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it is shown in Appendix E that for∆j ≪ 1 the required precision scales as

δ(β⃗) ≤ 16TT ′L(L − 1)L′(L′
− 1)

6
j=1

e


βj
2 −1+log

∆j
2


2mj
. (63)

Hence one incurs a penalty exponential in the system size to sample only over a small temperature
interval.

We comment that for the sake of simplicity we have restricted our analysis to some homogeneous
quantum Ising models in d dimensions, models which already have a well known correspondence to
the d+1dimensional classical Isingmodel [25]. Indeed onemaywonderwhy go through this laborious
reconstruction technique involving sampling classical partition functions over six temperature
parameters when the quantum phase transition in the d dimensional quantum transverse Isingmodel
can be simply probed by computing the classical partition function on a d + 1 dimensional lattice
around the critical temperature. However our construction is more general and allows analysis of
quantum models which do not have well studied classical correspondences. For example, extensions
to disordered quantum spin Hamiltonians of the form, say,

Ĥ = −


i

(hx
i σ

x
i + hy

i σ
y
i + hz

i σ
z
i )−


⟨i,j⟩

(Jxi,jσ
x
i σ

x
j + Jyi,jσ

y
i σ

y
j + Jzi,jσ

z
i σ

z
j )

is straightforward.3
Finally, while fidelity overlaps could be estimated using the method of mapping to a generic

quantum circuit presented in Section 6.1, the method described in this section is much more efficient
in resource scaling since the gates are applied directly using the transfermatrix formalism rather than
mapping to a fixed library of quantum gate in an encoded circuit. Furthermore, the required accuracy
of estimation of the partition function is exponentially better than the bound computed in that case
(Eq. (42)).

6.3. Corner magnetisation and estimating partition functions

The foregoing analysis illustrates the computational power of accurate evaluation of Ising partition
functions. We can wonder what is the computational power of moremodest tasks, such as estimating
the mean values of specific observables. We have studied a simple instance of this problem. As it
turns out, very simple tasks already have computational power. For instance, the ability to accurately
estimate single site magnetisations on random Ising models lead to random approximation schemes
for partition functions. This is the content of the following theorem.

Theorem 6.4. Consider the Ising model on a two-dimensional square latticeΛ, described by the Hamilto-
nian:

H(σ ) = −J

⟨i,j⟩

σiσj − h

i∈Λ

σi, (64)

where J can equal+1, 0 or −1. For any ε, inverse temperatureβ , andmagnetic field strength h it is possible
to provide an estimate Ẑ(β, h) for the Ising partition function Z(β, h) satisfying

Prob[|Ẑ(β, h)− Z(β, h)| ≤ ε Z(β, h)] ≥ 3/4, (65)

in a time that scales at most polynomially with β, ε−1, |h|, and the size of the system if we are able to per-
formmagnetisationmeasurements on the corner of specific non-homogeneous Ising systemswith a relative
precision that need not be lower than the inverse of some polynomial in |h|, ε−1 and the size of the system.

Proof. The proof is given in Appendix F. �

3 Again, one could use the Baker–Campbell–Hausdorff expansion to decompose the evolution operator associated with this
Hamiltonian. Then, it would be enough to express σ y in terms of σ x and σ z operators using an Euler angle decomposition.
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This result might appear surprising since it applies even to antiferromagnetic Ising models
whereas, as discussed above, amultiplicative approximation of the partition function in that case is an
NP-hard problem. However, corner measurement is a quantum process which assumes the thermal
state of the classical Hamiltonian has been prepared. Some earlier work [22,39,23] provides quantum
algorithms to simulate thermal states of classical spin models. However as mentioned in Section 4,
generically these algorithms scale exponentially in the system size, and given the complexity of
multiplicative approximations of antiferromagnetic partition functions wewould not expect a drastic
improvement in thermal state preparation by quantum algorithms in that case. Whether efficient
quantum algorithms exist for preparing ferromagnetic thermal states is as far as we know an open
problem but if so than corner magnetisation measurement could prove a useful diagnostic for such
algorithms since classical FPRAS is available. Finally, we add that recently quantum algorithms for
FPRAS were found which exhibit a quadratic speed up over the classical counterparts [40]. These
algorithms are rather different in spirit from measuring corner magnetisation as instead of using
mixed states they use a combination of Grover search and phase estimation to prepare pure states
of many qubit systems which coherently encode probability distributions of various classical spin
configurations.

7. Conclusions

In conclusion, we have presented schemes allowing for the measurement of partition functions
andmean values of classical many-body systems, at complex temperatures. Althoughwe havemainly
focused on Ising Hamiltonians, these schemes can be generalised to other systems, such as the q-state
Potts model for instance. We have presented two applications of these schemes.

First, we have studied the possibility to use it in order to compute real temperature partition
functions. Although our findings yielded results as poor as previous attempts made by other authors,
it is interesting to have found similar results using a different route, in particular one that involves
reconstructing partition functions for all temperatures as opposed to a single temperature. We have
also seen how experimental data allow to a posteriori sharpen error estimates, through a central-limit
theorem. This theoremhas a validity that extends beyond the present context. Someof its implications
will be discussed elsewhere [41]. To the best of our knowledge, the problem of determining whether
quantummechanics can be used (or not) to efficiently compute partition functions of classicalmodels,
or even FPRAS thereof, is still open. As a second application, we have seen how some link invariants
could be deduced from the ability to detect imaginary temperature partition functions, again using
constant depth quantum circuits.

These applications all rely on two kinds of schemes, onewhose implementation could, in principle,
only require a constant time, another involving a time evolution. All schemes translate naturally into
global operations and measurements supplemented by edge addressability. This is natural for certain
architectures such as cold trapped atoms in optical lattices [42], or superconducting qubit arrays [43].
Furthermore, this kind of quantum processing can be made fault tolerant without demanding more
addressability as shown in [44].

We have considered the dual of the first application mentioned, and studied the possibility to
efficiently simulate a quantum computer, given the ability to estimate real temperature disordered
Ising partition functions. We have found that quantum amplitude of a depth-D quantum circuit,
acting on n qubits, could be reliably estimated if suitably associated disordered Ising models could
evaluated with a precision that essentially grows exponentially with D and n. The problem of
simulating quantum circuits from statistical mechanical partition functions, estimated with a looser
precision (polynomial, say) is, just as open its dual. One implication is that given the power to
compute classical partition functions in d+1 dimensions, in certain cases one can compute quantities
relevant to quantum phase transitions in d dimensions. This argument involved viewing the overlap
of two ground states of a quantum Hamiltonian as the scattering matrix element for a quantum
computationwhich can then be estimated by computing classical Isingmodel partition functionswith
real couplings. The method was illustrated for the particular case of the quantum transverse Ising
model in one dimension and while that model already has a well known classical correspondence,
the technique extends to a variety of other quantum spin Hamiltonians in a straightforward manner.
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Thismapping could provide newways to performquantum simulation, via either quantumor classical
algorithms for estimating Isingmodel partition functions. Given someof the difficulties that beset fault
tolerant implementations of quantum simulations [45,46] new approaches are certainly desirable.

Finally, we have seen how the ability to prepare thermal states and perform single qubit
measurements immediately implies the existence random approximation schemes. This observation
naturally leads to wonder what is the quantum complexity of the preparation of classical thermal
state. In view of recent inapproximability results [47], it would be very interesting to solve this
question in the case of the antiferromagnetic Ising model for instance.
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Appendix A. Disordered systems

Preliminary: We found it convenient to use a slight variation of the detection schemes described in
Section 2 and consider single qubit gates described by conjugation of a phase gate by the Hadamard
gate:

G(θ) = Had


1 0
0 eiθ


Had. (A.1)

For θ ⋆ = −i log tanhβJ , this single qubit gate turns out to be equal to T (βJ)/2 cosh(βJ), where T (βJ)
is the two-spin Ising transfer matrix introduced in Eq. (51).

In this appendix, we are interested in two-dimensional Ising models, of size n × m, with random
bond interactions having strengths taking values in {−1,+1}. The magnetic field felt by each spin
is also assumed to be random and takes value in {−1, 0,+1}. For a fixed configuration of bonds and
magnetic fields, the partition function can be evaluated for a specific range of complex temperature.
This is done via instantaneous measurements on a two-dimensional lattice of quantum particles, or
through the time evolution of a one-dimensional quantum system.

The one-step protocol does not pose any particular problem for disordered systems. Fromquantum
amplitudes of the form given by Eq. (7) evaluated at specific angles, one can reconstruct the partition
function through analytic continuation. Namely,

Z(β) = A(iβ) =

2N1
j1=0

w(N1)(iβ − αj1)A

2j1π
N1


, (A.2)

wherew(N1) is defined by Eq. (25), and where N1 is polynomial in n and inm.
The case of the time evolved scheme is slightly more complicated than in Section 2. Reproducing

the reasoning presented in that section, one can find an appropriate sequence of controlled phase
gates (3) and G-gates that provides relevant quantum amplitudes. The real partition functions are
again obtained after Fourier transform and analytic continuation. It turns out that three parameters
are enough for that. One, α, takes into account constant-time interactions and magnetic fields. The
two others, θ+ and θ−, are respectively related to ferromagnetic and antiferromagnetic interactions
between particles corresponding to consecutive time-slices. More precisely, one can see that the kind
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of partition functions we wish to consider can be written as

Z(β) = 2m(eβ + e−β)N
+

2 +N−

2

N1
ν1=−N1

N+

2
ν+2 =0

N−

2
ν−2 =0

cν1ν+2 ν−2 eν1β(tanhβ)ν
+

2 +ν−2 , (A.3)

where N1,N+

2 ,N
−

2 are again polynomial in n and in m. Actually, N1 = 2nm − n represents a bound
on the total number of ‘‘horizontal’’ bonds plus the number of sites, while N+

2 (resp. N−

2 ) represents
the number of ferromagnetic (resp. antiferromagnetic) edges connecting spins at different time-slices
(’’vertical’’ bonds) (N+

2 + N−

2 = m(n − 1)). The coefficients cν1ν+2 ν−2 are essentially Fourier transforms
of quantum amplitudes A(α, θ+, θ−) detected at selected angles α, θ+, θ−

∈ (0, 2π ]:

cν1ν+2 ν−2 =
(−1)ν

−

2

(2N1 + 1)(N+

2 + 1)(N−

2 + 1)

2N1
j1=0

N+

2
j+2 =0

N−

2
j−2 =0

e
−2π i


ν1 j1

2N1+1 +
ν
+

2 j+2
N+

2 +1
+
ν
−

2 j−2
N−

2 +1



× A


2j1π
2N1 + 1

,
2j+2 π

N+

2 + 1
,

2j−2 π
N−

2 + 1


. (A.4)

One can note how the particular form of the G-gate (which does not involve terms of the form e−iθ )
allows for the Fourier transform in θ± to be restricted to positive frequencies. Again, plugging Eq. (A.4)
into Eq. (A.3) allows one to express the partition function as a function of the ‘‘experimental’’ data:

Z(β) =
2m(eβ + e−β)N

+

2 +N−

2

(2N1 + 1)(N+

2 + 1)(N−

2 + 1)

2N1
j1=0

N+

2
j+2 =0

N−

2
j−2 =0

A(j1, j+2 , j
−

2 )


eβe−

2iπ j1
2N1+1

−N1

× S(2N1)


eβe−

2iπ j1
2N1+1


× S(N)

tanhβe
−

2iπ j+2
N+

2 +1

 S(N)

− tanhβe
−

2iπ j−2
N−

2 +1

 , (A.5)

where S(N)(q) ≡ (1 − qN+1)/(1 − q).
The restricted set of possible values for the couplings andmagnetic fields implies that the partition

function of the disordered Ising model we are considering can be written as

Z(β) =

N
k=−N

ξke−kβ (A.6)

where againN scales polynomially with the system size, andwhere each ξk is a positive integerwhose
magnitude is at most equal to the number of possible configurations for the system, i.e. ξk ≤ 2nm,∀k.
This implies they can be represented exactly with nm bits. Thus, the estimation of each coefficient
ξk with nm bits of accuracy, i.e. with a variance E2(ξk) lower than one would allow for an exact
reconstruction of the partition function for all temperatures. Yet another Fourier transform shows
that

ξk =
1

2N + 1

2N+1
j=0

Z

i

2jπ
2N + 1


e−i 2jπ

2N+1 . (A.7)

Combining this latter relationwith Eq. (A.2) for instance, it is possible to see that in order to get ξk with
nm bits of accuracy, onewould need to estimate the quantum amplitudes themselves with O(nm) bits
of accuracy. Unfortunately, we do not know how to do that efficiently. In our scheme, the quantum
amplitudes are obtained from repeated Bernoulli trials. It therefore seems that O(2nm) trials are then
necessary. A similar conclusion is reached when the time evolution protocol in one lower dimension
is used.

We now give some more qualitative insight on the performance of the protocol by analysing a
particular instance of the reconstruction (through the time evolving algorithm) of the coefficients ξk
(Eq. (A.6)) for an 8 × 8 Ising model with 50% positive/negative bonds and uniform magnetic field
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Fig. A.6. (Colour online) Plot of the coefficients ξk (in blue, see Eq. (A.6)) and an upper bound on their standard deviation σξk
(in red) as a function of k for an 8 × 8 Ising model with 50% positive/negative bonds and uniform magnetic field (set to 1).
From this plot we can qualitatively justify the performances of the algorithm in the small and high temperature limits. The
low temperature limit behaviour has to be found in the range of k where the coefficients ξk start to be non-zero. This range
does not correspond to the maximum possible value of k due to the fact that, in the present model, spin configurations cannot
minimise each local Hamiltonian. This does not allow to take advantage of the enhanced precision of the protocol for big k and
it is the reason for the poor performances of the algorithm at small temperatures. As the temperature increases, the whole
range of k starts to become important, so that we can focus on the intermediate values of k, where the bigger coefficients ξk are.
As evident from the plot, in this regime the relative error is quite small explaining the good high temperatures performances
of the protocol. The value of k where the standard deviation is equal to the relative coefficient ξk sets the limit for a possible
estimate of an upper bound on the ground state energy.

(set to 1). In Fig. A.6 we plot the coefficients ξk together with an upper bound on their standard
deviation as a function of k.

For small temperatures only coefficients ξk with big k are important as it is evident from the
series in Eq. (A.6). As shown in the plot, in the ‘‘big k’’ range, two facts are evident: the standard
deviation goes to zero and the coefficients ξk are exactly zero. The reason behind the behaviour of
the standard deviation is found by algebraically expanding Eq. (A.3) and noticing that the coefficients
(responsible for the amplification the experimental errors) multiplying big powers of eβ are small.
On the other hand, the behaviour of the coefficients ξk for big k is a natural feature of the disordered
model consider here. More specifically, it simply reflects the impossibility for the ground state spin
configuration to minimise each local term of the Hamiltonian, namely, to satisfy each bond and align
with themagnetic field everywhere. The low temperature properties of themodel then appear around
the values of k where the coefficients ξk start to be non-zero. Unfortunately, in that regime the error
is no longer approaching zero, explaining why, in this case, the protocol does not perform well at
low temperatures. Conversely, for a uniform Ising model, the coefficient ξk would be non-zero for the
biggest possible k. This explains why we could obtain good results in the low temperature limit for
the uniform case (see Fig. 2).

By inspecting Eq. (A.6) one is easily convinced that the coefficients ξk for smaller k become more
important as the temperature increases. In this regime, the standard deviation is basically constant
witnessing properties of the counting process needed to calculate the coefficients ξk, again obtained
by expanding Eq. (A.3) in powers of eβ . As one can infer by the plot, the relative error is quite small for
these intermediate values of k, justifying the better high temperatures performances of the protocol.

Now it is natural to consider the possibility to use our Fourier sampling scheme to estimate an
upper bound of the ground state energy. This relies on restating the problem of finding the ground
state energy as the problem of finding the maximum k for which ξk ≠ 0. Following this statement, in
order to find an estimate for the upper bound for the ground state energy, wewant, roughly speaking,
to look at the condition by which the standard deviation on the coefficients ξk is not bigger than the
coefficients themselves. In the plot presented here, an upper bound on the ground state energy is
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Fig. A.7. Performance of the reconstruction of the squared partition function for the classical ferromagnetic Ising model with
open boundary conditions using Protocol 1. Relative errors in the logarithm of the reconstruction of the squared partition
function are plotted as a function of the inverse temperature. Each curve is the relative error for a different system size. For all
system sizes the error shows a peak near the critical point. However, for systems larger than 7 × 7 the error grows quickly as
the temperature approaches zero.

then obtained by looking at the point where the two curves intersect. As one can see, the result for
this instance is very good, but, generically speaking, the impossibility to rule outworst cases scenarios
does not allow us to give more quantitative results.

Finally we elaborate on the statementmade in Section 3 that two differentmeasurement protocols
can be used to calculate partition functions. Indeed in the sameway Protocol 2 can be used to estimate
the real temperature partition function via measurements of the quantum overlap ⟨Φ|Ψ ⟩ and an
analytic continuation, Protocol 1 can be used to estimate the square of the real temperature partition
function via measurements of the square of the overlap |⟨Φ|Ψ ⟩|

2. The only difference is that as the
function to reconstruct is squared, the frequencies of themodes in the Fourier series thatwe construct
from experimental data is doubled. Hence, for Protocol 1 more measurements are needed, double
the amount needed in Protocol 2. We have reconstructed the square of the partition function of a
classical Ising model in 2D and performed the analytic continuation. For a study of the errors in the
reconstruction see Fig. A.7.

Appendix B. Proof of Theorem 4.1

Let us start with the following classical result [24].

Theorem B.1 (Berry–Esséen). Let W0 . . .WL−1 denote L independent random variables such that ⟨Wj⟩ =

0, 0 < ⟨W 2
j ⟩ < ∞, ⟨|Wj|

3
⟩ < ∞, j ∈ {0 . . . L − 1}. The cumulative distribution function FW of

W ≡
W0 + · · · + WL−1

(⟨W 2
0 ⟩ + · · · + ⟨W 2

L−1⟩)
1/2

satisfies the inequality

∥FW − F∗∥∞ ≤ CBE

L−1
l=0

⟨|Wl|
3
⟩

 L−1
l=0

⟨W 2
l ⟩

3/2

, (B.1)

where F∗ denotes the cumulative distribution of a zero-mean unit-variance Gaussian. The value of the
constant CBE is at most 0.56 [48].



234 S. Iblisdir et al. / Annals of Physics 340 (2014) 205–251

We are going to use this theorem to study the behaviour of the random variable dA, defined as

dA =

2N
j=0

M
k=1

Wj(k) (B.2)

where

Wj(k) =
1
M

ℜw(N)(iβ − αj)

ℜA(αj)− Xj(k)


. (B.3)

If the quantum experiments are perfect, then ℜA(αj) = ⟨Xj(k)⟩,∀k = 1 . . .M and ⟨Wj(k)⟩ = 0
indeed. Let us assume that 0 < ⟨Wj(k)2⟩ ∀j = 0 . . . 2N , as in the assumptions appearing in the
Berry–Esséen theorem. From a physical point of view, we expect this assumption to be generically
satisfied. Indeed, ⟨Wj(k)2⟩ = 0 means that pj = 0 or that pj = 1. In that case, the contribution

k
1
M ℜw(N)(iβ − αj)


ℜA(αj) − Xj(k)


is always strictly zero, and can therefore not be a source of

errors. We will therefore assume that

∃ δ∗ > 0 s.t. δ∗ < pj < 1 − δ∗ ∀j = 0 . . . 2N. (B.4)

Let us introduce the quantity

λM = 1


j,k

⟨Wj(k)2⟩
1/2

. (B.5)

The random variable λMdA can certainly be identified with the random variable W appearing in the
Berry–Esséen theorem and ∀∆ > 0,

Proba[|dA| < ∆] = Proba[|λMdA| < λM∆]

=

FλMdA(λM∆)− F∗(λM∆)


+

F∗(−λM∆)− FλMdA(−λM∆)


+

F∗(λM∆)− F∗(−λM∆)


≥ 1 − 2F∗(−λM∆)− 2∥FλMdA − F∗∥∞

≥ 1 − 2F∗(−λM∆)− 2CBEDM

≥ 1 − 2F∗(−λM∆)− 1.12DM ,

where

DM =


j,k

⟨|Wj(k)|3⟩
j,k

⟨Wj(k)2⟩
3/2 . (B.6)

This latter bound is not useful as such because the quantities ⟨|Wj(k)|3⟩ and ⟨Wj(k)2⟩, on which
λM and DM depend, are unknown. For that reason, we will seek to replace ⟨|Wj(k)|3⟩ and ⟨Wj(k)2⟩
by appropriate estimates, constructed from experimental observations. In order to lighten a bit the
notation, we introduce the (shifted) Bernoulli randomvariable Bj(k) ≡ ℜA(αj)−Xj(k). By assumption,
for a fixed value of j, allXj(k) are i.i.d. and ⟨Bj(k)⟩ = 0. Clearly, ⟨Bj(k)2⟩ = E2(pj) and ⟨|Bj(k)|3⟩ = E3(pj).
If we denote by pj the probability that Xj(k) = −1, it is clear that

ℜA(αj) = ⟨Xj(k)⟩ = −pj + (1 − pj) = 1 − 2pj,

and that

E2(pj) = 4pj(1 − pj).

Similarly,

E3(pj) = 8pj(1 − 3pj + 4p2j − 2p3j ).
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Letpj denote an estimate for pj constructed from observations as:

1
M

M
k=1

Xj(k) = 1 − 2pj. (B.7)

Applying Hoeffding’s inequality to the case ofM identical Bernoulli trials shows that

Proba[|pj − pj| ≤ ε] ≥ 1 − 2e−2ε2M
∀ε > 0.

pj can be used to construct estimates for ⟨Bj(k)2⟩ and ⟨|Bj(k)|3⟩ as

E2(pj) ≡ 4pj(1 −pj),
E3(pj) ≡ 8pj(1 − 3pj + 4p2j − 2p3j ).

Since E2 and E3 are continuous differentiable functions over [0, 1], we have that, whenever
|pj − pj| ≤ ε, thenE2(pj)− E2(pj)

 ≤ max
0≤p≤1

 ddpE2(p)
× ε = 4ε,

and

|E3(pj)− E3(pj)| ≤ max
0≤p≤1

 ddpE3(p)
× ε = 8ε.

Let εj denote a set of 2N + 1 positive numbers. We see that whenever |pj − pj| ≤ εj ∀j = 0 . . . 2N ,
which occurs with probability at least

2N+1
j=0


1 − 2e−2ε2j M


,

the numerator of DM is upper bounded by the quantity
j,k

|ℜw(N)(iβ − αj)|
3E3(pj)+ 8εj


,

while the quantity


j,k⟨Wj(k)2⟩, appearing in the denominator of DM , is lower bounded by

VM =


j,k

|ℜw(N)(iβ − αj)|
2E2(pj)− 4εj


.

So, whenever this latter quantity is strictly positive and |pj − pj| ≤ εj ∀j = 0 . . . 2N , the quantity

DM({εj}) =


j,k

|ℜw(N)(iβ − αj)|
3
E3(pj)+ 8εj




j,k
|ℜw(N)(iβ − αj)|2

E2(pj)− 4εj
3/2

=
1

√
M

2N
j=0

|ℜw(N)(iβ − αj)|
3
E3(pj)+ 8εj




2N
j=0

|ℜw(N)(iβ − αj)|2
E2(pj)− 4εj

3/2

upper bounds DM .
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Also, whenever |pj − pj| ≤ εj ∀j = 0 . . . 2N , the quantity

λM({εj}) =
M

j,k
|ℜw(N)(iβ − αj)|2

E2(pj)+ 4εj


=

√
M

2N
j=0

|ℜw(N)(iβ − αj)|2
E2(pj)+ 4εj


lower bounds λM . Of course, wheneverDM({εj}) ≥ DM andλM({εj}) ≤ λM , we have that

1 − 2F∗(−λM∆)− 2CBEDM ≥ 1 − 2F∗(−λM({εj})∆)− 2CBEDM({εj}). (B.8)

One possibility to ensure that VM ≥ 0 is to pick

εj =
1

4 + s
E2(pj), (B.9)

where s > 0 is a constant we are free to choose at our convenience. It is not possible to ensure that
VM is always strictly positive. Indeed, from Eq. (B.7), we see that in the event where Xj(1) = · · · =

Xj(M) ∀j = 0 . . . 2N , we have thatpj = 0 orpj = 1, implying that E2(pj) = 0 ∀j and that VM = 0.
ThenDM would be infinite, a situation where we are not able to construct a useful estimator. For that
reason, we define our estimator for DM as follows:

DM({εj}) =

DM({εj}) if VM ≠ 0,
0 if VM = 0. (B.10)

Our estimator for λM is defined as

λM({εj}) =

λM({εj}) if VM ≠ 0,
−∞ if VM = 0. (B.11)

Fortunately, the probability of a pathological situation,

Proba

VM = 0


=

2N
j=0


(pj)M + (1 − pj)M


.

is exponentially small inM whenever 0 < pj < 1 for at least some j.
Let us estimate the probability to get a valid and useful bound L. We consider the following four

events:

A = {VM ≠ 0}, B = {|pj − pj| ≤ εj∀j}, C = {DM ≤DM({εj})},

D = {λM ≥λM({εj})}.
We are interested in the event A ∩ C ∩ D . Obviously,

Proba

A ∩ C ∩ D


= Proba


C ∩ D


− Proba


C ∩ D|notA


Proba


notA


and

Proba

C ∩ D


≥ Proba


C ∩ D ∩ B


.

Therefore,

Proba

A ∩ C ∩ D


≥

2N
j=0


1 − 2e−ε2j M


−

2N
j=0


pMj + (1 − pj)M


,

which tends to 1 exponentially asM grows large.
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In summary, the random variable

1 − 2F∗(−λM({εj})∆)− 2CBEDM({εj}),

with εj defined by Eq. (B.9), lower bounds the quantity Proba

|dA| < ∆


with probability at least

P ({εj},M,N) ≡

2N
j=0


1 − 2e−ε2j M


−

2N
j=0


pMj + (1 − pj)M


,

Appendix C. Proof of Lemma 6.2

We begin with the discrete gate set

G0 = {Zk(π/4),Hadk, k = 1 . . . n} ∪ {CNOTk,k+1, k = 1 . . . n − 1} (C.1)

acting on an n qubit register that is universal for quantum computation [49]. By the Solovay–
Kitaev [50] theorem an arbitrary polynomial sized quantum circuit can be efficiently approximated
from this gate set with a polynomial overhead. To realise this using global operations in the mirror
encoding of Raussendorf, one makes frequent use of the global shift operator Gtot = σ z

tot(π)σ
y
tot(π/2)

CPtot, with the property thatG2n+1
tot is a reflection of the state of the chain about itsmiddle. An arbitrary

Z rotation on logical qubit k can be physically implemented as [16]

Zlogi
k (α) = ei

α
2 (σ

z
k +σ z

n−k+1)

= Gn+1−k
tot σ

y
tot(π) Gσ

y
tot(π)G

k−1σ z
tot(−α/2)G

n+1−k
tot σ

y
tot(π) G σ

y
tot(π)

×Gk−1 σ z
tot(α/2). (C.2)

Similarly, an X rotation on logical qubit k is

Xlogi
k (α) = ei

α
2 (σ

x
k +σ x

n−k+1)

= Gn−k
tot σ

y
tot(π) G σ

y
tot(π) G

k σ z
tot(−π/2) σ

y
tot(α/2) σ

z
tot(π/2) G

n−k
tot σ

y
tot(π)

×Gσ y
tot(π)G

kσ z
tot(−π/2) σ

y
tot(−α/2)σ

z
tot(π/2).

Finally, an entangling gate between logical qubits k and k + 1 can be implemented as

Vlogi
k,k+1(α) = eiα


σ z
k ⊗σ x

k+1+σ
z
k+n⊗σ

x
k+n−1


= GkXlogi

k (α)GĎk. (C.3)

Since Vk,k+1(π/4)Hadk+1Zk(π/2)Zk+1(π/2)Hadk+1 = CNOTk,k+1 then the gate set

G1 = {Zlogi
k (π/4),Hadlogi

k , k = 1 . . . n} ∪ {Vk,k+1(π/4), k = 1 . . . n − 1} (C.4)

is universal for quantum computation. Now the Hadamard gate can be related to X and Z rotations
through the identity Had = σ z(π/2)σ x(π/2)σ z(π/2). Also we note the following relations:
[σ z(π/8)]31 = σ z(−π/8), and σ y(±π/4) = σ x(−π/2)σ z(∓π/4)σ x(π/2) and also σ x(±π/2) =

σ z(±π/2)Hadσ z(±π/2). Then from Eqs. (C.2) and (C.3), we see that it is enough to be able to
implement

G = {CPtot, σ
z
tot(π/8),Hadtot}

in order to achieve universal quantum computation.

Appendix D. Proof of Theorem 6.3

Our starting point is the following direct consequence of the adiabatic theorem, as stated in [35].

Lemma D.1. Let γ = mint∈[0:T ] gap Ĥ(t), where gap Ĥ(t) denotes the difference between the two lowest
eigenvalues of Ĥ(t), and let |Φ ′

⟩ denote the quantum state obtained by the continuous evolution induced
on |Φ0⟩ by the Hamiltonian family (44). Let also |Λ| and |E(Λ)| denote respectively the number of sites
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and edges of the latticeΛ. The distance between |Φ ′
⟩ and the true ground state |G⟩ is at most δ whenever

T satisfies

T ≥ T∗(Ĥ, δ) =
105

δ2


|h| · |Λ| + |J| · |E(Λ)|

3
γ 4

. (D.1)

Proof. Let us introduce the parameter s = t/T . Theorem 2.1 of Ref. [35] provides the following
sufficient condition for adiabaticity:4

T ≥ T∗(Ĥ, δ)

=
105

δ2
max
0≤s≤1

max


∥

d
ds Ĥ∥

3
∞

γ 4
,
∥

d
ds Ĥ∥∞ · ∥

d2

ds2
Ĥ∥∞

γ 3


(D.2)

valid for any time-dependent Hamiltonian Ĥ(t). Adapting this condition to the special case of
Hamiltonians (44), we see the r.h.s. of (D.1) certainly upper bounds the r.h.s. of (D.2). �

Wewish to discretise the time evolution of our system. Instead of considering the time-dependent
evolution associated with the Hamiltonians Ĥ(t), we will deal with L consecutive constant unitary
operators, Uk = Exp


−i τ Ĥ0 − i τ Ĥ1(kτ)


, k = 0 . . . L − 1, where we define the discretisation step

as

τ ≡ T/L. (D.3)

Wewish to work with the state |Φ⋆
⟩ = UL−1 . . .U0| +

⊗|Λ|

x ⟩ rather than with the state |Φ ′
⟩. Of course

when L grows large we expect this substitution to have negligible effect. But we need to be precise
and quantify the induced error. The following lemma addresses this issue.

Lemma D.2. The distance between |G⟩ and |Φ⋆
⟩ is bounded as

∥|Φ⋆
⟩ − |G⟩∥ ≤ δ + T


2

|h| · |Λ| + |J| · |E(Λ)|


L

, (D.4)

whenever T ≥ T∗(Ĥ, δ).

Proof. The triangular inequality yields

∥ |Φ⋆
⟩ − |G⟩∥ ≤ ∥ |Φ ′

⟩ − |G⟩∥ + ∥ |Φ⋆
⟩ − |Φ ′

⟩∥. (D.5)

The first term of the r.h.s. of this expression is of course bounded by δ. To bound the second, we use
Lemma 1 of [51], which states that if two time-dependent Hamiltonians Ha(t),Hb(t), 0 ≤ t ≤ T
differ at most by ε in operator norm for every t , then the difference between the unitary evolutions
they induce, Ua(T ),Ub(T ) satisfy ∥Ua(T ) − Ub(T )∥∞ ≤

√
2Tε. For every t ∈ [0, T ], let k(t) ∈

{0, . . . , L−1} such that k(t)τ ≤ t ≤ (k(t)+1)τ . Clearly, ∥Ĥ(t)−Ĥ(k(t)τ )∥ ≤ τ(|h|·|Λ|+|J|·|E(Λ)|).
Identifying the r.h.s. of this inequality with ε and bearing in mind the definition of τ , one bounds the
second term of the r.h.s. of (D.5) in the desired way. �

Next, we split each unitary Uk into a part that depends only on Ĥ0 and a part that depends only on
Ĥ1(kτ): for τ small enough, each unitary Uk can be safely replaced by the operator

Uk = e−iτ Ĥ0e−iτ Ĥ1(kτ). (D.6)

Indeed, the Baker–Campbell–Hausdorff identity [51] implies that

∥Uk − Uk∥∞ ≤ K

|h| · |Λ| + |J| · |E(Λ)|


·

|h⊥| · |Λ|


τ 2, (D.7)

4 In the following ∥A∥∞ will denote the operator norm of an operator A, i.e. ∥A∥∞ = supx
∥Ax∥2
∥x∥2

.
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for some constant K . Then we arrive at the following:

Lemma D.3. The quantity by which the state UL−1UL−2 . . .U0| +
⊗|Λ|

x ⟩ deviates from the true ground state
of H⋆ is at most

∆ = δ + T


2

|h| · |Λ| + |J∥| · |E(Λ)|


L

+ KL

|h| × |Λ| + |J∥| × |E(Λ)|


× |h⊥| · |Λ|τ 2. (D.8)

Proof. The result follows by combining the inequality in Eq. (D.7) with Lemmata D.1 and D.2. �

Appendix E. Approximation of fidelity overlaps

In this section we describe how to reconstruct fidelity overlap which is proportional to a partition
function with complex couplings by sampling from partition functions with real couplings. We begin
by rewriting the partition function using more compact notation:

Z(β⃗) = B(β⃗)
0

g1=−n1

0
g2=−n2

0
g3=−n3

0
g4=−n4

0
g5=−n5

0
g6=−n6

c̃g1,g2,g3,g4,g5,g6e
6

j=1 β
jgj , (E.1)

where:

β⃗ = {β1, β2, β3, β4, β5, β6
} ≡ {β+, β−, β

′

+
, β ′

−
, β, β ′

},
n1 = n2 = 2L|Λ|, n3 = n4 = 2L′

|Λ|,
n5 = L(L − 1)(|Λ| − 1), n6 = L′(L′

− 1)(|Λ| − 1).

and where B(β⃗) =
6

j=1 Bj(β
j) with Bj(β

j) = e
1
2 njβ

j
and c̃ is just a relabelling of c with each index gj

ranging from [−nj, 0] rather than [−nj/2, nj/2] (recall nj = 2mj defined in Eq. (58)).
Let us define the polynomial:

p(x⃗) = p(x1, x2, x3, x4, x5, x6)

=

n1
i1=0

n2
i2=0

n3
i3=0

n4
i4=0

n5
i5=0

n6
i6=0

c̃i1,i2,i3,i4,i5,i6x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 x

i6
6 , (E.2)

where x⃗ = {x1, x2, x3, x4, x5, x6} ∈ R6. Introducing the notation:

x(·) = e−(·),

one has the trivial relation:

p(x1(β+), x2(β−), x3(β
′

+
), x4(β ′

−
), x5(β), x6(β ′)) = B−1(β⃗)Z(β⃗). (E.3)

Note that, for physical temperatures, the domain of the polynomial is such that xj > 0 and ∥xj∥ ≤ 1
for j = 1, . . . , 6. We now want to reconstruct the polynomial p(x⃗) from a set of N data values p(x⃗⃗i)
with x⃗⃗i ≡ {x1,i1 , x2,i2 , x3,i3 , x4,i4 , x5,i5 , x6,i6} ∈ Γ where Γ is a certain lattice of points in R6. Although
several options are available [52], in our case the polynomial is such that the simplest possible option
can be used: a rectangular mesh lattice as:

Γ = {x1,i1=1, . . . , x1,i1=n1+1} × · · · × {x6,i6=1, . . . , x6,i6=n6+1}.

This is justified by the fact that, as we constructed it, the polynomial p(x⃗) has degree at most nj in
xj (j = 1, . . . , 6). This means that p(x⃗) actually lies in the product space Πn1 × · · · × Πn6 , where
Πn indicates the space of univariate polynomials of degree at most n. Explicitly, the data values are
written as:

p(x⃗⃗i) ≡ p(x1,i1 , x2,i2 , x3,i3 , x4,i4 , x5,i5 , x6,i6)
≡ pi1 i2 i3i4i5 i6 .
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The reconstructed polynomial can then be written as:

p(x⃗) =


i

pi1 i2 i3 i4 i5 i6 li1 i2 i3 i4 i5 i6(x⃗), (E.4)

where:

li1 i2 i3 i4 i5 i6(x⃗) = l1,i1(x1)l2,i2(x2)l3,i3(x3)l4,i4(x4)l5,i5(x5)l6,i6(x6),

with:

lj,ij(x) =

nj+1
kj=1
kj≠ij

x − xj,kj
xj,ij − xj,kj

. (E.5)

We now suppose to have a device that provides an estimateZ(β) for the partition function, Z(β), that
satisfies

|Z(β)− Z(β)| ≤ δ, (E.6)

and, from this, we want to see how well we can estimate the previously defined overlaps. Since the
overlaps depend on the analytically continued partition function Z(β⃗⋆), we are going to show how to
reconstruct it. From Eqs. (E.3) and (E.4) we can write:

Z(β⃗⋆) = B(β⃗⋆)p(x1(β⋆+), x2(β
⋆
−
), x3(β ′⋆

+
), x4(β ′⋆

−
), x5(β⋆), x6(β ′⋆))

= B(β⃗⋆)


i

pi1 i2 i3 i4 i5 i6
6

j=1

lj,ij

x⃗j(β⋆j)


. (E.7)

Now the coefficients pi1i2 i3 i4 i5 i6 are the values of the polynomial evaluated at the lattice points x⃗i, and
we can use the real temperature version of the partition function in order to write:

Z(β⃗⋆) = B(β⃗⋆)


i⃗

B−1(β⃗i⃗)Z(β⃗i⃗)

6
j=1

lj,ij

x⃗j(β⋆j)


, (E.8)

where β⃗i⃗ represents the lattice Γ transformed in ‘‘β coordinates’’:

β⃗i⃗ ≡ {β+,i1 , β−,i2 , β
′

+,i3 , β
′

−,i4 , βi5 , β
′

i6}

≡ {− log x1,i1 ,− log x2,i2 ,− log x3,i3 ,− log x4,i4 ,− log x5,i5 ,− log x6,i6}. (E.9)

We also want to make an explicit choice for this lattice:

x⃗jij ≡
ij

nj + 1
with: ij = 1, . . . , nj + 1, (E.10)

which clearly satisfies the properties of the rectangular mesh Γ we stated before. Explicitly the
mapping of this lattice in the ‘‘temperature domain’’ reads:

β
j
ij

= − log
ij

nj + 1
, (E.11)

and henceforth we use the notation β⃗i⃗ = {β1
i⃗
, β2

i⃗
, β3

i⃗
, , β4

i⃗
, β5

i⃗
, β6

i⃗
}. Now, we can write the final

formula for the overlap as a function of the estimation of the partition function at real temperatures
as:

f =
1

2|Λ|


1 − ε2

ε4 + 4

L|Λ|
1 − ε′2

ε′4 + 4

L′|Λ|

B(β⃗⋆)


i⃗

B−1(β⃗i⃗)Z(β⃗i⃗)

6
j=1

lj,ij

x⃗j(β⋆j)


. (E.12)



S. Iblisdir et al. / Annals of Physics 340 (2014) 205–251 241

We are interested in studying how the variance on this quantity scales. We have:

σ 2
f ≤

1
22(L+L′+1)|Λ|

|B(β⃗⋆)|2


i⃗

|B−1(β⃗i⃗)|
2σ 2

Z(β⃗⃗i)

6
j=1

|lj,ij

x⃗j(β⋆j)


|
2. (E.13)

From Eq. (E.6) we have:

σ 2
f ≤

1
22(L+L′+1)|Λ|

|B(β⃗⋆)|2


i⃗

δ2
i⃗
|B−1(β⃗i⃗)|

2
6

j=1

|lj,ij

x⃗j(β⋆j)


|
2. (E.14)

We now study the term by term the quantities in this expression. First,

|B(β⃗⋆)| =

6
j=1

|Bj(β
⋆j)|

=

6
j=1

|e
1
2 njβ

⋆j
|

=




1
√

−i(1 + ε)

n1/2  1
√
i(1 − ε)

n2/2  1
√
i(1 + ε)

n3/2  1
√

−i(1 − ε)

n4/2


=
1

(1 − ε2)(L+L′)|Λ|
, (E.15)

and

|B(β⃗i⃗)
−1

| =

6
j=1

|Bj(β⃗
j
ij
)−1

|

=

6
j=1

|e
−

1
2 njβ⃗

j
ij |

=

6
j=1

x
nj/2
j,ij

=

6
j=1


ij

nj + 1

nj/2

. (E.16)

We now turn to each term |lj,ij

x⃗j(β⋆j)


| for each fixed j:

lj,ij(x⃗
j(β⋆j)) =

nj+1
kj=1
kj≠ij

|x⃗j(β⋆j)− xj,kj |

|xj,ij − xj,kj |

=
(nj + 1)nj

ij−1
kj=1

(ij − kj)
nj+1

kj=ij+1
(kj − ij)

nj+1
kj=1


ρj cos θj −

kj
nj+1

2
+ ρ2

j sin θj2
ρj cos θj −

ij
nj+1

2
+ ρ2

j sin θj2

≤
(nj + 1)nj

ij!(nj + 1 − ij)!
e

nj+1
2 I(ρj,θj)

ρj cos θj −
ij

nj+1

2
+ ρ2

j sin θj2
, (E.17)
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where x⃗j(β⋆j) ≡ ρjeiθj as can be deduced by looking at Eqs. (52) and (56) and:

I(ρj, θj) =

 1

0
dx log


ρj cos θj −


x −

1
nj + 1

2

+ ρ2
j sin θj2



< −
1
4
. (E.18)

The last inequality holds for the cases considered by Eq. (56), for nj ≥ 10. Note that θ1 = −θ2 =

−θ3 = θ4 =
π
4 and θ5, θ6 ≪ 1 since Jτ/L, Jτ ′/L′

≪ 1 by assumption in the adiabatic mapping.
Reassembling everything and using Eq. (E.14) we get:

σ 2
f ≤


i⃗

A2
i⃗
δ2
i⃗
, (E.19)

with:

A2
i⃗

=

6
j=1




ij
nj+1

nj
(nj+1)2nj e(nj+1)I(ρj,θj)

ρj cos θj−
ij

nj+1

2
+ρ2j sin θj2


(ij!(nj+1−ij)!)

2


(1 − ε2)2(L+L′)|Λ|22(L+L′+1)|Λ|

≤

6
j=1


ij

nj+1

nj
(nj+1)2nj e−(nj+1)/4

(ij!(nj+1−ij)!)
2


(1 − ε2)θ25 θ

2
6 sin8 π

4 (1 − ε2)2(L+L′)|Λ|22(L+L′+1)|Λ|
. (E.20)

In arriving at the inequality above we used the fact that (ρj cos θj −
ij

nj+1 )
2
+ρ2

j sin2 θj ≥ ρ2
j sin2 π

4 for

j = 1, 2, 3, 4 and (ρj cos θj −
ij

nj+1 )
2
+ ρ2

j sin2 θj ≥ θ2j for j = 5, 6, supposing that θ5, θ6 → 0 as is the
case. In the temperature domain this formula reads:

A2(β
j
ij
) =

6
j=1

 e
−njβ

j
ij (nj+1)2nj e−(nj+1)/4

Γ 2((nj+1)e
−β

j
ij +1)Γ 2((nj+1)(1−e

−β
j
ij )+1)


θ25 θ

2
6 sin8 π

4 (1 − ε2)2(L+L′+1)|Λ|22(L+L′+1)|Λ|
. (E.21)

From this we can get the following condition for the variance on the overlap to be polynomially
bounded in the system size expressed for generic temperatures:

δ(β⃗) ≤
1

A(β⃗)
. (E.22)

Explicitly we have:

δ(β⃗) ≤

6
j=1

θ5θ6 sin4 π
4 e

nj+1
8 Γ ((nj + 1)e−β j

+ 1)Γ ((nj + 1)(1 − e−β j)+ 1)

(nj + 1)nje−
nj
2 β

j
, (E.23)

where we used 1 − ε2 ≥
1
2 .

Using the Stirling approximation we then obtain:

log δ(β⃗) ≤

6
j=1

nj


g(β j)+

β j

2


+

6
j=1

log(nj + 1)+

6
j=1

g(β j)+ K , (E.24)
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Fig. E.8. Plots of the functions g(β) (blue) and g(β) +
β

2 (red) and β

2 − a (green) with a = minβ g(β) = −1.6 as defined in
Eq. (E.25). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

where:

g(βj) = (1 − e−β j) log(1 − e−β j)− β je−β j
−

7
8

(E.25)

K = 4 log sin
π

4
+ log θ5θ6. (E.26)

This result is telling us how much error we can tolerate in the sampling of the classical partition
function in order to be able to reconstruct certain quantum overlaps with a precision that scales
polynomially in the system size. All error values satisfying Eq. (E.24) allow for such a reconstruction.
For this reason, ifwewant to obtain aweaker butmore compact resultwe can choose to state a smaller
threshold. We can do this by substituting the functions appearing in Eq. (E.24) with their minimum
(see Fig. E.8):

log δ(β⃗) ≤

6
j=1


β j

2
+ a


nj +

6
j=1

log(nj + 1)+ b, (E.27)

where:
a ≤ min

β
g(β) ∼ −1.6 (E.28)

b = K − 10. (E.29)
In the thermodynamic limit the above formula can be further approximated by:

log δ(β⃗) ≤

6
j=1


β j

2
+ a


nj +

6
j=1

log(nj)+ log θ5θ6, (E.30)

so that:

δ(β⃗) ≤ 24TT ′L(L − 1)L′(L′
− 1)|Λ|

6
6

j=1

e


βj
2 −1.6


nj
. (E.31)

This is the central result of this section. It has been obtained by supposing we sample the classical
partition function in the (inverse) temperature lattice of points as given by Eq. (E.11). One can note
that, in the thermodynamic limit, we are effectively sampling on a domain which ranges over all



244 S. Iblisdir et al. / Annals of Physics 340 (2014) 205–251

possible temperatures. We want now to address the question of how the result changes if we instead
sample only on a limited temperature domain inside [β

j
max, β

j
min] for each of the six variables β j. To

do this we introduce the interval (recall we have set J = J ′ = 1)

∆j =
e−β

j
min − e−β

j
max

nj
(E.32)

and slightly modify the definition of the lattice given by Eq. (E.10) to have:

x⃗j,ij ≡
∆j

nj
(ij − 1)+ xEj with: ij = 1, . . . , nj + 1 (E.33)

where 0 < xEj ≤ 1 and ∆j is constrained so that 0 < xj,ij ≤ 1. In the following we want to focus on
the case when∆j → 0.
The only difference with respect to the previous case lies in the terms |lj,ij


x⃗j(β⋆j)


| for each fixed j.

We now have:

lj,ij(x⃗
j(β⋆j)) =

nj+1
kj=1
kj≠ij

|x⃗j(β⋆j)− xj,kj |

|xj,ij − xj,kj |

=


nj

∆j

nj

nj+1
kj=1


ρj cos θj−

∆j
nj
(kj−1)−xEj

2
+ρ2j sin θj2

ρj cos θj−
∆j
nj
(ij−1)−xEj

2
+ρ2j sin θj2

ij−1
kj=1

ij − kj
 nj+1
kj=ij+1

ij − kj


=


nj

∆j

nj

e

1
2

nj+1
kj=1


ρj cos θj−

∆j
nj
(kj−1)−xEj

2
+ρ2j sin θj

2


ρj cos θj−

∆j
nj
(ij−1)−xEj

2
+ρ2j sin θj2

ij−1
kj=1

ij − kj
 nj+1
kj=ij+1

ij − kj


≤


nj

∆j

nj

e

nj
2∆j

I(ρj,θj,∆j,Sj,x
E
j )

ρj cos θj−
∆j
nj
(ij−1)−xEj

2
+ρ2j sin θj2

ij!(nj + 1 − ij)!
(E.34)

where:

I(ρj, θj,∆j, Sj, xEj ) =

 xEj +∆j

xEj

dx log

(ρj cos θj − (x − Sj))2 +ρ2

j sin2 θj


(E.35)

with:

Sj =


∆j

nj
if xEj , x

E
j +∆j < ρj cos θj

0 if xEj , x
E
j +∆j > ρj cos θj.

(E.36)

The value of the additional variable Sj ≪ 1 introduced here depends on whether both xE and xE +∆j
lie on the same side of the domain of x split by the position of the minimum of the function we want
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to integrate f (x) = (ρj cos θj − x)2 + ρ2
j sin θj. Since in the end we want to work with∆j ≪ 1 this is

not such a restrictive hypothesis but it allows for the following inequality (used to get the bounds on
the quantities lj,ij ) to be true:

I(ρj, θj,∆j, Sj, xEj ) ≥

nj+1
kj=1


ρj cos θj −

∆j

nj
(kj − 1)− xEj

2

+ ρ2
j sin θj2. (E.37)

The integral I(ρj, θj,∆j, Sj, xEj ) can be computed to first order in∆:

I(ρj, θj,∆j, Sj, xEj ) =
nj∆j

2
log Pj (E.38)

where Pj = (xE−Sj)2+ρ2
j −2(xE−Sj)ρ cos θj. Note that: 0 < Pj < (xE−Sj+ρj)2. In the thermodynamic

limit and by supposing xE < 1 − ε we have 0 < Pj < 4. The last equality defining I holds at the first
order in∆j. Analogously to what was done before we write:

δ(β⃗) ≤ θ5θ6 sin4 π

4

6
j=1

Γ ((nj + 1)e−β j
+ 1)Γ ((nj + 1)− (nj + 1)e−β j

+ 1)
nj
∆j

nj
e−

nj
2 β

jP
nj
2

j

(E.39)

and then take advantage of the Stirling approximation:

log δ(β⃗) ≤ K +

6
j=1

(nj + 1) log(nj + 1)− nj log nj

+ nj


g ′(β j)+

1
2
β j

−
1
2
log Pj + log∆j


+ g ′(β j) (E.40)

where:

g ′(β j) = (1 − e−β j) log(1 − eβ
j
)− β je−β j

− 1

K = 4 log sin
π

4
+ log θ5θ6.

(E.41)

In the thermodynamic limit this result becomes:

log δ(β⃗) ≤ K +

6
j=1

1 + log nj + nj


g ′(β j)+

1
2
β j

−
1
2
log Pj + log∆j


+ g ′(β j), (E.42)

or

δ(β⃗) ≤ 24TT ′L(L − 1)L′(L′
− 1)

6
j=1


∆j
Pj

nj

e


βj
2 −1


nj
. (E.43)

A less conservative result takes advantage of the upper bound for Pj so that:

δ(β⃗) ≤ 24TT ′L(L − 1)L′(L′
− 1)

6
j=1

e


βj
2 −1+log

∆j
2


nj
. (E.44)

Hence the price for allowing the classical partition function to be estimated only in a small
temperature window is an overhead exponential in the system size.

Appendix F. Magnetisation and approximation schemes

The first part of our construction closely follows a general argument presented in Ref. [32], and
establishes a connection between partition function evaluations and the ability to draw samples from
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Boltzmann probability distributions. Some adaptations were made, though. We felt that indicating
only these adaptations would have resulted in an awkward presentation. This is why, for the sake of
clarity, we have chosen to reproduce this argument, with these adaptations included, in a concise but
self-contained manner. In the second part of our construction, we show how measurements of mag-
netisation on specific non-homogeneous Ising models allow to draw from Boltzmann distributions.

Let us thus consider the Ising model on a two-dimensional square lattice Λ, described by the
Hamiltonian:

H(σ ) = −J

⟨i,j⟩

σiσj − h

i∈Λ

σi, (F.1)

where J can equal +1, 0 or −1. For h = 0, the model is solvable and Z(h = 0) is known exactly (see
e.g. [25]). We wish to evaluate the partition function at a fixed temperature5 β , Z(h), for h > 0, say.6
For that purpose, we express Z(h) as

Z(h) =
Z(hL)

Z(hL−1)
×

Z(hL−1)

Z(hL−2)
× · · · ×

Z(h1)

Z(h0)
× Z(h0), (F.2)

where 0 = h0 < h1 < · · · < hL = h. These values hk are chosen to be equally spaced, and we will
denote the spacing hk − hk−1 by δh. Each ratio ρk = Z(hk)/Z(hk−1) can be expressed as

ρk =


σ

e−βHk−1(σ )

Z(hk−1)
eβδh|Λ|M(σ )

≡


σ

πk−1(σ ) eβδh|Λ|M(σ ), (F.3)

whereM(σ ) denotes themeanmagnetisation of the systemwhen the lattice is in configuration σ , |Λ|

denotes again the size of the lattice Λ, and where Hk−1 is a shorthand notation for the Hamiltonian
when the magnetic field is set to hk−1.

In order to evaluate Z(h), wewill use a collection of estimators for the quantities ρk, each involving
n sample configurations. These estimators are defined as

ρ̂k : {σ
(1)
k , . . . , σ

(n)
k } → ρ̂k(σ

(1)
k , . . . , σ

(n)
k )

=
1
n

n
j=1

eβ|Λ|δhM(σ (j)k ), (F.4)

where each sample σ (j)k is drawn according to some probability distribution π ′

k−1. Our estimator for
Z(h) is

Ẑ(h) ≡

L
k=1

ρ̂k Z(h0).

Let ρ̄k denote the mean value of ρ̂k, i.e.

ρ̄k =


σ
(1)
k

. . .

σ
(n)
k

π ′

k−1(σ
(1)
k ) . . . π ′

k−1(σ
(n)
k ) ρ̂k(σ

(1)
k , . . . , σ

(n)
k ).

Since all ρ̂k are independent random variables, we find that the mean value of Ẑ(h) is given by
Z̄(h) =

L
k=1 ρ̄kZ(h0). Now let us assume that

|Z(h)− Z̄(h)| ≤ ε′Z(h), (F.5)

5 Change of notations: Since we will work at constant temperature, we will from now drop β and simply write Z(h) instead
of Z(β, h).
6 The case h < 0 is treated similarly.
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and that

|Z̄(h)− Ẑ(h)| ≤ δ Z̄(h), (F.6)

with probability at least, 3/4 say.7 Then

(1 − δ)(1 − ε′)Z(h) ≤ Ẑ(h) ≤ (1 + δ)(1 + ε′)Z(h),

with probability at least 3/4. Thus

(1 − ε)Z(h) ≤ Ẑ(h) ≤ (1 + ε)Z(h) (F.7)

with probability at least 3/4 whenever ε ≥ δ + ε′
+ δε′.

Clearly,

e−βδh|Λ|
≤ eβ|Λ|δhM(σ )

≤ eβδh|Λ|
∀σ .

Plugging these inequalities into Hoeffding’s inequality [24], we find that

Prob[|ρ̂k − ρ̄k| ≤ ζ ] ≥ 1 − 2e−2nζ 2/ sinh(|Λ|βδh)2 . (F.8)

Let us use this latter relation in order to construct an upper bound on |Ẑ(h)− Z̄(h)| valid with tunable
probability. We will use the following lemma:

Lemma F.1.

|Ẑ(h)− Z̄(h)| ≤

 L
k=1


1 +

ζ

ρ̄k


− 1

 Z̄(h) (F.9)

with probability at least (1 − 2e−2nζ 2/ sinh(|Λ|βδh)2)L.

Proof. We start with the following identity

|Ẑ(h)− Z̄(h)| =

 L
k=1

ρ̂k −

L
k=1

ρ̄k

 Z(h0)

=

 L
k=1


1 +

ρ̂k − ρ̄k

ρ̄k


− 1

 Z̄(h).

Next, we have the inequality L
k=1

(1 + xk)− 1

 ≤

 L
k=1

(1 + |xk|)− 1

 , ∀xk ∈ R. (F.10)

Let us consider two cases: (i)
L

k=1(1+ xk)−1 ≥ 0, (ii)
L

k=1(1+ xk)−1 < 0. The inequality is trivial
in case (i). In case (ii), we need to prove that

1 −

L
k=1

(1 + xk) ≤

L
k=1

(1 + |xk|)− 1,

or 2 ≤
L

k=1(1 + |xk|)+
L

k=1(1 + xk). The r.h.s. of this last inequality can certainly be written as

2 +


i1

. . .

iL

~i1...iL(|x1|
i1 . . . |xL|iL + xi11 . . . x

iL
L ),

7 This value is somewhat arbitrary. As explained in Ref. [32], any level of confidence strictly above 1/2 can be efficiently
boosted to arbitrarily close to 1.



248 S. Iblisdir et al. / Annals of Physics 340 (2014) 205–251

where each coefficient ~i1...iL is non-negative. It is also clear that each quantity (|x1|i1 . . . |xL|iL +

xi11 . . . x
iL
L ) is non-negative. Inequality (F.10) implies that

|Ẑ(h)− Z̄(h)| ≤

 L
k=1


1 +

|ρ̂k − ρ̄k|

ρ̄k


− 1

 Z̄(h).

The r.h.s. of this relation is lower than |
L

k=1(1 +
ζ

ρ̄k
) − 1| Z̄(h) with probability at least (1 −

2e−2nζ 2/ sinh(|Λ|βδh)2)L (Hoeffding’s inequality). �

We will pick the spacing between two consecutive magnetisations to be δh =
η

β|Λ|
, where η is

some positive constant we are free to choose at our convenience. δh fixes the value of L to

L = (h − h0)β|Λ|/η. (F.11)

With a given choice for δh, we have that ρ̄k ≥ e−η and

|Ẑ(h)− Z̄(h)| ≤ |(1 + eηζ )L − 1| Z̄(h), (F.12)

with probability at least (1 − 2e−2nζ 2/ sinh(|Λ|βδh)2)L. How should we pick ζ in order to ensure that the
l.h.s. of (F.12) is smaller than δZ̄(h) for some fixed δ? Since (1 + eηζ )L ≤ eLζ e

η
, it is enough that

ζ ≤
ln(1 + δ)

Leη
.

We also wish to know how, for fixed values of ζ , L, η, we should choose n in order to guarantee a level
of confidence at least equal to 3/4. Direct substitution shows that the condition

(1 − 2e−2nζ 2/ sinh(η)2)L ≥ 3/4

is satisfied if

n ≥ −
sinh η2e2ηL2

2(ln(1 + δ))2
ln


1
2


1 −


3
4

1/L


. (F.13)

To summarise, for L satisfying (F.11) and n satisfying (F.13), the partition function estimator satisfies

Prob[|Ẑ(h)− Z̄(h)| ≤ δZ̄(h)] ≥ 3/4. (F.14)

Nextwewish to establish a condition that guarantees that Inequality (F.5) holds.We start by observing
that

|Z̄(h)− Z(h)| ≤

 L
k=1


1 +

|ρk − ρ̄k|

ρk


− 1

 Z(h).

Let

∆πk−1 ≡ max
S

|πk−1(S)− π ′

k−1(S)|

=
1
2


σ

|πk−1(σ )− π ′

k−1(σ )|

denote the total variation8 between the probability distributions πk−1 and π ′

k−1. Let us also denote
∆π∗

= maxk∆πk−1. We see that

|ρk − ρ̄k| ≤ eη∆π∗, ρk ≥ e−η
∀k.

8 To obtain the last equality, one observes that if an event S∗ achieves the maximum, so does the complementary event Sc
∗
.
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A B

C D

Fig. F.9. A. Typical corner on which magnetisations need to be measured in order to get an approximation for the partition
function of the Ising model defined on a square lattice. B. Labelling of spins of the original lattice. C. Lattice obtained after the
spin on one corner has been fixed. D. Cartoon for a possible choice to run over all spins of the original lattice.

Thus
|Z(h)− Z̄(h)| ≤ [(1 + e2η∆π∗)L − 1]Z(h)

≤ (eLe
2η∆π∗

− 1)Z(h). (F.15)
So it is enough that

∆π∗
≤

e−2η

L
ln(1 + ε′).

On another hand,∆πk−1 satisfies the inequality

∆πk−1 ≤
1
2
max
σ

1 −
π ′

k−1(σ )

πk−1(σ )

 .
Using Bayes’ theorem, to express πk−1 in terms of marginal and conditional probability distribu-

tions,

πk−1(σ1 . . . σ|Λ|) = π
(1)
k−1(σ1)π

(2)
k−1(σ2|σ1) . . . π

(|Λ|)

k−1 (σ|Λ||σ1 . . . σ|Λ|−1), (F.16)
the r.h.s. of the latter inequality can be written as

1
2
max
σ

 |Λ|
l=1

π
′(l)
k−1(σl|σ1 . . . σl−1)

π
(l)
k−1(σl|σ1 . . . σl−1)

− 1

 .
If we use the finesse

f ≡ max
k,l,σ

|π
′(l)
k−1(σl|σ1 . . . σl−1)− π

(l)
k−1(σl|σ1 . . . σl−1)|

π
(l)
k−1(σl|σ1 . . . σl−1)

(F.17)

to quantify the accuracywithwhich the distributions {π ′

k−1} approach the distributions {πk−1}, we see
that∆π∗

≤
1
2 |(1+ f)|Λ|

− 1| ≤
1
2 (e

f|Λ|
− 1). So |Z(h)− Z̄(h)| ≤ ε′Z(h)whenever the finesse satisfies

f ≤
1

|Λ|
ln

1 +

2e−2η

|Λ|
ln(1 + ε′)


. (F.18)

We now turn to the second part of our construction and explain how it is possible to get samples
for the estimators ρ̂k from corner single site magnetisation estimates, as indicated in Fig. F.9A.
Assume that the |Λ| particles of the lattice are numbered as indicated in Fig. F.9B. For fixed external
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field hk−1, it is clear that the magnetisation on the corner ‘1’ is given by

mk−1(1) =
1

Z(hk−1)


σ

e−βHk−1(σ )σ1

= π
(1)
k−1(↑)− π

(1)
k−1(↓).

From an estimatem′

k−1(1), we construct π ′(1)
k−1(σ1) as

π
′(1)
k−1(↑) =

1 + m′

k−1(1)
2

π
′(1)
k−1(↓) =

1 − m′

k−1(1)
2

.

(F.19)

It is certainly possible to draw exactly according to this distribution π ′(1)
k−1; it is a known two-outcome

probability distribution. Let us imagine we do it and obtain an outcome x1. Then we consider another
Ising system, identical to the original apart from the fact that the spin labelled ‘1’ is now fixed to x1.
This new system is nowdefined on the geometry indicated by Fig. F.9C on (|Λ|−1) spins, and governed
by the Ising Hamiltonian:

H(2)(σ2 . . . σ|Λ|) = Hk−1(x1σ2 . . . σ|Λ|),

and its Boltzmann weights obey

e−βH(2)(σ2...σn)

Z (2)
= π

(2)
k−1(σ2|x1) . . . π

(|Λ|)

k−1 (σ|Λ||x1 . . . σ|Λ|−1).

If we now measure the magnetisation at corner ‘2’ for this new system, we get

m′

k−1(2|x1) ≃ mk−1(2|x1) = π
(2)
k−1(↑ |x1)− π

(2)
k−1(↓ |x1).

The magnetisationm′

k−1(2|x1) allows to construct

π
′(2)
k−1(↑ |x1) =

1 + m′

k−1(2|x1)
2

π
′(2)
k−1(↓ |x1) =

1 − m′

k−1(2|x1)
2

.

(F.20)

Again, this known probability distribution is simple enough that it is possible to draw exactly a sample
x2 according to it. Repeating this reasoning, running along the lattice in the order indicated by the
cartoon in Fig. F.9D, we see that the ability to estimate corner magnetisations combined with Bayes’
theorem allows to draw sequentially9 according to

π ′

k−1(σ1 . . . σ|Λ|) = π
′(1)
k−1(σ1)π

′(2)
k−1(σ2|σ1) . . . π

′(|Λ|)

k−1 (σ|Λ||σ1 . . . σ|Λ|−1).

Finally, we observe that

|π
′(l)
k−1(σl|σ1 . . . σl−1)− π

(l)
k−1(σl|σ1 . . . σl−1)|

π
(l)
k−1(σl|σ1 . . . σl−1)|

≤
|m′

k−1(l|σ1 . . . σl−1)− mk−1(l|σ1 . . . σl−1)|

|1 − |mk−1(l|σ1 . . . σl−1)| |
.

So the condition (F.18) leads simply to a condition on the relative precision over the magnetisation.
Summarising, for any ε > 0, temperature β and magnetic field h, it is possible to provide an estimate

Ẑ(h) for the Ising partition function Z(h) satisfying

Prob[|Ẑ(h)− Z(h)| ≤ ε Z(h)] ≥ 3/4, (F.21)
in a time that scales at most polynomially with β, ε−1, |h|, and the size of the system if we are able to
perform corner magnetisation measurements on related non-homogeneous Ising systems. The required
relative precision need not be lower than the inverse of some polynomial in |h|, β, ε−1 and the size of the
system.

9 The order we have chosen has no particular meaning. The reasoning is of course valid for any labelling of the sites of the
lattices.
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