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Optimal state discrimination using particle statistics
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We present an application of particle statistics to the problem of optimal ambiguous discrimination of
guantum states. The states to be discriminated are encoded in the internal degrees of freedom of identical
particles, and we use the bunching and antibunching of the external degrees of freedom to discriminate
between various internal states. We show that we can achieve the optimal single-shot discrimination probability
using only the effects of particle statistics. We discuss interesting applications of our method to detecting
entanglement and purifying mixed states. Our scheme can easily be implemented with the current technology.
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Recently, there has been an emerging interest in the use of We will assume that the two states are equally likely for
particle statisticgboth bosonic and fermionidor quantum  the sake of simplicity, but all the presented results will be
information processing1,2]. In fact, it was shown that a valid for any a priori distribution. Note also that, unless
useful task such as entanglement concentration could be agtherwise stated, whenever we mention spin we will actually
complished, even if nonoptimally, using only the effects ofrefer to any two-dimensional internal degree of freedom, be
quantum StatistiCS, without the need for any other intel’aCi-[ for fermions or for bosons_ As we do not have any know|_
tions[2]. The above investigations differ significantly from edge of the direction of alignment in both of the above cases,

some previous suggestions, where either anyonic statistiGie oyerall states are mixed. They are described, respectively,
[3] or the effects of electronic statistics in conjunction with by the following density operators:

other interaction$4,5] were used for quantum information
processing. Schemes using only particle statisfits] 1

would be very useful for tasks implemented with identical p2=4—f dQ QY Q|®]|QNQ| (1
particles that interact very weakly or not at all with each ™
other, such as photons or neutrons. This weak interaction ¢

be beneficial for information processing as it may reduce the

unwanted coupling to the environment. Such schemes are 1
also extremely general in the sense of being independent of 0=
the actual particle species. It is, however, not known whether ™

such schemes can accomplish quantum information procesggere the subscripts indicate that we are considering two

ing efficiently Here we present a particular quantum inforf‘g:rticles. The kef()) represents the spin-up state along the

mation processing ta_sk involvi_ng two qubits and sho_w_that| is defined by the angl@, while |Q") is the orthogonal
can be performe_ubphmally using only quantum Stafistics. 10 spin down. Thusp, represents an equal mixture of
Moreover, we point out _how the task of discriminating quan'spins aligned along an arbitrary axis in space, whilds the
tum states can be applied to detecting entanglement and p@dual mixture of antialigned spins of two spjnparticles. It

rifying mixed s_tates. We also discuss how to g.en.erahze thesg impossible to discriminate between these states perfectly
tasks toN qubits and argue that quantum statistics could bebecause they are not orthogonal

used to perform even this generalized task optimally. While Optimal results are known for the discrimination of any

the two qubits and other small qubits versions of our pro- WO given quantum states and 5’ [8]. The maximal prob-

tocol can be tested with photops, eleqtrons, neutrons, ora Wbility of ambiguously discriminating between tveopriori
oms, the large number of qubits versions could have inter-

o . . . : Ily likel ntum in a single-shot m rementi

esting implementations in optical latticEs,7]. equally likely quantum states .as gle-shot measurement is
S L iven by the Helstrom formula:

One of the striking aspects of qguantum mechanics is tha?
it is not possible to perfectly discriminate between two states Pu(n, 7' )=3%+1Trlp—7']. 3
unless they are orthogonal. Suppose someone prepares two
qubits encoded in the internal degrees of freedom of two We now present a procedure for discriminating between
identical particles—say, in the spin of two electrons or thep, ando,, both for fermions and bosons, based only on the
polarization of two photons—in one of the following two effects of particle statistics. To use these effects we interfere
possible state€1) spins alignedparalle) and pointing in an  particles at a beam splitter. Here we ussam splitterin a
arbitrary direction;(2) spins antialigned and pointing in an generic sense, referring not only to the common optical ele-
arbitrary direction. ment (partially silvered mirror used with photons, but also
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to any device presenting an analog behavior for other kinds A X
of particles, as already suggested for elect{@jsin order to O Q
distinguish the states we rely on path measurements that dis- .
criminate between bunching and antibunching, and that are g
performed on our particles after letting them pass simulta- BO
neously through a 50-50 beam splitter. Note that in such
balanced beam splitters two indistinguishable particles will
always bunch if they are bosoh&0], and always antibunch
if they are fermiong9] (see also Refl11]).

For fermions, our guess in the case of the antibunching
result is that the input state was, while in the case of

bunching is that it was-,. The probability of success of our Beam

procedure is then splitter
Pes(p2.02)=1. (4)

This probability can easily be calculated by noticing that the b \)

only case for which our guess could be incorrect is when we

have the antibunching result. Then, we conclude that the in- Detector Detector

put state wagp,, while it could have actually beetr,. On o

the other hand, in the case of the bunching result we know FIG. 1. This figure represents the setup for our entanglement
for sure that the input state was, since—according to the detection scheme. We have two equal pairs of identical particles and
Pauli exclusion principle—two particles with aligned spins consider their inter_nal degrees of freedom. Both pairs are in the
cannot end up in the same output arm of the beam splittef2™€ Pure state: either separable or maximally entangled. We take
When our input state is-, the antibunching happens with the same particléor |n_stanceB) from each palrgnd interfere them
probability 1/2, giving in total a probability of incorrect in- o & 0-50 beam splitter. If the states are disentangled then the
ference of 1/4’ In the case of bosons, our protocol is exactl particles are indistinguishable and, depending on the statistics, will

. L . . Bither only bunch or only antibunch. Otherwise, if the states are
the opposite of the fermionic one, but yields precisely themaximally entangled, the particles are maximally mixed, meaning

same efficiency. This time the antibunching results stand fofa¢ they can beprobabilistically distinguished and hence the sta-
o,, Whereas the bunching ones stand for but the prob-  stics does not influence their behavior. This entanglement detec-

ability of success coincides with EG). . tion is a particular instance of our state discrimination scheme dis-
Interestingly, the Helstrom formula gives the same resultussed in the paper.

for the maximal probability of discriminating between these

two states: Pes(p2.72) =35, )
Pu(ps,0,)=2. (5)  and this coincides with the Helstrom result
5
We can thus conclude that our procedure is optimal for both Pu(ps, 7o) = 3 (8)

fermions and bosons.

Helstrom’s probability can still be achieved in other case
using the effects of quantum statistics. We now introduce
case of special interest that can be applied to other tasks su

' e i evious discrimination case.
as entanglement detection and state purification, aS.W'”. b. One of the most interesting applications of our approach
shown later in the paper. Suppose that we have to discrim

te bet the following t ) Spi i tan be found in the detection of entanglement. We illustrate
nlt’li? € (\;veen i € foliowing b\_/}/o S ade_é ) f_p':r? a |gnedpar-_ this in the case of pure states of two particles. Suppose, for
allel) and pointing N an aroitrary direc |o[ € same as in example, that we are to discriminate any maximally en-
Eqg. (1)]; (2) each spin in the maximally mixed state.

! ; tangled state of two qubits from any disentang(pcbduc)
The latter state is represented by the following Operator:giate As before, the qubits are supported by the internal de-

e 1 grees of freedom of two identical particl@isbeled, sayA
7= 319°=2(|0)(0[ +[1)(1)®(|0)(O[+[1)(1]), (6)  andB). Suppose in addition that we are given two identical
copies of the state. In order to detect entanglement, we take
where|0) and|1) are any two orthogonal spin states. the same patrticléeitherA or B) from each pair and interfere
The strategy now is exactly the same as before. It relieshem at a beam splitter, as shown in Fig. 1. The crux of the
on the fact that if the state s, the particles can, due to their argument is that if the state is entangled, then the reduced
indistinguishability, give only one resulantibunching in the states of these particles will be maximally mixed as in the
case of fermions or bunching in the case of bogonkile if  stater,. On the other hand, if the state is separable, then the
the input state is-, both results are possible. This time, the two interfering particles are in the state. This is the same
probability of success is as in our discrimination procedure above, and so there is a

Ss0 our procedure is optimal in this case too. The calculations
ading to the above results are analogous to the ones in the
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T - fdQ axa))eN 10
on=7=| d0goyal 10
VvV VY Y VY and
N-port 1 N
beam splitter 7'N=2—N(|O><O|-|-|l><1|)® . (11

To calculate the Helstrom probability, one has to diagonalize
the matrixpy— 7. This turns out to be straightforward once
we notice thapy can also be represented as an equal mixture
of all possible symmetric states within the bag|s;):i
=1,...N+1=|S|} of N qubits. Then, we have

FIG. 2. This diagram represents a multiport beam splitter With

inputs andN outputs. The overall output state depends not only on Kl
the _mput_, but algo on_the statisti¢sither fermionic or bos_on)oof PN= T 2 |3>(Sﬁ| (12)
the identical particles involved. We have labeled two arbitrary ports, |S| =1

the mth input port and theath output port.
It is now easy to calculate the Helstrom formula by expand-
probability of 5/8 to detect entanglement. This example can'd Py N2 basis consisting of the union of a basis of the
. .symmetric subspace and a basis of its orthogonal comple-
be generalized to other entangled pure states, and, more in* .
. . . ment. The result is
terestingly, to more particles. We note that there is a close
analogy between this method and our entanglement concen- (N+1)
tration scheme in Refl2]. In particular, if the two states Pulpn,n)=1—
were less than maximally entangled, then by detecting en-
tanglement we would actually also amplify (kee Ref[2]
for more details
Another interesting application is in mixed state purifica-
tion, as in Ref[12]. Suppose that we start with two qubits,
each in some mixed state. We would like not only to make Pu(pn, ) =41+ 1p. (14)

the state of these qubits pur@n the sense of having lower

linear entropy, but also to preserve their original direction in Here, the 1/2 factors refer to the fact that the two states are
the Bloch sphere. The optimal way of doing @s proven in  prepared with equal probability. The term 1 comes from the
Ref. [12]) is to project the joint state onto the symmetric fact that the state,, supported on the symmetric subspace
subspace, in which case the resulting mixed state is purer angf dimension ds=N+1), is always identified reliably as
yet preserves the original direction. If the projection is un-gych, andp is the probability of identifying the other state
successful, the qubits are thrown away. This is exactly the = sincery is maximally mixed, it is uniformly distributed
same as our probabilistic discrimination with a beam splittergyer the whole space df qubits (of dimensiond=2V). In

We would now like to investigate the generalization of theypig casep=(1—dg)/d, which after substitution in Eq14)
above results tiN particles. For this, we use a generalizedgi\,es Eq.(13) right away.
(N-port) balanced be_am splitter, as shown in Fig. 2 which™ The problem to apply our discrimination scheme No
acts only on the spatial degrees of freedom of the input pamarticles is that it becomes exponentially hard to calculate
ticles. This action is given by a unitary matrbly, with  p_(p\ 7\) asN increases. Moreover, it is not clear which
elements inference strategy should be followed. For fermions, the
natural generalization would be to associate the antibunching
results withpy and the others withry . For bosons, on the
:iei(27r/N)(m—1)(n—l) 9) other hand, a more subtle strategy may be needed. This is
JN ' because, loosely speaking, for bosons there is no clear analog
of the Pauli exclusion principle. Furthermore, even without
having the complete calculations fe>2, we would like to
(Note that there exist alternative descriptions of balance@mphasize the remarkable fact that the Helstrom probability
multiport beam splitter§13].) The square of the norm of P (py,7y) is equal to the probability of success of a fermi-
each element in the matrix represents the probability that thenic beam splitter strategy described above, if calculated un-
particle in themth input arm of the beam splitter ends up in der the assumption that the particles are class$i@al always
the nth output arm. Since all these elements have normdistinguishable by some arbitrary lahebut obey a con-
1/JN, we have a representation of a balan®égort beam  straint equivalent to the Pauli exclusion princigiet allow-

2(N+l) ' (13)

Alternatively, we can calculate the average probability of

success to distinguish statpg and 7 using the following
expression:

umn

splitter. ing more than two particles in the same internal state to share
Now the aim is to discriminate between tiNeparticle  the same output arm of the beam spliit&the overall prob-
generalizations op, and 7,. Those states are given by ability is then calculated by summing up the probabilities of
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all the possible outcomes rather than the amplitudes, as @onsidered as classical particles that obey the Pauli exclusion

would be done in the quantum case. However, in the case gfrinciple as the only additional constraint. An advantage of

three fermions l=3), we have performed the full quantum our method is that it can also be easily implemented with the

calculations(i.e., taking properly into account the effects of current technology.

statistics for a three-port balanced beam splitter and ob-  Our work suggests a number of interesting research direc-

tained tions. One problem is to prove the optimality of the beam

Pod(ps,7s)=2 (15) splitt.er strategy in the case qubits and its application to

BSP3:73) "2, multiparty entanglement detection. This, we hope, will an-

which is equal toP,(p3,73). We believe this result of ob- Swer the question of weather the symmetry between fermi-
taining the optimal discrimination probability using the ef- ons and bosons in our strategy will be preserved for a gen-
fects of particle statistic§n multiports can be generalized eralized beam splitter. It may also lead to a simple and
to an arbitraryN, both for fermions and bosons, and we physically intuitive selection principle governing bosonic be-
continue research in this direction. For now this remains @avior. Another possible direction is to classify all the pairs
conjecture. In an optical lattice, with one particle in eachof states that can be optimally discriminated with our
lattice site, a multiport beam splitter could probably be simu-scheme. Finally, our results suggest that it would be worth to
lated by dissolvingN potential wells and then creating a new further explore the role of particle statistics in quantum in-
set ofN wells[7]. Of course, if the particles interact, then the formation tasks, in particular in efficient quantum computa-
effective beam splitter will be modified, and here we onlytion. After the conclusion of this paper, several interesting

point out the plausibility of creating multiport beam splitters re|ated works were pointed out to [64—16.
(or multiparticle interferengein an optical lattice.
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