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Abstract – We consider a recently proposed model of driven open quantum micro-circuit
(Pellegrini F., Phys. Rev. Lett., 107 (2011) 060401) amenable to experimental investigations.
We show that such an open quantum system provides a concrete physical instance where we can
prove that modeling its time evolution with a dynamics lacking complete positivity conflicts with
the second law of thermodynamics.
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Introduction. – In general, any quantum system can-
not be considered as isolated since it unavoidably in-
teracts with its surrounding environment. This fact
is at the basis of the so-called open quantum system
paradigm, nowadays successfully applied to atomic and
molecular physics, quantum optics, quantum chemistry
and condensed-matter physics [1–3].

In most of these applications the coupling of the sys-
tem to its environment is weak and, initially, there are no
statistical correlations between them. In such cases, the
reduced dynamics of an open quantum system needs not
only to preserve the positivity of the time-evolving states
of the system, but also to be completely positive [4–6].
Because of complete positivity, hierarchies are then en-
forced on the parameters describing the dissipative time
evolution, often dismissed as physically unnecessary. In
fact, without complete positivity, less constrained dynam-
ics emerge making easier the appearance of the so-called
“quantum miracles”, like, for instance, the beating of clas-
sical bounds in energy transport efficiencies.

The request of complete positivity is usually sup-
ported by an argument which refers to the possible cou-
pling of the open quantum system under consideration
with arbitrary ancillas [7–9]; this justification is often
criticised in the literature as an abstract mathemati-
cal artifact that excludes more general dissipative dy-
namics [10–13]. However, complete positivity cannot be
lightly dismissed; indeed, without it, unphysical negative

probabilities in the dynamics of entangled states of com-
pound systems arise, making the time evolution physically
unacceptable.

The completely positive character of a dissipative dy-
namics reflects into a hierarchy among the decay times
of diagonal and off-diagonal elements of the time-evolving
open system density matrices [7–9]. Whenever these decay
constants have been measured, the hierarchy has always
been confirmed. However, checking whether such order
relations are fulfilled or not is in general a difficult exper-
imental task.

Instead, in the following, we offer a different strategy
by looking at the thermodynamics of a driven open quan-
tum system [14]. Indeed, complete positivity was soon
recognized to imply the positivity of the internal entropy
production as required by the second law of thermodynam-
ics [15–17]; however, so far no concrete physical context in
which to study such a connection has been proposed.

We will show that the open quantum micro-circuit stud-
ied in [14] provides an instance where lack of complete
positivity, as in the Redfield-type dynamics considered in
the model, violates the second law of thermodynamics.
These violations are related to a temporal pattern associ-
ated with the behaviour of the current supported by the
quantum micro-circuit; it differs from the one obtained
using standard weak-coupling techniques [6,7,18] leading
to completely positive time evolutions, thus offering the
possibility of an experimental text of complete positivity.
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The second law in quantum thermodynamics. –

Following [16], let a time-dependent Hamiltonian Ht ac-
count for the work performed on a finite n-level system S
coupled to an external bath B; it states that %t obeys the
master equation

d%t

dt
= Lt[%t] = −i[Ht, %t] + Kt[%t], (1)

where dissipation and noise are described by

Kt[%t] =
∑

jk

Kjk
t

(
Vj%tV

†
k −

1

2

{
V †

k Vj , %t

})
, (2)

through suitable n × n matrices Vk and time-dependent
coefficients Kjk

t . The matrix Kt = [Kjk
t ] is taken posi-

tive definite, Kt ≥ 0; then, the solutions to (1) form a
two-parameter semi-group of trace-preserving completely
positive maps γt,s: γt,s ◦γs,t0 = γt,t0 for 0 ≤ t0 ≤ s ≤ t [7].

The typical argument for requesting Kt ≥ 0 is that,
were γt,s not completely positive, then there would surely
exist some entangled state of the compound system S plus
another generic finite level system which does not remain
positive in the course of time under the action of γt,s ⊗ id,
where id means that the auxiliary system is dynamically
inert. Therefore, complete positivity is necessary to pre-
serve the statistical interpretation not only of the time-
evolving states of the open quantum system of interest, S,
but also of those embodying the possible quantum corre-
lations between S and any generic finite system.

In the following, we shall instead argue about the ne-
cessity of complete positivity from the thermodynamical
behaviour of S alone by studying the internal entropy pro-
duction relative to the state %t [16,17],

σ(%t) =
dS(%t)

dt
−

1

T

dQt

dt
.

This expression follows from the time variation of the
von Neumann entropy S(%t) = −Tr(%t log %t) (we set
Boltzmann’s constant κ = 1) by subtraction of the heat
exchange

dQt

dt
= Tr

(
Ht

d%t

dt

)
= Tr

(
Ht Kt[%t]

)
,

in turn obtained from the energy balance

dTr
(
%tHt

)

dt
=

dQt

dt
−

dWt

dt
,

with dWt

dt = −Tr(%tḢt) the work performed on the system
per unit time. Then,

σ(%t) = −Tr
(
Kt[%t](log %t + βHt)

)
, (3)

where β = 1/T . Assuming that the instantaneous Gibbs
states be invariant [16],

Lt[%
β
t ] = Kt[%

β
t ] = 0, %β

t =
e−βHt

Tre−βHt

, (4)

then one recasts (3) as

σ(%t) = −Tr
(
Kt[%t](log %t − log %β

t )
)
. (5)

The second law of thermodynamics requires positive in-
ternal entropy production: σ(%t) ≥ 0. This is ensured by
the positivity of the matrix Kt in (2) since, in this case,
for each fixed t ≥ 0, the generator Lt in (1) is of Lindblad
form. Thus, the maps Λs = exp (sLt), generated by it at
fixed t ≥ 0, form, with respect to the parameter s ≥ 0,
a semi-group of completely positive and trace-preserving
maps. Moreover, (4) yields Λs[%

β
t ] = %β

t . Therefore, the
relative entropy

S
(
Λs[%t]|%

β
t

)
= Tr

(
Λs[%t](log Λs[%t] − log %β

t )
)

is a monotonically decreasing function of s [19]; since its
s-derivative at s = 0 multiplied by −1 yields σ(%t), this
latter quantity is positive:

σ(%t) = −
dS

(
Λs[%t]|%

β
t

)

ds

∣∣∣∣∣
s=0

≥ 0. (6)

Remark 1. In many cases of physical interest, steady
states, Lt[%

st
t ] = 0, are not of Gibbs form as in (4). Then,

the following expression,

σ(%t) = −Tr
(
Lt[%t](log %t − log %st

t )
)
, (7)

turns out to be a meaningful generalization of (5). In-
deed, it is non-negative, vanishes if and only if Kt = 0
in (1). Moreover, it is convex and thus fulfils the principle
of minimal entropy production [17].

By the following explicit, physical model, we will show
that σ(%t) may become negative if %t does not follow a
completely positive reduced dynamics.

Open driven quantum micro-circuit. – In the peri-
odically driven micro-circuit studied in [14] three electrons
hop over three quantum dots and are weakly coupled to a
heat bath B of non-interacting harmonic oscillators. The
micro-circuit dynamics is effectively describable as that of
an open qubit S and the dynamics of the reduced state %t

obtained by partial trace over the bath degrees of freedom
of the S + B state %SB

t , is given by the time-dependent
master equation

%̇SB
t = −

i

~

[
Ht + HB + λHSB, %SB

t

]
, (8)

with system Hamiltonian

Ht =
~∆

2

(
σ3 cos Ωt + σ1 sin Ωt

)
(9)

and bath and interaction Hamiltonians

HB =
∑

ξ=1,3

∑

n

(
p2

ξ,n

2m
+

mω2
nq2

ξ,n

2

)
, (10)

HSB =
∑

ξ=1,3

∑

n

λn

√
2mωn

~
σξ ⊗ qξ,n, (11)
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where qξ,n and pξ,n, ξ = 1, 3, are oscillator position
and momentum operators, σξ the Pauli matrices, λ an
a-dimensional coupling constant, while the scalars λn are
energies associated with the bath spectral density that do
not depend on the index of σξ.

By means of Rt = e−iΩtσ2/2, one passes to the rotating
frame, %̃SB

t = R†
t%

SB
t Rt, thus moving the time dependence

to the interaction term and getting

˙̃%
SB

t = −
i

~

[
Heff + HB + λH̃SB

t , %̃SB
t

]
, (12)

Heff =
~ωeff

2
σ̂3, ωeff =

√
∆2 + Ω2, (13)

H̃SB
t =

∑

ξ=1,3

∑

n

λn

√
2mωn

~
σ̃ξ(t) ⊗ qξ,n, (14)

where σ̂3 = ∆σ3−Ωσ2

ωeff
and σ̃ξ(t) = R†

tσξRt.

The rough techniques used in [14] yield a Redfield-type
master equation that does not explicitly depend on time,

d%̃t

dt
= L̃Red[%̃t] = −

i

~

[
Heff, %̃t

]
+ λ2

K̃Red[%̃t], (15)

K̃Red[%̃t] = −
∑

ξ=1,3

∑

n

2mωnλ2
n

~3

∫ +∞

0

du

×
{

Cu(ωn)
[
σξ, euHeff [σ̃ξ(−u)]%̃t

]

+ C∗
u(ωn)

[
%̃t euHeff [σ̃ξ(−u)], σξ

]}
, (16)

where etHeff [X] = U eff
t X(U eff

t )†, U eff
t = e−itHeff/~ and the

thermal state 2-point functions have been used,

Ct(ωn) = cos (ωnt) coth
~ωnβ

2
− i sin (ωnt). (17)

The dynamics generated by (15) is not completely

positive.
Indeed, by setting V1 = σ1, V3 = σ3 and, for j = 2, 4,

Vj =
∑

n

2mωnλ2
n

~3

∫ +∞

0

duCu(ωn) euHeff [σ̃j−1(−u)],

one rewrites K̃Red[%̃t] = −
i

~
[H̃Red

LS , %̃t] + D̃Red[%̃t] with

D̃Red[%̃t] =

4∑

j,k=1

Kjk

(
Vk%̃tV

†
j −

1

2
{V †

j Vk, %̃t}
)
,

where the 4 × 4 coefficient matrix K = [Kjk] is given by(
σ1 0

0 σ1

)
, with an additional, bath-generated “Lamb-shift”

Hamiltonian of the form

H̃Red
LS =

~

2i
(V †

1 V2 − V †
2 V1) +

~

2i
(V †

3 V4 − V †
4 V3).

Since K is not positive definite, the maps generated by
L̃Red cannot be completely positive.

By means of the Pauli matrices σ̂1 = σ1,

σ̂2 =
∆σ2 + Ωσ3

ωeff
, σ̂3 =

∆σ3 − Ωσ2

ωeff
, (18)

and of the Bloch representation

%̃t =

∑3
µ=0 r̃µ(t) σ̂µ

2
, r̃0 = 1 , σ̂0 =

(
1 0

0 1

)
, (19)

the state %̃t is represented by the 4-vector |%̃t〉 = {r̃µ(t)}

and eq. (15) by
d|%̃t〉

dt
= −2L̃Red|%̃t〉.

The generator L̃Red = Heff + λ2H̃Red
LS + λ2D̃Red consists

of

Heff =




0 0 0 0

0 0 ωeff/2 0

0 −ωeff/2 0 0

0 0 0 0


 (20)

corresponding to the commutator with Heff, of

H̃Red
LS =




0 0 0 0

0 0 H̃12 H̃13

0 −H̃12 0 H̃23

0 −H̃13 −H̃23 0


 (21)

corresponding to the commutator with H̃Red
LS , while the

purely dissipative term D̃Red is of the form

D̃Red =




0 0 0 0

K̃10 K̃11 K̃12 K̃13

K̃20 K̃12 K̃22 K̃23

K̃30 K̃13 K̃23 K̃33


 . (22)

Redfield-type equations as above yield solutions that in
general do not even preserve the positivity of states; this
drawback can be cured by an ergodic average, the so-called
weak-coupling limit [6], that provides completely positive
solutions [18]. These techniques can be adapted [20] to

the time-dependent equation (12) yielding de%t

dt = L̃[%̃t]

with a time-independent generator L̃ of a completely pos-
itive semi-group. In the corresponding vectorial master

equation d|e%t〉
dt = −2L̃|%̃t〉, the generator is represented by

L̃ = Heff + λ2H̃LS + λ2D̃, where, because of the ergodic
average, the Lamb shift contribution reads

H̃LS =




0 0 0 0

0 0 H̃12 0

0 −H̃12 0 0

0 0 0 0


 , (23)

and the dissipative one

D̃ =




0 0 0 0

0 K̃11 + K̃22 0 0

0 0 K̃11 + K̃22 0

K̃30 0 0 K̃33


 . (24)

50007-p3



G. Argentieri et al.

The unique stationary state L̃|%̃〉 = 0 is given by

|%̃ eq〉 = (1, 0, 0, r̃ eq
3 ), r̃ eq

3 = −
K̃30

K̃33

. (25)

The relevant entries of the dissipative contribution can be
explicitly computed [20] and equal those found in [14]:

K̃30 =

∫ +∞

0

du

∫ +∞

0

dω J(ω) sin(ωu)

×
(
−

2Ω2 + ∆2

ω2
eff

sin(ωeffu) cos(Ωu)

+ 2
Ω

ωeff
cos(ωeffu) sin(Ωu)

)
, (26)

K̃33 =

∫ +∞

0

du

∫ +∞

0

dω J(ω) cos(ωu)

× coth

(
β~ω

2

) (2Ω2 + ∆2

ω2
eff

cos(ωeffu) cos(Ωu)

+ 2
Ω

ωeff
sin(ωeffu) sin(Ωu)

)
. (27)

From them one obtains

r̃ eq
3 =

(ωeff − Ω)2J+ + (ωeff + Ω)2J−

(ωeff − Ω)2c+J+ + (ωeff + Ω)2c−J−
,

where J± = J(ωeff ± Ω), c± = coth
(

~β(ωeff±Ω)
2

)
, with

J(ω) = ω exp(−ω/ωc) (28)

a Ohmic bath spectral function. In general, the stationary
state of the Redfield dynamics differs from the above one;
however, under suitable conditions [14] (see footnote 1),
it is very well approximated by it. Therefore, under such
conditions, the asymptotic current sustained by the micro-
circuit is essentially the same both with the completely
positive and the non-completely positive dynamics; how-
ever, as we shall presently show the Redfield one conflicts
with the second law of thermodynamics1.

Internal entropy production. – Since %̃t = R†
t%tRt,

the entropy production σ(%t) equals σ(%̃t); explicitly,

σ(%̃t) =

3∑

i=1,µ=0

L̃iµr̃µ(t)

(
r̃i(t)

r̃t
log

1 + r̃t

1 − r̃t

−
r̃ eq
i

r̃eq
log

1 + r̃eq

1 − r̃eq

)
, (29)

where L̃µν are the entries of the 4 × 4 matrix L̃, while

r̃ 2(t) =
∑3

j=1 r̃ 2
j (t) and r̃ 2

eq =
∑3

j=1(r̃
eq

j )2.

1The state %̃ eq in (25) in general differs from the Gibbs state
%eff

β
= e−βHeff/(Tre−βHeff). However, choosing, as done in [14],

the values λ = 0.005, T ' 0.006 K, ∆ = 8GHz, for the coupling
constant, temperature and pumping amplitude, respectively, and
pumping and cut-off frequency such that ωc/∆ = 103, Ω/∆ = 2,
|e% eq〉 and %eff

β
are so close (in trace distance) that the behaviour

of (7) is indistinguishable from that of (5), the latter having a direct
thermodynamical interpretation in terms of heat fluxes.

Fig. 1: (Colour on-line) σ(%) as a function of r̃1,2, Redfield
dynamics.

Fig. 2: σ(%t) as a function of time.

We first study the entropy production σ(%) at t = 0
as a function of the initial state % characterized by Bloch
vectors with r̃3 = 0. Plotting σ(%) as a function of r̃1

and r̃2, one sees that, in the case of the Redfield dynam-
ics, there are considerable regions where the entropy pro-
duction, as shown in fig. 1, is negative. None of these
violations appears if the reduced dynamics is completely
positive as that generated by L̃.

These violations of the second law of thermodynamics
at time t = 0 are not a negligible transient effect. Instead,
a numerical computation of (29) as a function of time,
with parameters chosen as in footnote 1, shows that a
same percentage of states show repeated violations of the
second law also in the course of time. These violations
occur independently of whether σ(ρ) < 0 already at t = 0.

Indeed, fig. 2 corresponds to the (almost) pure state
|%〉 = (1, 0, r2, r3) with r2 = −0.894 and r3 = −0.447
studied in [14]. It exhibits an initial σ(%t = 0) > 0 followed
by periodic violations of σ(%t) ≥ 0.

Figure 3 instead is relative to a mixed state |%〉 =
(1, 0, r2, r3), r2 = 0.5 and r3 = −0.4, that starts
with σ(%t = 0) < 0 and also shows periodic violations of
σ(%t) ≥ 0.

In both the above graphs, the black line corresponds

to the completely positive dynamics generated by L̃ that
always yields σ(%t) ≥ 0 in agreement with the theory [18].
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Fig. 3: σ(%t) as a function of time.

Remark 2. The observed violations of the second law of
thermodynamics are not restricted to the specific choice
of the initial state and physical parameters considered in
fig. 3 for the sake of comparison with the experimental
context devised in [14]. Indeed, the conflict between the
non-complete positivity of the Redfield dynamics and the
non-negative internal entropy production manifests itself
across a whole range of parameters, namely for temper-
atures between 0.0006K and 0.06K and ratios Ω/∆ be-
tween 0.1 and 10. In particular, choosing randomly the
initial states on the Block sphere, the violations of the sec-
ond law of thermodynamics at time t = 0 always occur,
reaching 45% of the cases with low temperature. Further,
for every choice of temperature and pumping frequency,
it is possible to find some initial state for which violations
of the second law of thermodynamics occur repeatedly in
time, becoming more and more typical for temperatures
below 0.006K. Violations of the second law of thermody-
namics is therefore not exceptional, rather it is inherent to
the non-complete positivity of the considered Redfield dy-
namics. Whether such violations of the second law of ther-
modynamics are a feature of all non-completely positive
dissipative dynamics is an open question; an answer to it
would demand either the proof that complete positivity is
not only sufficient but also necessary to the non-negativity
of the internal entropy production or devising an example
of non-completely positive dissipative dynamics that does
not conflict with thermodynamic expectations. Both tasks
would require a stronger characterisation of the generators
of positive, but not completely positive dynamical maps,
an issue which is still an open problem both mathemati-
cally and physically, a problem which is certainly outside
the scopes of the present investigation.

From an experimental point of view, because of the high
time resolution achieved by the present measurement de-
vices, discriminating the internal entropy production in
the Redfield and completely positive case is in line of
principle perfectly possible through a tomographic recon-
struction of the time-evolving state. Alternatively, one
could study the dynamics of the current supported by
the micro-circuit; in fact, as already mentioned in the

Introduction, its time behaviour under the Redfield dy-
namics used in [14] differs from the one given by the com-
pletely positive dynamics compatible with the second law
of thermodynamics [20].

Conclusions. – A typical argument against the
request of complete positivity is that what really phys-
ically matters is the positivity of the reduced dynam-
ics of the open quantum system alone. This indeed
corresponds to the preservation of the positivity of the
eigenvalues of the time-evolving density matrix and their
statistical interpretation as probabilities. From this point
of view, advocating the possible entanglement of the sys-
tem of interest with an auxiliary inert system in order
to justify the completely positive dynamics looks as an
artifact.

On the contrary, here we have shown that complete pos-
itivity cannot so easily be dismissed. Indeed, we consid-
ered a model of open driven quantum micro-circuit which,
in line of principle, can be experimentally studied, and
showed that, if described by a Redfield dynamics, it would
violate the second law of thermodynamics on a large va-
riety of initial states, showing either a negative internal
entropy production at time t = 0 or repeatedly in the
course of time.

As already remarked in the Introduction, the fact that
semi-groups of completely positive maps are compatible
with the second law of thermodynamics was shown long
ago. Although it is not surprising that non-completely
positive dynamics might violate it, no examples of this fact
had so far been provided. Instead, the present paper offers
an explicit instance of a non-completely positive dynamics
violating the second law of thermodynamics, in a way that
can, in line of principle, be subjected to experimental tests.
Should the outcome confirm the fulfilment of the second
law of thermodynamics and thus the completely positive
character of the dynamics, this would indicate that non-
completely positive time evolutions of standard Redfield
form are likely to be incompatible with thermodynamics.
In general, complete positivity is only sufficient for the ful-
filment of the second law of thermodynamics; however, no
examples are known of non-completely positive dynamics
compatible with the second law of thermodynamics. We
are confident that our investigation will stimulate further
research on these issues.
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