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Optimal state discrimination using particle statistics
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We present an application of particle statistics to the problem of optimal ambiguous discrimination of
quantum states. The states to be discriminated are encoded in the internal degrees of freedom of identical
particles, and we use the bunching and antibunching of the external degrees of freedom to discriminate
between various internal states. We show that we can achieve the optimal single-shot discrimination probability
using only the effects of particle statistics. We discuss interesting applications of our method to detecting
entanglement and purifying mixed states. Our scheme can easily be implemented with the current technology.
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Recently, there has been an emerging interest in the us
particle statistics~both bosonic and fermionic! for quantum
information processing@1,2#. In fact, it was shown that a
useful task such as entanglement concentration could be
complished, even if nonoptimally, using only the effects
quantum statistics, without the need for any other inter
tions @2#. The above investigations differ significantly from
some previous suggestions, where either anyonic stati
@3# or the effects of electronic statistics in conjunction w
other interactions@4,5# were used for quantum informatio
processing. Schemes using only particle statistics@1,2#
would be very useful for tasks implemented with identic
particles that interact very weakly or not at all with ea
other, such as photons or neutrons. This weak interaction
be beneficial for information processing as it may reduce
unwanted coupling to the environment. Such schemes
also extremely general in the sense of being independen
the actual particle species. It is, however, not known whet
such schemes can accomplish quantum information proc
ing efficiently. Here we present a particular quantum info
mation processing task involving two qubits and show tha
can be performedoptimally using only quantum statistics
Moreover, we point out how the task of discriminating qua
tum states can be applied to detecting entanglement and
rifying mixed states. We also discuss how to generalize th
tasks toN qubits and argue that quantum statistics could
used to perform even this generalized task optimally. Wh
the two qubits and other smallN qubits versions of our pro
tocol can be tested with photons, electrons, neutrons, o
oms, the large number of qubits versions could have in
esting implementations in optical lattices@6,7#.

One of the striking aspects of quantum mechanics is
it is not possible to perfectly discriminate between two sta
unless they are orthogonal. Suppose someone prepares
qubits encoded in the internal degrees of freedom of
identical particles—say, in the spin of two electrons or t
polarization of two photons—in one of the following tw
possible states:~1! spins aligned~parallel! and pointing in an
arbitrary direction;~2! spins antialigned and pointing in a
arbitrary direction.
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We will assume that the two states are equally likely
the sake of simplicity, but all the presented results will
valid for any a priori distribution. Note also that, unles
otherwise stated, whenever we mention spin we will actua
refer to any two-dimensional internal degree of freedom,
it for fermions or for bosons. As we do not have any know
edge of the direction of alignment in both of the above cas
the overall states are mixed. They are described, respecti
by the following density operators:

r25
1

4pE dVuV&^Vu ^ uV&^Vu ~1!

and

s25
1

4pE dVuV&^Vu ^ uV'&^V'u. ~2!

Here, the subscripts indicate that we are considering
particles. The ketuV& represents the spin-up state along t
axis defined by the angleV, while uV'& is the orthogonal
state spin down. Thus,r2 represents an equal mixture o
spins aligned along an arbitrary axis in space, whiles2 is the
equal mixture of antialigned spins of two spin-1

2 particles. It
is impossible to discriminate between these states perfe
because they are not orthogonal.

Optimal results are known for the discrimination of an
two given quantum statesh andh8 @8#. The maximal prob-
ability of ambiguously discriminating between twoa priori
equally likely quantum states in a single-shot measureme
given by the Helstrom formula:

PH~h,h8!5 1
2 1 1

4 Truh2h8u. ~3!

We now present a procedure for discriminating betwe
r2 ands2, both for fermions and bosons, based only on
effects of particle statistics. To use these effects we inter
particles at a beam splitter. Here we usebeam splitterin a
generic sense, referring not only to the common optical e
ment ~partially silvered mirror! used with photons, but also
©2003 The American Physical Society09-1
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to any device presenting an analog behavior for other ki
of particles, as already suggested for electrons@9#. In order to
distinguish the states we rely on path measurements that
criminate between bunching and antibunching, and that
performed on our particles after letting them pass simu
neously through a 50-50 beam splitter. Note that in su
balanced beam splitters two indistinguishable particles
always bunch if they are bosons@10#, and always antibunch
if they are fermions@9# ~see also Ref.@11#!.

For fermions, our guess in the case of the antibunch
result is that the input state wasr2, while in the case of
bunching is that it wass2. The probability of success of ou
procedure is then

PBS~r2 ,s2!5 3
4 . ~4!

This probability can easily be calculated by noticing that
only case for which our guess could be incorrect is when
have the antibunching result. Then, we conclude that the
put state wasr2, while it could have actually beens2. On
the other hand, in the case of the bunching result we kn
for sure that the input state wass2, since—according to the
Pauli exclusion principle—two particles with aligned spi
cannot end up in the same output arm of the beam spli
When our input state iss2, the antibunching happens wit
probability 1/2, giving in total a probability of incorrect in
ference of 1/4. In the case of bosons, our protocol is exa
the opposite of the fermionic one, but yields precisely
same efficiency. This time the antibunching results stand
s2, whereas the bunching ones stand forr2, but the prob-
ability of success coincides with Eq.~4!.

Interestingly, the Helstrom formula gives the same res
for the maximal probability of discriminating between the
two states:

PH~r2 ,s2!5 3
4 . ~5!

We can thus conclude that our procedure is optimal for b
fermions and bosons.

Helstrom’s probability can still be achieved in other cas
using the effects of quantum statistics. We now introduc
case of special interest that can be applied to other tasks
as entanglement detection and state purification, as wil
shown later in the paper. Suppose that we have to discr
nate between the following two states:~1! spins aligned~par-
allel! and pointing in an arbitrary direction@the same as in
Eq. ~1!#; ~2! each spin in the maximally mixed state.

The latter state is represented by the following operat

t25 1
4 I ^ 25 1

4 ~ u0&^0u1u1&^1u! ^ ~ u0&^0u1u1&^1u!, ~6!

whereu0& and u1& are any two orthogonal spin states.
The strategy now is exactly the same as before. It re

on the fact that if the state isr2 the particles can, due to the
indistinguishability, give only one result~antibunching in the
case of fermions or bunching in the case of bosons!, while if
the input state ist2 both results are possible. This time, th
probability of success is
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PBS~r2 ,t2!5 5
8 , ~7!

and this coincides with the Helstrom result

PH~r2 ,t2!5
5

8
, ~8!

so our procedure is optimal in this case too. The calculati
leading to the above results are analogous to the ones in
previous discrimination case.

One of the most interesting applications of our approa
can be found in the detection of entanglement. We illustr
this in the case of pure states of two particles. Suppose
example, that we are to discriminate any maximally e
tangled state of two qubits from any disentangled~product!
state. As before, the qubits are supported by the internal
grees of freedom of two identical particles~labeled, say,A
andB). Suppose in addition that we are given two identic
copies of the state. In order to detect entanglement, we
the same particle~eitherA or B) from each pair and interfere
them at a beam splitter, as shown in Fig. 1. The crux of
argument is that if the state is entangled, then the redu
states of these particles will be maximally mixed as in t
statet2. On the other hand, if the state is separable, then
two interfering particles are in the stater2. This is the same
as in our discrimination procedure above, and so there

FIG. 1. This figure represents the setup for our entanglem
detection scheme. We have two equal pairs of identical particles
consider their internal degrees of freedom. Both pairs are in
same pure state: either separable or maximally entangled. We
the same particle~for instance,B) from each pair and interfere them
at a 50-50 beam splitter. If the states are disentangled then
particles are indistinguishable and, depending on the statistics,
either only bunch or only antibunch. Otherwise, if the states
maximally entangled, the particles are maximally mixed, mean
that they can be~probabilistically! distinguished and hence the st
tistics does not influence their behavior. This entanglement de
tion is a particular instance of our state discrimination scheme
cussed in the paper.
9-2
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probability of 5/8 to detect entanglement. This example c
be generalized to other entangled pure states, and, mor
terestingly, to more particles. We note that there is a cl
analogy between this method and our entanglement con
tration scheme in Ref.@2#. In particular, if the two states
were less than maximally entangled, then by detecting
tanglement we would actually also amplify it~see Ref.@2#
for more details!.

Another interesting application is in mixed state purific
tion, as in Ref.@12#. Suppose that we start with two qubit
each in some mixed state. We would like not only to ma
the state of these qubits purer~in the sense of having lowe
linear entropy!, but also to preserve their original direction
the Bloch sphere. The optimal way of doing so~as proven in
Ref. @12#! is to project the joint state onto the symmetr
subspace, in which case the resulting mixed state is purer
yet preserves the original direction. If the projection is u
successful, the qubits are thrown away. This is exactly
same as our probabilistic discrimination with a beam split

We would now like to investigate the generalization of t
above results toN particles. For this, we use a generaliz
(N-port! balanced beam splitter, as shown in Fig. 2, wh
acts only on the spatial degrees of freedom of the input p
ticles. This action is given by a unitary matrixUN , with
elements

umn5
1

AN
ei (2p/N)(m21)(n21). ~9!

~Note that there exist alternative descriptions of balan
multiport beam splitters@13#.! The square of the norm o
each element in the matrix represents the probability that
particle in themth input arm of the beam splitter ends up
the nth output arm. Since all these elements have no
1/AN, we have a representation of a balancedN-port beam
splitter.

Now the aim is to discriminate between theN-particle
generalizations ofr2 andt2. Those states are given by

FIG. 2. This diagram represents a multiport beam splitter withN
inputs andN outputs. The overall output state depends not only
the input, but also on the statistics~either fermionic or bosonic! of
the identical particles involved. We have labeled two arbitrary po
the mth input port and thenth output port.
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rN5
1

4pE dV~ uV&^Vu! ^ N ~10!

and

tN5
1

2N
~ u0&^0u1u1&^1u! ^ N. ~11!

To calculate the Helstrom probability, one has to diagona
the matrixrN2tN . This turns out to be straightforward onc
we notice thatrN can also be represented as an equal mixt
of all possible symmetric states within the basis$uSi&: i
51, . . . ,N115uSu% of N qubits. Then, we have

rN5
1

uSu (
i 51

uSu

uSi&^Si u. ~12!

It is now easy to calculate the Helstrom formula by expan
ing rN in a basis consisting of the union of a basis of t
symmetric subspace and a basis of its orthogonal com
ment. The result is

PH~rN ,tN!512
~N11!

2(N11)
. ~13!

Alternatively, we can calculate the average probability
success to distinguish statesrN and tN using the following
expression:

PH~rN ,tN!5 1
2 11 1

2 p. ~14!

Here, the 1/2 factors refer to the fact that the two states
prepared with equal probability. The term 1 comes from
fact that the staterN , supported on the symmetric subspa
~of dimensiondS5N11), is always identified reliably as
such, andp is the probability of identifying the other stat
tN . SincetN is maximally mixed, it is uniformly distributed
over the whole space ofN qubits ~of dimensiond52N). In
this casep5(12dS)/d, which after substitution in Eq.~14!
gives Eq.~13! right away.

The problem to apply our discrimination scheme toN
particles is that it becomes exponentially hard to calcul
PBS(rN ,tN) asN increases. Moreover, it is not clear whic
inference strategy should be followed. For fermions,
natural generalization would be to associate the antibunch
results withrN and the others withtN . For bosons, on the
other hand, a more subtle strategy may be needed. Th
because, loosely speaking, for bosons there is no clear an
of the Pauli exclusion principle. Furthermore, even witho
having the complete calculations forN.2, we would like to
emphasize the remarkable fact that the Helstrom probab
PH(rN ,tN) is equal to the probability of success of a ferm
onic beam splitter strategy described above, if calculated
der the assumption that the particles are classical~i.e., always
distinguishable by some arbitrary label!, but obey a con-
straint equivalent to the Pauli exclusion principle~not allow-
ing more than two particles in the same internal state to sh
the same output arm of the beam splitter!. The overall prob-
ability is then calculated by summing up the probabilities

n

,
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all the possible outcomes rather than the amplitudes, a
would be done in the quantum case. However, in the cas
three fermions (N53), we have performed the full quantum
calculations~i.e., taking properly into account the effects
statistics! for a three-port balanced beam splitter and o
tained

PBS~r3 ,t3!5 3
4 , ~15!

which is equal toPH(r3 ,t3). We believe this result of ob
taining the optimal discrimination probability using the e
fects of particle statistics~in multiports! can be generalized
to an arbitraryN, both for fermions and bosons, and w
continue research in this direction. For now this remain
conjecture. In an optical lattice, with one particle in ea
lattice site, a multiport beam splitter could probably be sim
lated by dissolvingN potential wells and then creating a ne
set ofN wells @7#. Of course, if the particles interact, then th
effective beam splitter will be modified, and here we on
point out the plausibility of creating multiport beam splitte
~or multiparticle interference! in an optical lattice.

In this paper we have shown that it is possible to perfo
an optimal quantum information processing task using o
the effects of particle statistics. In particular, we have p
sented a strategy for discriminating between two non
thogonal states of two qubits~encoded in the internal degree
of freedom of identical particles! using beam splitters. We
have considered two discrimination scenarios and in eac
them our strategy differs~symmetrically! between fermions
and bosons, but offers the same efficiency. We also poin
out how our discrimination scheme can be applied to det
ing entanglement and purifying mixed states. In addition,
have calculated the Helstrom probability forN qubits in one
of our discrimination scenarios. We have shown by expl
calculation that this probability can be achieved in a ferm
onic three-port beam splitter strategy and that it is the sa
as the fermionic strategy for generalN if the fermions are
A
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considered as classical particles that obey the Pauli exclu
principle as the only additional constraint. An advantage
our method is that it can also be easily implemented with
current technology.

Our work suggests a number of interesting research di
tions. One problem is to prove the optimality of the bea
splitter strategy in the case ofN qubits and its application to
multiparty entanglement detection. This, we hope, will a
swer the question of weather the symmetry between fer
ons and bosons in our strategy will be preserved for a g
eralized beam splitter. It may also lead to a simple a
physically intuitive selection principle governing bosonic b
havior. Another possible direction is to classify all the pa
of states that can be optimally discriminated with o
scheme. Finally, our results suggest that it would be worth
further explore the role of particle statistics in quantum
formation tasks, in particular in efficient quantum compu
tion. After the conclusion of this paper, several interest
related works were pointed out to us@14–16#.
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