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We introduce the concept of a quantum walk with two particles and study it for the case of a discrete time
walk on a line. A quantum walk with more than one particle may contain entanglement, thus offering a
resource unavailable in the classical scenario and which can present interesting modifications on quantum
walks with single particles. In this work, we show both numerically and analytically how the entanglement and
the relative phase between the states describing the coin degree of freedom of each particle will influence the
evolution of the quantum walk. In particular, the probability to find at least one particle in a certain position
after N steps of the walk, as well as the average distance and the squared distance between the two particles,
can be larger or smaller than the case of two unentangled particles, depending on the initial conditions we
choose. This resource can then be tuned according to our needs to modify the features of a quantum walk.
Experimental implementations are briefly discussed.
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Quantum walks, the quantum version of random walks,
were first introduced in 1993 �1� and have since then been a
topic of research within the context of quantum information
and computation �for an introduction, see �2��. Given the
superposition principle of quantum mechanics, quantum
walks allow for coherent superpositions of classical random
walks and, due to interference effects, can exhibit different
features and offer advantages when compared to the classical
case. In particular, for a quantum walk on a line, the variance
after N steps is proportional to N2, rather than N as in the
classical case �see Fig. 1�. Recently, several quantum algo-
rithms with optimal efficiency were proposed based on quan-
tum walks �3�, and it was even shown that a continuous-time

quantum walk on a specific graph can be used for exponen-
tial algorithmic speedup �4�.

All studies on quantum walks so far have, however, been
based on a single walker. In this article we study a discrete-
time quantum walk on a line with two particles. Classically,
random walks with K particles are equivalent to K indepen-
dent single-particle random walks. In the quantum case,
though, a walk with K particles may contain entanglement,
thus offering a resource unavailable in the classical scenario
which can introduce interesting features. Moreover, in the
case of identical particles we have to take into account the
effects of quantum statistics, giving an additional feature to
quantum walks that can also be exploited. In this work we
explicitly show that a quantum walk with two particles can
indeed be tuned to behave very differently from two inde-
pendent single-particle quantum walks.

Let us start by introducing the discrete-time quantum
walk on a line for a single particle. The relevant degrees of
freedom are the particle’s position i �with i�Z� on the line,
as well as its coin state. The total Hilbert space is given by
H�HP � HC, where HP is spanned by the orthonormal vec-
tors ��i�	 representing the position of the particle and HC is
the two-dimensional coin space spanned by two orthonormal
vectors which we denote as �↑� and �↓�.

Each step of the quantum walk is given by two subse-
quent operations: the coin operation and the shift-position

operation. The coin operation, given by ÛC�SU�2� and act-
ing only on HC, is the quantum equivalent of randomly
choosing which way the particle will move �like tossing a
coin in the classical case�. The nonclassical character of the
quantum walk is precisely here, as this operation allows for

FIG. 1. �Color online� Probability distribution for a classical
random walk �a� on a line after N=100 steps, as well as for a
quantum walk �b� with initial state �0� � �↑ � and a Hadamard coin.

PHYSICAL REVIEW A 74, 042304 �2006�

1050-2947/2006/74�4�/042304�7� ©2006 The American Physical Society042304-1

http://dx.doi.org/10.1103/PhysRevA.74.042304


superpositions of different alternatives, leading to different

moves. Then, the shift-position operation Ŝ moves the par-
ticle according to the coin state, transferring this way the
quantum superposition to the total state in H. The evolution
of the system at each step of the walk can then be described
by the total unitary operator

Û � Ŝ�ÎP � ÛC� , �1�

where ÎP is the identity operator on HP. Note that if a mea-
surement is performed after each step, we will revert to the
classical random walk.

In this article we choose to study a quantum walk with a

Hadamard coin—i.e., where ÛC is the Hadarmard operator

Ĥ:

Ĥ =
1

2
�1 1

1 − 1
� . �2�

Note that this represents a balanced coin; i.e., there is a
50-50 chance for each alternative. The shift-position operator
is given by

Ŝ = 
�
i

�i + 1��i�� � �↑��↑ � + 
�
i

�i − 1��i�� � �↓��↓ � . �3�

Therefore, if the initial state of our particle is, for instance,
�0� � �↑ �, the first step of the quantum walk will be as fol-
lows:

�0� � �↑�→
Ĥ

�0� �
1

2

��↑� + �↓��→
Ŝ 1


2
��1� � �↑� + �− 1� � �↓�� .

�4�

We see that there is a probability of 1 /2 to find the particle in
position 1, as well as to find it in position 2, just like in the
classical case. Yet, if we let this quantum walk evolve for
three or more steps before we perform a position measure-
ment, we will find a very different probability distribution for
the position of the particle when compared to the classical
random walk, as can be seen in Fig. 1 for N=100 steps.

Let us consider the previous quantum walk, but now with
two noninteracting particles on a line �not necessarily the
same�. If the particles are distinguishable and in a pure sepa-
rable state, the position measurement of one particle will not
change the probability distribution of the other; they are
completely uncorrelated. On the other hand, if the particles
are entangled, a new resource with no classical equivalent
will be at our disposal.

This is a specific instance of the well-known interference
phenomenon in quantum mechanics, applied to the case of a
composite system. In particular, let us have a composite sys-
tem consisting of two particles, labeled 1 and 2, prepared in
a pure separable state,

��S�12 = ���1���2, �5�

and a general separable two-particle observable

Â12 = Â1 � Â2. �6�

Then, the expectation value of the observable Â12 for a sys-
tem in a state ��S�12 is the simple product of the two sub-
system expectation values:

��S�Â12��S�12 = ���Â1���1���Â2���2. �7�

On the other hand, if the composite system is in a general
entangled state

��E�12 = a��S�12 + b��S�12, �8�

where �a�2+ �b�2=1 and ��S�12= ���1���2 �with ����ei�����,
then the expectation value of the observable Â12 is given by

��E�Â12��E�12 = �a�2���Â1���1���Â2���2

+ �b�2���Â1���1���Â2���2

+ a*b���Â1���1���Â2���2

+ ab*���Â1���1���Â2���2. �9�

Note that the first two terms on the right-hand side of the
above equation represent the weighted sum of the expecta-
tion values for the states ��S�12 and ��S�12, with the weights
�a�2 and �b�2, respectively. In other words, the first two terms

represent the expectation value of the observable Â12 for a
mixed separable state:

�̂12
S = �a�2��S���S�12 + �b�2��S���S�12. �10�

The last two terms in Eq. �9� are purely quantum and repre-
sent the interference between the two states ��S�12 and ��S�12,
superposed in the state ���12. Note that to obtain this purely
quantum phenomenon, we need only an entangled state, even

if the observable Â12= Â1 � Â2 is separable.
Returning to the case of two walkers on a line, the joint

Hilbert space of our composite system is given by

H12 � H1 � H2 � �HP,1 � HC,1� � �HP,2 � HC,2� ,

�11�

where H1 and H2 represent the Hilbert spaces of particles 1
and 2, respectively. Since the relevant degrees of freedom in
our problem are the same for both particles, we have that
both H1 and H2 are isomorphic to H defined earlier for the
one-particle case. Note also that in the case of identical par-
ticles we have to restrict H12 to its symmetrical and antisym-
metrical subspaces for bosons and fermions, respectively.

Let us first consider the particular case where both par-
ticles start the quantum walk in the same position, 0, but with
different coin states �↓� and �↑�. In the case where the par-
ticles are in a pure separable state, our system’s initial state
will be given by

��0
S�12 = �0,↓�1�0,↑�2. �12�

We can also consider an initial pure state entangled in the
coin degrees of freedom. In particular, we will consider the
following two maximally entangled states:
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��0
±�12 =

1

2

��0,↓�1�0,↑�2 ± �0,↑�1�0,↓�2� , �13�

differing only by a relative phase. Note that if we were con-
sidering identical particles on the same point, our system
would have to be described by these states for bosons and
fermions, respectively.

Each step of this two-particle quantum walk will be given
by

Û12 = Û � Û , �14�

where Û is given by Eq. �1� and is the same for both par-
ticles. After N steps, the state of the system will be, in the
case of the initial conditions �12�

��N
S �12 = Û12

N ��0
S�12 = ÛN�0,↓�1ÛN�0,↑�2. �15�

Figure 2�a� shows the joint probability distribution
P12

S �i , j ;N� for finding particle 1 in position i and particle 2
in position j for N=30 steps. Note that, since the particles are

FIG. 2. �Color online� Two-particle probabil-
ity distributions after N=30 steps for different
initial conditions: �a� separable state ��0

S�12, �b�
��0

+�12 state, and �c� ��0
−�12 state. Note the differ-

ent vertical ranges.
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uncorrelated, P12
S �i , j ;N� is simply the product of the two

independent one-particle distributions:

P12
S �i, j ;N� = P1

S�i;N� 	 P2
S�j ;N� , �16�

where P1
S�i ;N� is the probability distribution for finding par-

ticle 1 in position i after N steps and similarly for P2
S�j ;N�

and particle 2. This can also be observed in Fig. 2�a�, which
is clearly the product of two independent single-particle dis-
tributions, one biased to the left for particle 1 and the other to
the right for particle 2, accordingly with the initial conditions
given by Eq. �12�.

In the case of entangled particles, the state of the system
after N steps will be

��N
±�12 = Û12

N ��0
±�12

=
1

2

�ÛN�0,↓�1ÛN�0,↑�2 ± ÛN�0,↑�1ÛN�0,↓�2� .

�17�

The probability distribution for finding particle 1 in position
i and particle 2 in position j in the “
” case, P12

+ �i , j ;N�, is
represented in Fig. 2�b�, for N=30. Similarly, Fig. 2�c� shows
the distribution P12

− �i , j ;N� of the “�” case, again for N
=30. The effects of the entanglement are striking when com-
paring the three distributions in Fig. 2. In particular, we see
that these effects significantly increase the probability of the
particles reaching certain configurations on the line, which
otherwise would be very unlikely to be occupied. In all
cases, the maxima of the distributions occur around positions
±N /
2� ±20. In the “
” case it is most likely to find both
particles together, whereas for “�” the former situation is
impossible and the particles will tend to finish as distant as
possible from one another.

Let us now consider the individual particles in the en-
tangled system. For instance, the state of the first particle can
be described by the reduced density operator �̂1�N�
�Tr2���N

±�12 12��N
± ��, which consists of an equal mixture of

the one-particle states ÛN �0, ↓ � and ÛN �0, ↑ �. Thus, the
probability to find particle 1 in position i after N steps is
given by the following marginal probability distribution:

P1
±�i;N� =

1

2
�P↓�i;N� + P↑�i;N�� , �18�

where P↓�i ;N� is the probability distribution for finding the

particle in state ÛN �0, ↓ � in position i after N steps and simi-

larly for P↑�i ;N� and a particle in state ÛN �0, ↑ �. The results
for particle 2 are analogous: in particular, P2

±�i ;N� is also
given by Eq. �18�. Note that in the case of initial conditions
�12� we have the marginal probabilities P1

S�i ;N�= P↓�i ;N�
and P2

S�i ;N�= P↑�i ;N�. But now, contrary to the separable
case, the joint probability P12

± �i , j ;N� is no longer the simple
product of the two one-particle probabilities. In fact, it is not
even a weighted sum of productlike terms as it contains the
interference part analogous to the one from Eq. �9�, giving
information about the nontrivial quantum correlations be-
tween the outcomes of the position measurement performed

on each particle. From Eq. �17�, it follows that the probabil-
ity P12

± �i , j ;N� is given by

P12
± �i, j ;N� =

1

2
�P↓↑�i, j ;N� + P↑↓�i, j ;N�

± �I↓↑�i;N�I↑↓�j ;N� + I↑↓�i;N�I↓↑�j ;N��	 ,

�19�

where P↓↑�i , j ;N�= P↓�i ;N�P↑�j ;N� and I↓↑�i ;N�
= �0, ↓ ��Û†�N � i��i � ÛN �0, ↑ � �and analogously for P↑↓�i , j ;N�
and I↓↑�i ;N��. Therefore, to investigate more quantitatively
the difference between quantum walks with two distinguish-
able particles in a pure separable state and two particles en-
tangled in their coin degree of freedom, we must look at joint
�two-particle� rather than individual properties.

First, let us consider a simple product x̂1x̂2 between the
subsystem position operators x̂1 and x̂2 for particles 1 and 2,
respectively �note that for simplicity, we have omitted to
write the dependence on the number of steps, N�. The expec-
tation values �x̂1x̂2�S,± for the three initial states ��0

S�12 and
��0

±�12 are presented in Table I for different N. We observe
that the three cases are “equidistant� in the sense that, for
each N, the following relation holds:

�x̂1x̂2�− − �x̂1x̂2�S = �x̂1x̂2�S − �x̂1x̂2�+. �20�

In order to study the above quantity analytically, let us write
the definition of the expectation value �x̂1x̂2�
��i,j=−N

N ijP12�i , j ;N�. Using Eqs. �16� and �19� for the joint
probability distributions P12

S �i , j ;N� and P12
± �i , j ;N�, respec-

tively, we get the following expression:

�x̂1x̂2�± = �x̂1x̂2�S ±
1

2 �
i,j=−N

N

ij�I↓↑�i;N�I↑↓�j ;N�

+ I↑↓�i;N�I↓↑�j ;N�� . �21�

We immediately see that the relation �20� is indeed satisfied
for every N. If by �x̂↓� we denote the average position for the
one-particle probability distribution P↓�i ;N� and analogously
for �x̂↑�, we also have that �x̂1x̂2�S= �x̂↓��x̂↑�=−�x̂↓�2 as
P↓�i ;N�= P↑�−i ;N�. Using the obvious relation I↓↑�i ;N�
=I↑↓

* �i ;N�, we can further simplify expression �21� by writ-
ing

�x̂1x̂2�± = − �x̂↓�2 ± �I↓↑�2, �22�

with I↓↑=�i=−N
N iI↓↑�i ;N�.

To analyze the asymptotic behavior of �x̂1x̂2� for large N,

TABLE I. Average product �x̂1x̂2�S,± after N steps, for the initial
conditions ��0

−�12, ��0
S�12, and ��0

+�12.

Expectation value �x̂1x̂2�S,± after N steps

N 10 20 30 40 60 100

��0
−�12 −16.8 −69.8 −153.5 −276.2 −619.7 −1718.3

��0
S�12 −6.0 −31.3 −69.9 −130.5 −298.3 −839.6

��0
+�12 4.8 7.3 13.7 15.1 23.1 39.1
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we use the technique developed in �6� based on Fourier
analysis �for an alternative treatment, see �7��. There, it was
shown that for every initial coin state, the expectation value
of the position operator in a one-particle quantum walk on a
line has a linear drift �x̂��N, for N large enough. Following
�6�, we can express I↓↑ as

I↓↑ = −
1

2�
�
j=1

N �
−�

�

dk�↓ ��Ĥk
†� jẐ�Ĥk� j�↑� , �23�

with Ẑ� ÎC−2 � ↓ ��↓� and

Ĥk =
1

2
�e−ik e−ik

eik − eik� .

Let �
kl� be eigenvectors for the operators Ĥk, with eigenval-
ues e�kl, and let �↑ �=�l=1

2 ukl�
kl� and �↓ �=�l=1
2 dkl�
kl�. Then,

Eq. �23� can be rewritten in the following way �P̂↓
��↓ ��↓��:

I↓↑ = − N +
1

�
�

−�

�

dk �
l,l�=1

2

ukl
* dkl��
kl�P̂↓�
kl���

j=1

N

ei��kl�−�kl�j .

�24�

Since for l� l� the terms in the above equation are oscilla-
tory, for large N they will average to zero, thus yielding the
linear asymptotic behavior of I↓↑ with respect to the number
of steps:

I↓↑ = E1N , �25�

where E1=−1+ �1���−�
� dk�lukl

* dkl�
kl � P̂↓ �
kl�. Combining
the above result with Eq. �22� and the asymptotic behavior
�x̂��N, we conclude that in general �x̂1x̂2�, as well as the
“distances” given by Eq. �20�, should scale quadratically
with the number of steps N. Looking at the numerical results
presented in Table I, we see that for ��0

−�12 and ��0
S�12 initial

states we indeed have that �x̂1x̂2�S,−�N2, while for the ��0
+�12

initial state we have that �x̂1x̂2�+�N. In other words, the qua-
dratic parts of �x̂↓�2 and �I↓↑�2 cancel out each other for the
case of ��0

+�12 initial state. We performed numerical simula-
tions up to N=8000 steps, and they confirmed the behavior
presented in Table I.

Note that these effects require the presence of entangle-
ment in the initial conditions. For instance, P12

− �i , j ;N� can
never be obtained from separable initial states of the coins.
Suppose that, given a general separable �possibly mixed� ini-
tial state of the coins, one has to achieve in N steps as nega-
tive a value of �x̂1x̂2� as possible by starting the walkers in
the position state �0�1�0�2. For such states, �x̂1x̂2� is simply a
weighted average of �x̂1��x̂2� over several pure product states.
Now, it is well known that for single-particle walks with the
Hadamard coin, �0, ↑ �i and �0, ↓ �i give the most positive and
the most negative values of �x̂i�, respectively �2� �they give
the most asymmetric distributions for the walkers’ position�.
Thus, for two-particle walks, a set of separable states for
most negative �x̂1x̂2� are mixed states of the form �̂A

=P ��0
S���0

S � + �1−P� ��0
S����0

S��, where ��0
S��12= �0, ↑ �1�0, ↓ �2

and P is any probability. Mixing any state �0, ↗ �1�0, ↘ �2
with �̂A, where �↗ � and �↘ � are arbitrary states of the coins
�not necessarily orthogonal to each other�, even with an ar-
bitrarily small probability, will make �x̂1x̂2� more positive or
keep it unchanged at best. However, from Eqs. �21� and �22�,
we see that �x̂1x̂2�−� �x̂1x̂2�S for every N. Thus, the expecta-
tion value �x̂1x̂2� of P12

− �i , j ;N� is always more negative than
that obtained with any separable state. Therefore, P12

− �i , j ;N�
cannot be reproduced with a walk starting in �0�1�0�2 that has
a separable initial state of the coins.

For a general pure entangled coin state we can write the
overall initial state as follows:

��0�12 = �00�12 � ���↑↑�12 + ��↑↓�12 + ��↓↑�12 + ��↓↓�12� ,

�26�

with ���2+ ���2+ ���2+ ���2=1. From the above discussion, it
follows that the expectation value of operator x̂1x̂2 can be
written in the following form:

�x̂1x̂2� = ����2 + ���2 − ���2 − ���2��x̂↓�2

+ 2�x̂↓�Re��− ��* − ��* + ��* + ��*�I↓↑�

+ 2 Re����* + ��*�I↓↑
2 � , �27�

where Re�z� is real part of a complex number z. The initial
entangled states ��0

±�12 discussed above correspond to the
choice of coefficients �=�=0 and �= ±�=1/
2. We see that
by taking as initial coin states the other two Bell states �cor-
responding to the choice of �=�=0 and �= ±�=1/
2�

�
0
±�12 =

1

2

��0,↓�1�0,↓�2 ± �0,↑�1�0,↑�2� , �28�

we obtain analogous results: �
0
±�12 are “equidistant” from

the separable initial states �0, ↓ �1�0, ↓ �2 and �0, ↑ �1�0, ↑ �2 �in
the sense of Eq. �20��, with �
0

+�12 achieving the maximal
positive value for �x̂1x̂2�, which has the same absolute value
as the one obtained for the ��0

−�12 initial state.
Finally, we note that the above results for �x̂1x̂2� �Eq. �22�

and Table I�, together with the results for �x̂� of a single-
particle quantum walk on a line �see �6��, offer us an explicit
form for the correlation function C12��x̂1x̂2�− �x̂1��x̂2�.

The second quantity we choose to study is the squared
distance between the two particles, defined as

��̂12
2 � � ��x̂1 − x̂2�2� . �29�

Again, it represents a joint property. The expectation values

��̂12
2 �S,± for the three initial states ��0

S�12 and ��0
±�12 are pre-

sented in Table II for different N. We see that in the “�” case
the particles tend, on average, to end the quantum walk more
distant from each other, whereas in the “
” case they tend to
stay closer and somewhere in between in the separable case.
In fact, for fixed N, we have a relation analogous to Eq. �20�:

��̂12
2 �− − ��̂12

2 �S = ��̂12
2 �S − ��̂12

2 �+. �30�

This can be shown to be a general property if we express

��̂12
2 � in the following way:
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��̂12
2 � = �x̂1

2� + �x̂2
2� − 2�x̂1x̂2� . �31�

Using the previous discussion for �x̂1x̂2�, we see that the
relation �30� is just a consequence of the result �22�, as in all
three cases we have that �x̂1

2�= �x̂2
2�= �x̂↓

2�, with �x̂↓
2� being the

mean-squared position for the probability distribution
P↓�i ;N�. In the case of a general initial coin state �26�, the

analytical result for ��̂12
2 � is obtained using Eq. �27� together

with

�x̂1
2� = �x̂↓

2� + 2 Re����* + ��*�K↓↑� , �32�

where K↓↑=�i=−N
N i2�0, ↓ ��Û†�N � i��i � ÛN �0, ↑ � �and the analo-

gous expression for �x̂2
2��. Then, further analysis of the quan-

tity K↓↑ can be carried out in a similar fashion to the one
done for I↓↑ �see also �6��. The main conclusion of this analy-

sis is that, asymptotically, ��̂12
2 � scales quadratically with the

number of steps, N, which is confirmed by numerics as well;
see Table II �again, we performed numerical simulations up
to N=8000 steps, confirming the results presented in Table
II�.

If instead of the squared distance we choose the linear

distance itself, given by ��̂12�= ��x̂1− x̂2��, we obtain the re-
sults presented in Table III. Again, we observe behavior
analogous to that given by Eqs. �20� and �30�. Furthermore,
we see that the distance scales linearly with N.

Finally, let us now calculate, for the different initial con-
ditions, the probability of finding at least one particle in po-
sition i after N steps: PS,±�i ;N�. This is clearly a joint prop-
erty as it depends on both one-particle outcomes:

PS,±�i;N� = �
j=−N

N

�P12
S,±�i, j ;N� + P12

S,±�j,i;N�� − P12
S,±�i,i;N�

= �P1
S,±�i;N� + P2

S,±�i;N�� − P12
S,±�i,i;N�

= �P↓�i;N� + P↑�i;N�� − P12
S,±�i,i;N� . �33�

From Eqs. �16� and �19�, it follows that P12
± �i , i ;N�

= P12
S �i , i ;N�± �I↓↑�i , i ;N��2, so that

P−�i;N� � PS�i;N� � P+�i;N� . �34�

We see that, by introducing entanglement in the initial con-
ditions of our two-particle quantum walk, the probability of
finding at least one particle in a particular position on the line
can actually be better or worse than in the case where the two
particles are independent. Note that in this case this does not
depend on the particular amount of entanglement introduced,
as both states in Eq. �13� are maximally entangled, but rather
on their symmetry-relative phase.

This work allows for generalizations in a number of ways.
First, one could consider periodic or other boundary condi-
tions on the line or more general graphs �5�. Note that the
positions on the line of our two particles could also be inter-
preted as the position of a single particle doing the quantum
walk on a regular two-dimensional lattice. More general
coins could also be considered �8–10�, including entangling
and nonbalanced coins, as well as different initial states. One
could also augment the number of particles and study these
quantum walks in continuous time or in their asymptotic
limit. Furthermore, also very interesting and promising is to
investigate the use of multiparticle quantum walks in solving
mathematical or practical problems that could be encoded as
a quantum walk, such as the estimation of the volume of a
convex body �11� or the connectivity in a P2P network �12�.

Finally, we present some brief comments about imple-
mentations of our two-particle quantum walk on a line. The
methods recently proposed for the single-particle case using
cavity QED �13�, optical lattices �14�, or ion traps �15� could
be adapted to our two-particle case. For instance, in the latter
we could encode the coin states in the electronic levels of
two ions and the position in their center-of-mass or stretch
motional modes: the coin flipping could then be obtained
with a � /2 Raman pulse and the shift with a conditional
optical dipole force �16�. Another possibility is to send two
photons through a tree of balanced beam splitters which
implement both the coin flipping and the conditional shift,
again generalizing a scheme proposed for a single particle
�8,17�. Note that this could be implemented with other par-
ticles as well—e.g., electrons—using a device equivalent to a
beam splitter �18�. Also very interesting, regardless of any
particular method or technology, is the possibility of using
two indistinguishable particles on the same line to implement
our quantum walk. Say we encode the coin degrees of free-
dom in the polarization of two photons or in the spin of two
electrons: if the two particles start in the same position 0,
then they will be forced to be in the states given by Eq. �13�
�“
” for bosons and “�” for fermions�. Although the par-
ticles will initially be only entangled in the mathematical
sense �as they cannot be addressed to extract quantum corre-
lations�, this is a perfectly valid way of preparing the ��0

+�12
and ��0

−�12 initial states for our quantum walk, saving us the
trouble of generating entangled pairs. Thus, the indistin-
guishability of identical particles appears as a resource, much
in the same manner as it can play an useful role in quantum-
information processing �19�. Here, in particular, the indistin-
guishability of identical particles offers a way to simplify the

TABLE II. Average squared distance ��̂12
2 �S,± after N steps, for

the initial conditions ��0
−�12, ��0

S�12, and ��0
+�12.

Expectation value ��̂12
2 �S,± after N steps

N 10 20 30 40 60 100

��0
−�12 93.6 374.8 835.4 1490.5 3349.1 9295.4

��0
S�12 71.9 297.7 668.2 1199.2 2706.4 7538.0

��0
+�12 50.3 220.6 501.1 907.9 2063.6 5780.6

TABLE III. Average distance ��̂12�S,± after N steps, for the ini-
tial conditions ��0

−�12, ��0
S�12, and ��0

+�12.

Expectation value ��̂12�S,± after N steps

N 10 20 30 40 60 100

��0
−�12 8.8 17.5 26.0 34.9 52.2 87.0

��0
S�12 7.1 14.7 21.9 29.5 44.3 73.9

��0
+�12 5.5 11.9 17.8 24.1 36.3 60.8
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preparation of the initial states for a two-particle quantum
walk on a line.

The fermionic and bosonic nature of identical particles in
quantum mechanics can also be used to explain the behavior
we have obtained above for our quantum walk with two
entangled particles on the same line. Although we consider
our particles to be distinguishable, the specific entangled
states ��0

±�12 they start in are either symmetric or antisymmet-
ric with respect to the exchange of the indices of the par-

ticles. Both the Ĥ and the Ŝ operations can be applied
through global fields, as they act on both the coins. In other
words, there is no need to distinguish the coins through their
labels 1 and 2 to accomplish the quantum walk we describe,
and the particles could as well have been indistinguishable.
One would thus get precisely the same results as the “�” and
“
” cases if one started with two fermions at �0� and two
bosons at �0�, respectively. The two cases exhibit typically
fermionic and bosonic behaviors, with the two particles, re-
spectively, avoiding each other or tending to bunch together,
as imposed by the symmetrization postulate of quantum me-
chanics �20�, during their quantum walk on the line.

In this article we introduced the concept of a quantum
walk with two particles and studied it both numerically and
analytically for the case of a discrete-time walk on a line.
Having more than one particle, we could now add a new
feature to the walk: entanglement between the particles. For
a general initial state of two particles starting both in position
0, we found analytical expressions for �x̂1x̂2� and the average
squared distance and studied their asymptotic behavior. In
particular, we considered initial states maximally entangled
in the coin degrees of freedom and with opposite symmetries
and compared them to a case where the two particles were
initially unentangled. We found that the entanglement in the
coin states introduced spatial correlations between the par-
ticles and that their average distance is larger in the “�” case

than in the unentangled case and is smaller in the “
” case.
We justified that no separable state �pure or mixed� can ever
generate the probability distribution obtained for the “�”
case, which shows that quantum walks with two entangled
particles can offer features that are unattainable in the sepa-
rable case. If it was given a priori that the two walkers need
to hit �meaning “reach with a significant probability”� two
sites along the line which are anticorrelated �i.e., x1=−x2�
with a certain probability �but not with unit probability, so
that one still needs to search for both the sites�, then a two-
particle walk starting in the “�” state could do better than
any separable state. The entanglement in the initial condi-
tions thus appears as a resource that we can tune according to
our needs to enhance a given application based on a quantum
walk. The possibility of also playing a role in the develop-
ment of quantum algorithms seems worthwhile exploring.
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