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Implementing quantum gates through scattering between a static and a flying qubit
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We investigate whether a two-qubit quantum gate can be implemented in a scattering process involving a flying
and a static qubit. To this end, we focus on a paradigmatic setup made out of a mobile particle and a quantum
impurity, whose respective spin degrees of freedom couple to each other during a one-dimensional scattering
process. Once a condition for the occurrence of quantum gates is derived in terms of spin-dependent transmission
coefficients, we show that this can be actually fulfilled through the insertion of an additional narrow potential
barrier. An interesting observation is that under resonance conditions this procedure enables a gate only for
isotropic Heisenberg (exchange) interactions and fails for an XY interaction. We show the existence of parameter
regimes for which gates able to establish a maximum amount of entanglement can be implemented. The gates
are found to be robust to variations of the optimal parameters.
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I. INTRODUCTION

An emerging trend in the quest for viable ways to implement
quantum information processing (QIP) tasks [1] is to envisage
physical scenarios where the demanded level of control is
significantly reduced. A well-known major hindrance to the re-
liable accomplishment of quantum coherent operations stems
from the noise that any required manipulation of quantum
“hardware” inevitably introduces whenever a given task is
to be achieved. Within this framework, an approach that is
becoming increasingly popular is to encode the computational
space in the (pseudo-) spin degrees of freedom of scattering
particles and harness their interaction during the collision to
process quantum information [2–11]. Scattering is indeed a
typical phenomenon occurring under low-control conditions:
Two or more particles are prepared so as to undergo scattering
and eventually measured once this has concluded. Therefore,
no direct access to the actual interaction process is available.
Unlike gated QIP [1], where one assumes full control over
interaction times to implement one- and two-qubit operations,
a distinctive feature of scattering-based strategies is that any
action is performed with no interaction-time tuning [2–11].
Further advantages of this approach [12] are the remarkable
resilience against numerous detrimental effects, such as
static disorder and imperfect setting of resonance conditions
[5,8,9], detector efficiency [8], and decoherence affecting the
centers [6].

Evidently, the price to pay is that in quantum scattering the
internal spin degrees of freedom of the scattering particles, that
is, those used to encode information, inevitably couple to the
motional dynamics. Hence, in general, such processes affect
the state of the colliding spins according to quantum maps
instead of unitary operations. This makes the accomplishment
of QIP tasks, and more in general coherent operations, rather
demanding. Indeed, while the works carried out along this
line have targeted entanglement generation [2–9] and quantum
state tomography [10], only the latest achievements have
proved the possibility of performing a quantum algorithm

such as teleportation [11]. The working principle behind this
recent proposal, however, basically relies on a scattering-
based effective projective measurement of the singlet state
of two remote scattering centers [11], that is, the same
basic mechanism underpinning previous works that addressed
entanglement generation [5–8].

Our main motivation in the present paper is to assess
whether a scattering-based scenario such as the one just de-
picted can allow for a far more ambitious task: the implementa-
tion of a two-qubit gate (TQG). Indeed, while this usually quite
demanding quantum operation is well known to be key to build
a model for universal quantum computation [1], a scattering
scenario appears to be a hostile environment to achieve this
because of the nonunitary spin dynamics we have outlined.
Aware of such conditions, our main goal in this paper is to
provide a proof-of-principle study to establish the possibility
of implementing a TQG in a simple paradigmatic model,
which can serve as a milestone for forthcoming developments.
To tackle the problem, we focus on a setup consisting of
a quantum impurity and a mobile particle, the latter being
able to propagate along a one-dimensional (1D) wire. We
assume a spin-spin Heisenberg-type contact potential such that
whenever the particles undergo scattering their spin degrees of
freedom mutually interact. As a significant outcome, we show
how basic constraints for the occurrence of quantum gates
such as linearity and unitarity can be formulated in terms
of spin-dependent transmission coefficients through a single,
concise, and physically intuitive condition. After showing that
this is matched by a rather broad set of parameter patterns,
we show that its fulfillment can be given a straightforward
explanation in a specific regime on which we will focus for
the most part in this paper.

Clearly, assuming monochromatic particles, the detrimental
effect of the motional degrees of freedom in the 1D scattering
process is to split the spin dynamics into a reflection and
a transmission channel. Hence, similar in some respects to
other scenarios [13] and in the spirit of the general paradigm
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of measurement-based quantum computation [14], here our
approach is to search for the occurrence of a two-channel
probabilistic TQG, that is, a gate that performs one out of
two given unitary operations with associated probabilities (i.e.,
reflectance and transmittance). Although our primary concern
is to answer the question whether a TQG can occur regardless
of its matrix form, we show that gates that are able to establish
maximum entanglement in both the reflection and transmission
channels are actually possible under certain conditions.

The present paper is organized as follows. In Sec. II
we present the aforementioned setup and briefly discuss the
approach that we adopt to describe its scattering dynamics.
In Sec. III we derive the condition that must be fulfilled for
TQGs to occur. In Sec. IV, focusing on the setting introduced
in Sec. II, we illustrate the existence of a regime where that
condition holds, and we shed light on the explicit matrix form
of the occurring gates. Finally, in Sec. V we discuss the results
and draw our conclusions.

II. GENERAL SETUP

We consider a 1D quantum wire along which a flying
spin-1/2 particle e can propagate. A quantum impurity I,
modeled as a spin-1/2 scatterer, lies at x = 0, whereas a narrow
potential barrier is located at x = x0 (the x axis is along the
wire). The entire setting is sketched in Fig. 1. The Hamiltonian
reads as

Ĥ = p̂2

2m
+ J σ̂ · Ŝδ(x) + �δ(x − x0), (1)

where m and p̂ are the effective mass and momentum operator
of e, respectively, σ̂ and Ŝ are the spin operators of e and
I, respectively, J is a spin-spin coupling strength, and �

is the potential-barrier strength (we set h̄ = 1 throughout;
note that J and � have dimensions of a frequency times a
length). Our paradigmatic model naturally fits within solid-
state scenarios such as a 1D quantum wire [15] or a single-wall
carbon nanotube [16] with an embedded magnetic impurity or
quantum dot (see also Ref. [4]). Potential barriers are routinely
implemented through applied gate voltages or heterojunctions.

Clearly, because of the spin-spin contact potential [the
second term of Hamiltonian (1)], as e enters the interaction
region 0 < x < x0, scattering along with spin flipping of e and

FIG. 1. (Color online) Sketch of the proposed setup for imple-
menting the quantum gate. A mobile particle e can propagate along
a wire parallel to the x axis. A quantum impurity I and a narrow
potential barrier lie at x = 0 and x = x0, respectively. Once injected
into the structure, e undergoes multiple reflections between I and the
potential barrier during which its spin couples to I. Eventually, e is
transmitted forward or reflected back.

I takes place in general. Hence, all the scattering probability
amplitudes are spin dependent. As the overall spin space is
four-dimensional, the effect of scattering is fully described by
two 4 × 4 matrices whose generic elements read tα,β and rα,β ,
respectively, where tα,β (rα,β) is the probability amplitude that
an initial spin state of the overall system |α〉eI is changed into
|β〉eI with e being transmitted (reflected). Here |α〉eI and |β〉eI
are two states of an orthonormal basis spanning the overall spin
space.

To derive these matrices, we first observe that according
to Eq. (1) the squared total spin of e and I and its projection
along the z axis are conserved quantities, that is, [Ĥ ,Ŝ2] =
[Ĥ ,Ŝz] = 0, where Ŝ = σ̂ + Ŝ is the total spin. This entails
that the dynamics within the singlet and triplet subspaces are
decoupled. In each of these subspaces, the spin-spin term of Ĥ

reduces to a spinless potential barrier [17] so that the effective
Hamiltonian describes a particle scattering from two spin-
independent contact potentials as

ĤS = p̂2

2m
+ VS δ(x) + � δ(x − x0), (2)

where

VS = J

2

[
S(S + 1) − 3

2

]
(3)

is an effective potential and S is the quantum number
associated with Ŝ2 so that S = 0 (S = 1) in the case of the
singlet (triplet). By imposing standard boundary conditions
on the wave function and its derivative at x = 0 and x = x0

[17,18] the transmission and reflection probability amplitudes
corresponding to Hamiltonian (2) are straightforwardly calcu-
lated as

tS = 4

4 + 2iπ�ρε + πVSρε[2i + (e2ikx0 − 1)π�ρε]
, (4)

rS = πρε[VS(π�ρε − 2i) − �e2ikx0 (πVSρε + 2i)]
tS

4
, (5)

where ρε = (
√

2m/ε)/πh̄ is the density of states per unit
length [15] of the wire, which is a function of the kinetic
energy of e, ε = k2/(2m) (k is the wave vector of e). It is
straightforward to check that regardless of S the normalization
condition is fulfilled, namely,

|tS |2 + |rS |2 = 1. (6)

In these calculations, we have used the coupled ba-
sis, namely, the common eigenstates of Ŝ2 and Ŝz, B =
{|�−〉eI ,|↑↑〉eI ,|�+〉eI ,|↓↓〉eI}, where |me = ↑,↓〉e (|mI =
↑,↓〉I ) are eigenstates of σ̂z (Ŝz) and |�±〉eI = (|↑↓〉eI ±
|↓↑〉eI )/

√
2 (henceforth we omit the particle subscripts). As

the singlet and triplet spin subspaces are spanned by |�−〉
and {|↑↑〉,|�+〉,|↓↓〉}, respectively, and the coefficients in
Eqs. (4) and (5) depend only on S in the coupled basis B, the
transmission and the reflection probability amplitude matrices
take a diagonal form:

T =

⎛
⎜⎜⎜⎝

t0 0 0 0

0 t1 0 0

0 0 t1 0

0 0 0 t1

⎞
⎟⎟⎟⎠ (7)
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(an analogous expression having the transmission coefficients
replaced with the reflection ones holds for the reflection-
probability-amplitude matrix R).

III. CONDITION FOR THE OCCURRENCE
OF QUANTUM GATES

In general, because of the coupling between the spin and
motional degrees of freedom during scattering, neither T nor
R represents a unitary operator within the overall spin space.
Rather, they are the matrix representations of two Kraus
operators, which because of the normalization condition (6)
fulfill the equation

T T† + RR† = 14, (8)

where 14 is the 4 × 4 identity matrix. For the transmission
channel, the initial spin density matrix ρ transforms into ρ ′
after scattering:

ρ ′ = Tρ T†

Pt

, (9)

where

Pt = Tr[Tρ T†] (10)

is the overall transmission probability (analogous equa-
tions hold for the reflection channel). Because of the
denominator (10), Eq. (9) shows that T and R, in general,
act in a nonlinear way, which would rule out the fulfillment
of another essential requirement for a gate: linearity. One may
wonder, however, whether a specific regime exists in the setup
described in Sec. II such that unitarity and linearity occur
together, a circumstance that we will show actually takes place.
To this aim we consider the explicit form of the transmittivity
Pt in Eq. (10), which reads as

Pt = |t0|2ρ− + |t1|2(ρ↑↑ + ρ+ + ρ↓↓), (11)

where ρα = 〈α|ρ|α〉 (α = ↑↑,↓↓) and ρ± = 〈�±|ρ|�±〉 (an
analogous expression clearly holds for the reflection channel).
It is now straightforward to see that because of normalization
of the initial spin state, that is, Trρ = 1, when

|t0| = |t1|, (12)

Pt does not depend on ρ so as to make the map (9) linear.
Furthermore, using Eq. (6) we see that in such a case |r0| = |r1|
is fulfilled as well. In this regime, once rescaled operators are
defined as T̃ = T/|t0| and R̃ = R/|r0|, the spin state evolves
in the transmission (reflection) channel as ρ ′ = T̃ρT̃† (ρ ′ =
R̃ρR̃†). We can immediately check that

T̃ T̃† = T̃† T̃ = R̃ R̃† = R̃† R̃ = 14; (13)

that is, both T̃ and R̃ are unitary.
Summarizing, we have found that the simple condition (12)

is enough to ensure both linearity and unitarity of the
transmission and reflection channels. This indeed has a
reasonable interpretation because of the implicit requirement
that, clearly, to implement a quantum gate a mere path
measurement over e must provide zero information about the
overall spin state of e and I. It is also clear that this takes
place provided that for each state of a given basis, such as

B, the mobile particle is transmitted (reflected) with the same
probability (and hence it happens thus for any spin state), a
circumstance that, looking at Eq. (7), we see to be equivalent
to condition (12).

We are now in a position to justify why our setup in
Fig. 1 includes a static potential barrier �δ(x − x0) [see
Sec. II and Eq. (1)]. In the absence of this barrier, that is,
when � = 0, Eq. (2) shows that within the singlet (triplet)
subspace the effective Hamiltonian would be that of a particle e

scattering from a single delta-like potential barrier −3/4Jδ(x)
[J/4 δ(x)]. For a particle scattered by a potential V δ(x),
a straightforward calculation gives that the transmission
and reflection probability amplitudes t(V ) and r(V ) are
given by

t(V ) = 1 − r(V ) = 4

4 + 2iπρεV
, (14)

a result that can also be obtained as a special case of Eq. (4).
It is now clear that without additional scatterers there is no
way to fulfill Eq. (12) since |t(−3/4J )| �= |t(J/4)| ∀J , which
means that no quantum gate is possible with the simple setting
consisting of e and I. In the next section, we will clearly
elucidate the mechanism through which the static barrier
compensates for this drawback.

We conclude this section by showing what class of quantum
gates can be implemented by virtue of Eq. (12). Because this
requires that the transmittivity (reflectivity) needs to be the
same in the singlet and triplet subspaces, the only effect of
scattering is to give rise to a relative phase shift. Therefore, in
the coupled basis B the general form of the gate compatible
with Eq. (12) reads as

T̃ =

⎛
⎜⎜⎜⎝

eiϕt 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ , (15)

where ϕt = arg t0 − arg t1. In the computational basis B′ =
{|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉} (we encode the two qubit logical states
|0〉 and |1〉 into |↑〉 and |↓〉, respectively) the gate has the
general matrix representation

T̃′ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1+eiϕt

2
1−eiϕt

2 0

0 1−eiϕt

2
1+eiϕt

2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (16)

Analogous arguments hold for the reflection channel. Later we
discuss the entangling power of the class of gates (16).

IV. IMPLEMENTING THE QUANTUM GATE

We now show the existence of parameter patterns such
that the setup in Fig. 1 behaves so as to satisfy Eq. (12). We
recall that according to Hamiltonian (1) the system dynamics
depends on the three dimensionless parameters ρεJ , ρε�, and
kx0 (see Sec. II). In Fig. 2 we set three different ratios between
� and J . For each of these, we plot |t0| − |t1| against kx0 for
different values of ρεJ . First, note that for assigned values of
�/J and ρεJ the plots are periodic in kx0 with period π , in
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FIG. 2. (Color online) |t0| − |t1| vs kx0 (dimensionless) for vari-
ous settings of �/J and ρεJ . (a) �/J = 2 and ρε� = 0.5 (black solid
line), 2 (blue dotted line), and 3 (red dashed line). (b) �/J = 1/2 and
ρε� = 1 (black solid line), 2 (blue dotted line), and 4 (red dashed line).
(c) �/J = 1/4 and ρε� = 1 (black solid line), 2 (blue dotted line),
and 4 (red dashed line).

agreement with Eqs. (4) and (5). As is evident, condition (12)
occurs in each case addressed in Fig. 2 whenever the plotted
curves intersect the kx0 axis. Remarkably, when �/J = 1/4
[see Fig. 2(c)] provided that kx0 = nπ (n ∈ N) the condition
for the occurrence of quantum gates is satisfied regardless of
ρεJ , which is of course an attractive feature for the demand
of low control. Insight into this phenomenon can be given
through a simple line of reasoning as follows.

Under the resonance conditions (RCs) kx0 = nπ the effec-
tive representations of the two Dirac δ functions appearing in
Eq. (1) coincide according to the equation

δRC(x) = δRC(x − x0), (17)

where the subscripts are a reminder that these are effective
forms under RCs (for a proof see Refs. [4,6], where an
analogous effect has been shown to be useful for QIP
tasks). Hence, in light of Eq. (17) under RCs the system
behaves as if the static potential lay at the site of I. In
such a case, using Eqs. (2) and (3) the effective potentials

for S = 0,1 become (� − 3/4J )δRC(x) and (� + J/4)δRC(x),
respectively. As we have already shown (see the previous sec-
tion), when � = 0, such single-barrier potentials necessarily
entail that |t0| �= |t1| according to Eq. (14). When � �= 0,
however, a closer inspection of Eq. (14) shows that for a
single δ-like barrier V δ(x) the modulus of the transmission
coefficient depends only on |V |. Hence, Eq. (12) is fulfilled
when

� − 3

4
J = −

(
� + J

4

)
, (18)

which is indeed equivalent to �/J = 1/4 regardless of ρεJ

and thus explains the behavior in Fig. 2(c). A more explicit
and illustrative way to see this is noting that under RCs the
effective Hamiltonian can be arranged as

Ĥ = p̂2

2m
+ J

(
�

J
+ σ̂zŜz + σ̂+Ŝ− + σ̂−Ŝ+

2

)
δRC(x). (19)

When the initial spin state is |↑↑〉 or |↓↓〉 the factor between
the parentheses takes the value �/J + 1/4, which results in
the effective potential-barrier height � + J/4. On the other
hand, |�±〉 fulfill the equations

σ̂zŜz|�±〉 = −1

4
|�±〉, (20)

σ̂+Ŝ− + σ̂−Ŝ+
2

|�±〉 = ±1

2
|�±〉. (21)

It is now easy to see that the static barrier, whose presence is
embodied by the constant term �/J between the parentheses
in Eq. (19), in fact cancels out the Ising term for �/J = 1/4.
When this takes place, the effective potential-barrier height
seen by |�±〉 becomes ±J/2, whose modulus is the same
as the one associated with |↑↑〉 and |↓↓〉. This line of
reasoning also shows, in particular, that the replacement of
a Heisenberg-type spin-spin coupling with an XY -isotropic
one in the Hamiltonian (1) cannot give rise to any quantum
gate, either with no extra barriers or with a δ-like barrier
under RCs. Indeed, in the Heisenberg case one deals with
only two independent transmission coefficients (t0 and t1),
and hence the single condition (12) needs to be fulfilled to
implement gates. In the XY -isotropic model, however, three
independent coefficients in general arise since the spin-spin
scattering potential vanishes for both |↑↑〉 and |↓↓〉 and takes
the effective value ±J/2 for |�±〉 [see Eq. (21)]. In light
of our discussion in Sec. III, we see that in the case of the
XY -isotropic model, the gates’ occurrence gives two equations
to be fulfilled. Absence of gates under RCs with such a model is
therefore not surprising given that setting RCs in fact freezes
the parameter kx0: Judicious setting of the remaining free
parameter � is enough to fulfill the single equation required
by the Heisenberg model, but not the two met in the presence
of XY -isotropic coupling.

Having identified a regime compatible with Eq. (12), our
next task is to illustrate what specific forms of T̃′ and R̃′
can occur within the general family in Eq. (16), which is in
fact equivalent to exploring what values ϕt and ϕr can take.
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FIG. 3. (Color online) Fidelity F vs the percentage deviations from the ideal values �ρεJ and �kx0 for the initial spin states |↑↓〉
[(a) and (d)], (|↑↑〉 + |↓↓〉 + |↑↓〉 − |↓↑〉)/2 [(b) and (e)], and (|↑〉 + |↓〉) ⊗

(|↑〉 + i|↓〉)/2 [(c) and (f)]. Plots (a), (b), and (c) refer to
the transmission-channel gate, whereas (d), (e), and (f) refer to the reflection-channel gate.

In the regime �/J = 1/4 and kx0 = nπ , a straightforward
calculation along with use of Eqs. (3) and (14) yields

ϕt = 2 arctan
πρεJ

4
, (22)

ϕr = −2 arctan
4

πρεJ
+ 2π. (23)

In light of Eqs. (16), (22) and (23) fully specify the form taken
by gates T̃′ and R̃′ in the regime �/J = 1/4 and kx0 = nπ .
Thus both phase shifts ϕt and ϕr grow with ρεJ tending to an
asymptotic value, which is π in the case of ϕt and 2π in the
case of ϕr (for any ρεJ we have ϕt − ϕr = π ).

A question that is naturally raised from the matrix structure
in Eq. (16) is whether the elements of the central 2 × 2 block
can all have the same modulus. Indeed, in such a case the
gate is clearly able to establish maximum entanglement. It is
easy to see that this circumstance occurs provided that |1 +
eiϕt | = |1 − eiϕt |, which requires cos ϕt = 0 and hence ϕt =
(2q + 1)π/2, where q ∈ Z (analogous arguments hold true for
the reflection channel). In our case, using Eqs. (22) and (23),
we obtain ϕt = ϕr − π = π/2 for ρεJ = 4/π 
 1.27, which
entails the gate matrix form

U =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1±i
2

1∓i
2 0

0 1∓i
2

1±i
2 0

0 0 0 1

⎞
⎟⎟⎟⎠ , (24)

where the + (−) sign holds for the transmission (reflection)
channel. Also, using Eqs. (3) and (14), we can easily check
that in such a case |t0| = |t1| = |r0| = |r1| = 1/2, namely,
that the success probabilities associated with the reflection
and transmission gates are the same. We have thus found a
parameter pattern such that gates able to create maximum
entanglement occur in both the reflection and transmission
channels. Taking, for instance, the initial product state |↑↓〉

we obtain that, up to an irrelevant phase factor, Û |↑↓〉 =
(|↑↓〉 ∓ i|↓↑〉)/√2, where the − (+) sign holds for the
transmission (reflection) channel.

As we have proved, for our setup to implement gates, certain
parameter values need to be set. This feature may appear
somewhat unnatural in the low-control scattering scenario that
we have considered. A legitimate question is therefore how
robust the gate is to an imperfect setting of the ideal parameters.
To answer this, we consider the paradigmatic situation where
one wishes to implement the maximally entangling gate
(24), which requires us to set �/J = 1/4, ρεJ = 4/π , and
kx0 = nπ . To measure how well such a gate is implemented
for an imperfect matching of this ideal pattern we use quantum
fidelity [1]. Specifically, for a given initial pure spin state ρ =
|�i〉〈�i | we compute the fidelity F between the output state
ρ ′ as given in Eq. (9) (in general this is mixed) and the output
state |�f 〉 = Û |�i〉 that would be obtained in the ideal case.
The expression of fidelity is F = 〈�f |ρ ′|�f 〉. In Fig. 3, we
have carried out this study for the transmission and reflection
channels [Figs. 3(a)–3(c) and 3(d)–3(f), respectively] and the
three representative initial states |↑↓〉, (|↑↑〉 + |↓↓〉 + |↑↓〉 −
|↓↑〉)/2, and (|↑〉 + |↓〉) ⊗

(|↑〉 + i|↓〉)/2. In each case, we set
the condition �/J = 1/4 and plot F against �ρεJ and �kx0,
where �ρεJ (�kx0) is the percentage difference between
ρεJ (kx0) and the corresponding ideal value. As is evident
in the plots, the robustness of the transmission-channel gate
is quite striking. For deviations from the ideal values up
to 20%, in the worst case F slightly decreases to 
0.94.
On the other hand, the reflection channel exhibits generally
lower performance [19], especially for negative values of
�kx0. In this channel, however, for |�kx0| up to 
8% F

exceeds 0.9.
Such generally good resilience is in line with the outcomes

of analogous tests in similar setups [5,8,9], which further
confirms a major advantage of scattering-based methods in
accomplishing QIP tasks (see the introduction).
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V. CONCLUSIONS

In this work we have tackled the issue whether a TQG can be
implemented in a setup made out of mobile and static qubits
undergoing quantum scattering processes. Despite the many
advantages of such a scattering scenario for QIP purposes
[2–11] and the well-known importance of TQGs [1], this
question had so far remained fully unanswered in the literature.
With these motivations in mind, we have considered a minimal
paradigmatic setup comprising a flying spin scattering from
a quantum impurity along with a further spinless potential
barrier. In a way similar to other scenarios where proposals
for probabilistic quantum gates were put forward [13] we
have assessed whether a unitary transformation in the overall
spin space can be probabilistically implemented in each of the
transmission and reflection channels. By imposing basic con-
straints such as linearity and unitarity, we have found that gates
occur in both channels provided that a simple and physically
intuitive condition is obeyed. We have also given the full class
of resulting gates. Next, numerical evidence has been given
that this theoretical condition is actually matched for suitable
parameter patterns in both off-resonance and resonance con-
ditions. After focusing on RCs, we have analytically derived
the exact parameter pattern that ensures the occurrence of
gates. Insight into the related underlying mechanism has been
given by explaining, in particular, the essential role played by
the additional potential barrier. Among the possible occurring
gates, we have identified one able to establish maximum
entanglement and have given the exact required parameter
setting. Finally, we have shown that such a maximally entan-
gling gate is robust against imperfect matching of the optimal
parameters.

As anticipated, a significant implication of our findings is
the ability of certain occurring gates to establish maximum

entanglement. Entanglement between a static and a flying
qubit offers the major advantage of being particularly prone
to a robust Bell test since once scattering has happened
the two particles can get significantly far apart from each
other.

In this work, we have mainly focused on achieving
gates under RCs. Indeed, this regime is more prone to
analytical treatment than the more general off-resonance case.
This enabled us to highlight numerous key issues without
mathematical hindrances. However, as we have seen, even
off-resonance conditions allow for occurrence of TQGs. A
comprehensive study of this case, which goes beyond the
scope of this paper, is therefore highly desirable and will be
the subject of a future publication [20].

The entanglement between a static ionic and a flying
photonic qubit has been envisaged for connecting ion-trap
quantum registers [21]. Likewise, it is quite possible that the
scheme we propose here will open up scaling opportunities
for spin-based quantum computation in solid-state systems
[22].
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