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Degradation of entanglement between two accelerated parties: Bell states under the Unruh effect
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We study the entanglement of families of Unruh modes in the Bell states |�±〉 = 1/
√

2(|00〉 ± |11〉)
and |�±〉 = 1/

√
2(|01〉 ± |10〉) shared by two accelerated observers and find fundamental differences in the

robustness of entanglement against acceleration for these states. States �± are entangled for all finite accelerations,
whereas, due to the Unruh effect, states �± lose their entanglement for finite accelerations. This is true for Bell
states of two bosonic modes, as well as for Bell states of a bosonic and a fermionic mode. Furthermore, there are
also differences in the degradation of entanglement for Bell states of fermionic modes. We reveal the origin of
these distinct characteristics of entanglement degradation and discuss the role that is played by particle statistics.
Our studies suggest that the behavior of entanglement in accelerated frames strongly depends on the occupation
patterns of the constituent states, whose superposition constitutes the entangled state, where especially states
�± and �± exhibit distinct characteristics regarding entanglement degradation. Finally, we point out possible
implications of hovering over a black hole for these states.
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I. INTRODUCTION

Entanglement and quantum correlations, in general, play an
important role in different areas of physics, as, for example, in
quantum information [1] and black holes [2,3]. Furthermore,
it is known that the quantum correlations of an entangled
state shared by accelerated observers are not invariant with
respect to acceleration but are altered by the Unruh effect [4].
Interestingly, the noninvariance of quantum correlations in this
relativistic regime can be employed to carry out quantum
information tasks [5–9]. Although accelerated motion can,
in some special cases, create entanglement between Unruh
modes [10], generally, entanglement is degraded due to the
Unruh effect.

In the past, the degradation of entanglement in bipartite
states composed of Unruh modes shared by an inertial
observer and an uniformly accelerated one was studied in
detail [11–23]. For fermionic fields, entanglement approaches
a finite value in the infinite acceleration limit [11], while for
bosons it vanishes asymptotically [4]. One way to study the
entanglement between two accelerated observers is to analyze
an entangled state shared by three parties, where two parties are
in accelerated motion, and subsequently trace out the inertial
observer [24–26]. A more natural way to study entanglement
in this framework is to restrict to bosonic entanglement in
accelerated two-mode squeezed states and use tools from
continuous variable quantum mechanics [27,28]. There it was
found that, for these squeezed states, entanglement vanishes
for finite accelerations, in contrast to the entanglement of states
shared by an accelerated observer and an inertial one.

As realized more recently in [29–31], there are some caveats
in the interpretation of states of Unruh modes. Still, however,
the use of Unruh modes, which allows for closed analytical
solutions, provides a valuable framework to understand the
mechanisms that lead to a decrease of quantum correlations
in entangled states when described by accelerated observers.
The goal of this work is to provide further insight into the
degradation of entanglement that occurs when entangled states

are observed by accelerated parties. Therefore, in this work,
we study families of states composed of Unruh modes that
are maximally entangled from the inertial perspective and
investigate the residual entanglement when these states are
seen by uniformly accelerated observers.

We start by studying the entanglement between two accel-
erated observers sharing the fermionic Bell states |�±〉 = 1/√

2(|0ω0�〉 ± |1ω1�〉) and |�±〉 = 1/
√

2(|0ω1�〉 ± |1ω0�〉).
We find that entanglement is nonvanishing for all accelerations
and that the degradation of quantum correlations depends
on the specific state shared by the parties. The reason for
the survival of entanglement for fermions is rooted in the
statistics obeyed by fermions, while the state dependence
of entanglement degradation seems to be originated in the
occupation pattern of the state that is shared between the two
observers. By occupation pattern we mean the pattern of both
constituent states (in the following just called constituents),
for example, |00〉, |01〉, |10〉, and |11〉, whose superposition
defines the entangled state. That is, the set of excitations
created by the Unruh effect depends on the state one starts
with.

Furthermore, we study maximally entangled bosonic
states shared by two accelerated observers and, in contrast
to [27,28,32], we consider two bosonic modes of frequency
ω and �, respectively, in the Bell states �± and �±. We
find that the Unruh effect degrades entanglement in these two
states very differently. While, as in [27,28,32], bosonic modes
in state �± lose all their entanglement for finite accelerations,
the entanglement of these modes in state �± is nonvanishing
for all finite accelerations. We find that this crucial difference
in the degradation of entanglement is due to the differing
occupation patterns of the constituents of the two Bell states
and is manifest in the appearance of a “cutoff function” in the
expression of the negativity.

Then we extend our studies to accelerated states of a bosonic
mode maximally entangled with a fermionic one. Thereby we
find states whose negativity factorizes. However, due to the
bosonic mode involved in these states, there is no entanglement
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surviving in the infinite acceleration limit. Then, moving on
to Bell states �± and �±, we obtain qualitatively the same
behavior as for the purely bosonic Bell states. Thus, we
find evidence for the importance of the occupation patterns
of the constituents. The particular occupation patterns of its
constituents can protect a state’s entanglement against the
effects of acceleration, i.e., the Unruh effect. Using an effective
state picture, we are able to explain the differences in the
behavior.

In the past, the different behavior of the entanglement
of accelerated fermions and bosons led to some discus-
sions [13,18,22]. Here we address this issue and discuss the
role played by particle statistics by combining the results of the
fermion-fermion, boson-boson, and the boson-fermion cases.
We conclude that there are essentially two factors determining
the fading of entanglement, where one is purely from particle
statistics and one strongly depends on the occupation patterns
of the constituents of the state that is considered. Finally, we
discuss some effects that hovering over a black hole at a fixed
distance from the horizon has on the entanglement of the states
that are studied in this work.

The outline is the following. In Sec. II we give a short
introduction to quantum fields in Rindler space. In Secs. III, IV,
and V we study the entanglement of fermion-fermion, boson-
boson, and boson-fermion Bell states in accelerated motion,
respectively. Then, in Sec. VI, we discuss the role of particle
statistics for entanglement degradation and give two factors
that determine the characteristics of said degradation. In
Sec. VII we outline possible implications of our findings
for Bell states in the vicinity of a black hole and, finally,
in Sec. VIII, we give the conclusions of this work.

For the sake of brevity, throughout this work, we call the
occupation patterns of the constituents of a state just the
structure of a state.

II. QUANTUM FIELDS IN RINDLER SPACE

We give a brief introduction to quantum field theory in
Rindler space. The main purpose is to introduce the framework
we are using in this work. More details can be found, for
example, in [14,33,34]. We work in units where c = � = kB =
1. Minkowski coordinates (t,x) and Rindler coordinates (ξ,η)
are related by the transformations

t = ξ sinh(η), (1a)

x = ξ cosh(η), (1b)

where the range of ξ and η is given by −∞ < ξ,η < ∞.
Notice that ξ is positive in the right wedge (region I ) and ξ

is negative in the left wedge (region II ). Then we obtain the
following metric:

ds2 = ξ 2dη2 − dξ 2. (2)

Considering a world line with ξ (τ ) = 1
a

, where τ is the proper
time along this trajectory and |a| is the proper acceleration,
we find η(τ ) = aτ . Thus, in Minkowski coordinates the world
line reads t(τ ) = 1

a
sinh(aτ ), x(τ ) = 1

a
cosh(aτ ). As shown in

Fig. 1, the two regions I and II of Rindler space are causally
disconnected due to the presence of horizons at x = t and

x

t

III
A B

FIG. 1. (Color online) Rindler space: Regions I and II are
causally disconnected due to the presence of horizons at x = t and
x = −t . The world lines of two observers A and B in (differently)
accelerated motion are shown. The states shared by A and B are
prepared and distributed in the asymptotic past.

x = −t . A timelike Killing vector in region I is given by ∂η

(−∂η in II ).

A. Bosons

We consider the quantization of a massless scalar field φ

(see [33,34] for details). We quantize fields with respect to the
Killing vectors ∂η and −∂η independently in the two regions.
The Klein-Gordon equation �φ = 0 in Rindler coordinates
has solutions which depend on η as [34]

u±
ω̃ ∝ e±iω̃η, ± ∂ηu

±
ω̃ = iω̃u±

ω̃ , (3)

where ω̃ is a positive parameter and the sign ± depends on the
Rindler wedge. These modes are positive frequency modes
with respect to the respective timelike Killing vectors. We
denote by u

I,II
ω̃ , i.e., uI

ω̃ ∝ e−iω̃η and uII
ω̃ ∝ e+iω̃η, the solutions

in regions I and II , respectively. We can expand φ in this basis
and obtain

φ =
∫ ∞

0
dω̃

(
aI

ω̃uI
ω̃ + a

I†
ω̃ uI∗

ω̃ + aII
ω̃ uII

ω̃ + a
II†
ω̃ uII∗

ω̃

)
, (4)

where the a
I/II
ω̃ and a

I/II†
ω̃ are the usual commuting annihila-

tion and creation operators in regions I and II , respectively.
The dependence on the proper time τ = η

a
is given by

uI
ω̃ ∝ e−iaω̃τ . Therefore, the energy ω seen by the accelerated

observer is given by ω = aω̃. Remember that in Minkowski
space φ can be expanded as

φ =
∫ ∞

0
dωM

(
aM

ωM
uM

ωM
+ aM†

ωM
uM∗

ωM

)
, (5)

where aM
ωM

and aM†
ωM

are the commuting Minkowski annihilation
and creation operators. These two expansions lead to different
Fock spaces. Consider the Minkowski (M) vacuum |0〉M and
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the Rindler (R) vacuum |0〉R = |0〉I ⊗ |0〉II that are defined
as

aM
ωM

|0〉M = 0, (6a)

aI
ω̃|0〉R = aII

ω̃ |0〉R = 0, (6b)

and, in general, a
I,II
ω̃ |0〉M �= 0. Next, we want to introduce

the so-called Unruh basis that we use in the following. The
Rindler creation and annihilation operators a

I,II
ω̃ are related

to the corresponding Unruh (U ) ones a
U,1,2
ω̃ by a Bogoliubov

transformation as follows [33]:

aI
ω̃ = 1√

2 sinh(πω̃)

(
e

πω̃
2 a

U,2
ω̃ + e− πω̃

2 a
U,1†
ω̃

)
, (7a)

aII
ω̃ = 1√

2 sinh(πω̃)

(
e

πω̃
2 a

U,1
ω̃ + e− πω̃

2 a
U,2†
ω̃

)
. (7b)

These share the positive frequency analyticity properties of the
uM

ωM
and therefore have the same vacuum state a

U,1,2
ω̃ |0〉M = 0,

i.e., |0〉U = |0〉M [35].
In this work we study accelerated observers confined to

Rindler wedge I and work in the Unruh basis. To obtain
the appropriate description of what an accelerated observer
is experiencing, we use Bogoliubov transformations (7) to go
from the Unruh basis to the Rindler basis. For an Unruh mode
ω̃, the vacuum and one-particle states are given by

|0ω̃〉U =
∑

n

tanhn(r)

cosh(r)
|nω̃〉I |nω̃〉II , (8a)

|1ω̃〉U =
∑

n

tanhn(r)

cosh2(r)

√
n + 1|n + 1ω̃〉I |nω̃〉II , (8b)

for a massless uncharged scalar field, where the acceleration
parameter r is set by ω̃ and they are related by r =
arctanh(e−πω̃). Further, |n〉I and |n〉II are the n-particle states
in regions I and II , respectively. Note that in (8b) we
denote the one-particle state a

U,2†
ω̃ |0ω̃〉U by |1ω̃〉U . That is, the

excitation is localized in I . Similarly, for a massless charged
scalar field the vacuum and one-particle states are given by [18]

|0ω̃〉U =
∑
n,m

tanhn+m(r)

cosh2(r)
|nm〉I |nm〉II , (9a)

|1ω̃〉+U =
∑
n,m

tanhn+m(r)

cosh3(r)

√
n + 1|(n + 1)m〉I |nm〉II , (9b)

|1ω̃〉−U =
∑
n,m

tanhn+m(r)

cosh3(r)

√
m + 1|n(m + 1)〉I |nm〉II , (9c)

where |nm〉R denotes the state of m/n particles/antiparticles
of energy ω̃ in region R = I,II .

B. Fermions

We model the fermionic field by a massless Grassmannian
valued scalar field ψ . Then the quantization of ψ can be carried
out analogously to the bosonic case. To obtain the appropriate
description of what an accelerated observer is experiencing,

we use the Bogoliubov transformations [14]

aI
ω̃ = 1√

2 cosh(πω̃)

(
e

πω̃
2 a

U,2
ω̃ + e− πω̃

2 a
U,1†
ω̃

)
, (10a)

aII
ω̃ = 1√

2 cosh(πω̃)

(
e

πω̃
2 a

U,1
ω̃ + e− πω̃

2 a
U,2†
ω̃

)
, (10b)

to go from the Unruh basis to the Rindler basis. We choose
the notation |ijkl〉ω̃ = |iω̃〉+I ⊗ |jω̃〉−II ⊗ |kω̃〉−I ⊗ |lω̃〉+II , where
+ and − denote particles and antiparticles, respectively. We
use the chosen order throughout the work and obtain for an
Unruh mode ω̃∣∣0F

ω̃

〉
U

= cos2(rf )|0000〉ω̃ − cos(rf ) sin(rf )|0011〉ω̃
+ cos(rf ) sin(rf )|1100〉ω̃ − sin2(rf )|1111〉ω̃, (11a)∣∣1F

ω̃

〉+
U

= cos(rf )|1000〉ω̃ − sin(rf )|1011〉ω̃, (11b)∣∣1F
ω̃

〉−
U

= cos(rf )|0010〉ω̃ + sin(rf )|1110〉ω̃, (11c)

where the acceleration parameter rf is given by rf =
arctan(e−πω̃).

C. Unruh effect

An accelerated observer does not necessarily agree with an
inertial observer on the number of particles in a given state.
Consider, for example, the Minkowski vacuum state |0〉M =
|0〉U ≡ |0〉. Then the vacuum expectation value of the (Rindler)
number operator 〈0|aI/II†

ω̃ a
I/II
ω̃ |0〉 can be calculated using (10),

leading to

〈0|aI/II†
ω̃ a

I/II
ω̃ |0〉 = 1 + e

2πω
a . (12)

Thus, we see that an accelerated observer perceives the
Minkowski vacuum as a thermal state of temperature TU

(Unruh temperature) [35],

TU = a

2π
. (13)

Further, we introduce the fermionic and the bosonic partition
functions Zω

F and Zω
B that are given by

Zω
B = 1

1 − e− 2πω
a

= 1

1 − e
− ω

TU

, (14)

Zω
F =1 + e− 2πω

a = 1 + e
− ω

TU . (15)

There are some subtleties when working with the global
Unruh modes (8), (9), and (11), as pointed out in [29–31].
Therefore, one point that we want to emphasize is the implicit
dependence on the acceleration a in (7) and (10) through the
relation ω̃ = ω

a
. As a consequence, after fixing the frequency

ω, each of the Unruh modes (8), (9), and (11) forms a
family of modes that is labeled by a. That is, by varying
the acceleration parameter r/rf (or equivalently a), one also
varies the particular Unruh mode under consideration. In order
to pick a particular state, ω and a have to be fixed. Intuitively,
one can say that the acceleration a is already encoded in the
Unruh modes. We revisit these issues when we discuss the
entanglement of fermions in Sec. III. In the following, for
the sake of simplicity, we omit the tilde in ω̃ whenever it is
clear from the context whether we are talking about ω or ω̃.
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In this brief introduction to quantum fields in Rindler
space we have set up the tools and notation we are us-
ing in the following. In the next section we study the
degradation of entanglement in fermionic Bell states due to
acceleration.

III. ENTANGLEMENT AND ENTROPY OF UNIFORMLY
ACCELERATED FERMION STATES

Due to the anticommutativity of fermionic creation and
annihilation operators (Pauli exclusion principle), there is only
a finite number of maximally entangled states of two modes
of a fermionic field. Considering particle states, there are just
two possible maximally entangled states. These are the two
Bell states of two fermionic modes (FF ):

|�±
FF 〉 = 1√

2

(∣∣1F
ω

〉+
U

∣∣0F
�

〉
U

± ∣∣0F
ω

〉
U

∣∣1F
�

〉+
U

)
, (16a)

|�±
FF 〉 = 1√

2

(∣∣0F
ω

〉
U

∣∣0F
�

〉
U

± ∣∣1F
ω

〉+
U

∣∣1F
�

〉+
U

)
. (16b)

The subscript U emphasizes that we are working in the Unruh
basis.

A. Negativity

We consider two families of entangled fermionic Unruh
modes ω and � undergoing constant accelerations aω and a�,
respectively. The acceleration parameters of the modes are
denoted by rω

f and r�
f . Therefore, starting from the families

of states {ψi} = {�±
FF ,�±

FF } written in the Unruh basis, we
use (11) to obtain the density matrices ρ

(i)
I,II ,

ρ
(i)
I,II = |ψi〉〈ψi |. (17)

To describe the system as it is seen by an observer confined to
region I , we have to trace out modes that have their support in
the inaccessible region. Then the reduced density matrix ρi is
given by

ρi = TrII

(
ρ

(i)
I,II

)
. (18)

As a measure of entanglement we use the negativity N (defined
in Appendix A), which is an entanglement monotone [36].
It is known that a bipartite state is not separable if its
negativity is nonzero [37]. Furthermore, the vanishing of the
negativity provides a necessary and sufficient condition for the
separability of mixed states of two qubits [38]. Fermions, in
general, cannot be treated as qubits. However, when charge
superselection is respected, two fermionic modes can be
represented as two qubits [39]. A further property of the
negativity is that a state with vanishing negativity contains
no distillable (free) entanglement, although, in this case, there
can be nondistillable (bound) entanglement present [40]. In
this work, we ignore the possibility of bound entanglement
and refer to free entanglement as entanglement.

To obtain the negativities Ni of states ψi , we have to
calculate the partially transposed reduced density matrices
ρ

pT

i . We find that these matrices are block diagonal. More
details of the calculations can be found in Appendix A. The

final results for the negativities Ni read

N�±
FF

= 1

2

[√
1

Zω
F

1

Z�
F

+
(

nω
F + n�

F

2

)2

− nω
F + n�

F

2

]
, (19)

N�±
FF

=1

2

1

Zω
F

1

Z�
F

, (20)

where Tω/� are the Unruh temperatures (13) corresponding to
the respective accelerations aω and a�, Z

ω/�

F is the partition
function (15), and ω, � are the energies of the modes. Further,
we introduced the occupation numbers nω

F = (1 + eω/Tω )−1

and n�
F = (1 + e�/T� )−1.

Having obtained the analytic expressions for the negativi-
ties of the families of maximally entangled fermion states (16),
we want to comment on the physical interpretation of these
states. As discussed in Sec. II, we are not describing a fixed
state ψi , but rather describe a two-parameter family of states ψi

labeled by aω and a�. Therefore, the negativities (19) and (20)
give the entanglement of the states ψi (maximally entangled
from the inertial perspective), when the two modes ω and �

are seen by accelerated observers undergoing the accelerations
aω and a�, respectively. Equivalently, we can think of states
ψi as families labeled by ω and �, when we are fixing aω and
a�. It should be noted that for a given set (ω,�,aω,a�) the
only difference between these states is the difference in their
occupation pattern, in the sense of |00〉 + |11〉 vs |10〉 + |01〉.
In the following, we discuss the effects of acceleration on these
families of states and, for the sake of brevity, refer to them just
as states.

Considering state �±
FF , it is interesting to note that the

negativity (20) factorizes as

N�±
FF

(
rω
f ,r�

f

) = 2Nf

(
rω
f

)
Nf

(
r�
f

)
, (21)

where we denoted N�±
FF

(rω
f ,r�

f = 0) by Nf (rω
f ). Note that

Nf (rω
f ) is the negativity in case of only one mode being seen

by an accelerated observer (acceleration parameter rω
f ). The

negativity Nf (rω
f ) = 1

2 cos2(rω
f ) was obtained, for example,

in [13]. This product structure is absent for state �±
FF ,

where the negativity is given by (19). Thus, the degradation
of entanglement in the case of a fermionic field shows no
universal behavior. Indeed different classes of states, �±

FF and
�±

FF , are not equally robust against acceleration; see Fig. 2.
That is a feature that was absent in previous studies of one
accelerated observer.

There is a fundamental difference between states �±
FF and

�±
FF . While each state ψi is a superposition of two states

(constituents) of the form |kF
ω 〉U |lF�〉U (k,l ∈ {0,1+}), only for

state �±
FF both such states lead to a contribution to a (the

same) diagonal element of the reduced density matrix that is
relevant for entanglement. More precisely, for nonvanishing
acceleration, |1F

ω 〉+U |0F
�〉U as well as |0F

ω 〉U |1F
�〉+U contribute

to the matrix element |1F
ω 〉+I |1F

�〉+I 〈1F
ω |+I 〈1F

�|+I of the reduced
density matrix. This is well reflected in the expression for the
negativity, given by (19). The contribution of |1F

ω 〉+U |0F
�〉U is

quantified by n�
F and the one of |0F

ω 〉U |1F
�〉+U by nω

F . Due to the
symmetry, (19) depends only the average occupation number
n̄F = 1/2(nω

F + n�
F ). This behavior distinguishes �±

FF from
�±

FF .
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FIG. 2. (Color online) Negativities for maximally entangled
fermion states {ψi} versus the acceleration a = aω = a� measured
in units of 1

L
(for some length scale L) for frequencies ω = � = 1

L
.

For each fixed acceleration a, the entanglement degradation for state
�±

FF (blue continuous line) is stronger than for state �±
FF (red dashed

line). The finite asymptotic values for states �±
FF and �±

FF are 1/8
and 1/4(

√
2 − 1), respectively.

As in the setting of one mode seen by an accelerated ob-
server and one mode seen by an inertial observer [13,14,20], in
the limit of infinite acceleration the negativity does not vanish,
but it approaches a finite limit. The surviving entanglement is
calculated to be

lim
rω
f ,r�

f →∞
N�±

FF
= 1

8 , (22a)

lim
rω
f ,r�

f →∞
N�±

FF
= 1

4 (
√

2 − 1). (22b)

The fact that there is entanglement surviving in this limit
is specific for initially pure maximally entangled states and
contrasts with the case of starting from a tripartite state,
where one observer is inertial and two observers are accel-
erated. In that case, after tracing out the inertial observer,
the bipartite entanglement between the modes observed by
accelerated observers vanishes in this limit [24]. Numerical
studies of fermionic mixed-state entanglement also showed
that entanglement is extinguished for most states in the infinite
acceleration limit [41].

Our results reduce to the known results for one accelerated
observer if one takes the limit r�

f → 0 and we obtain the
universal behavior reported in [13],

lim
r�
f →0

Ni ≡ Nf = 1
2 cos2

(
rω
f

)
, (23)

and thus,

lim
rω
f →∞

Nf = 1
4 . (24)

Interestingly, the behavior of the negativity under acceleration
does not depend on whether there is entanglement created in
some sectors. We define a sector of a state ψi as follows:
A sector of state ψi consists of all the elements of the
reduced density matrix ρi that contribute to one block of the
block-diagonal partially transposed reduced density matrix
ρ

pT

i . For example, �±
FF has four sectors, as can be seen

from the partially transposed reduced density matrix ρ
pT

�±
FF

(see
Appendix A). When the acceleration is increasing from zero,
entanglement decreases in the sector where it is initiated and,
depending on the particular structure of the state, entanglement
is created in previously nonentangled sectors. More details can
be found in Appendix A 2.

The consequences of the fact that states (11) depend on
the acceleration aω/� only via the ratios ω/aω and �/a� are
manifest in (19) and (20). One observes that high-frequency
modes are less effected by acceleration than low-frequency
modes are. This is due to the larger wavelength of low-energy
modes. The larger the wavelength, and therefore the spatial
extension, compared to the inverse Unruh temperature, the
more the system gets “stretched” by the acceleration. Thus,
the effects of acceleration are stronger in this case and the rate
of entanglement degradation is higher.

After this detailed study of the negativity of states (16),
we now move on to analyze the entropy and the mutual
information of these states. This provides further insight into
the effects acceleration has on the correlations in fermion
states.

B. Entropy and mutual information

In the following, we analyze entropy and mutual informa-
tion of the fermion states. Since we are considering accelerated
observers and therefore trace out region II to obtain the
reduced density matrices ρi , the resulting state is not pure
anymore. Thus, the entropy of ρi increases due to entanglement
with modes in region II . Among the different measures of
entropy, the most widely used is the von Neumann entropy S,
given by

S(ρi) = −TrI [ρi ln(ρi)]. (25)

In our setting, the von Neumann entropy can be calculated
analytically. Since the corresponding expressions are quite
long and not very enlightening, we give the plots of S as
a function of the acceleration in Fig. 3. In the limit of
infinite acceleration the von Neumann entropies approach the
asymptotic values S∞(ρi), which are given in the following:

S∞(ρ�±
FF

) = ln(32)

4
− 3 + 2

√
2

8
ln

(
3 + 2

√
2

32

)

+ 2
√

2 − 3

8
ln

(
3 − 2

√
2

32

)
, (26a)

S∞(ρ�±
FF

) = ln(8). (26b)

Furthermore, we calculate the mutual information I be-
tween modes ω and � as a measure of quantum and classical
correlations as

Ii = S[Trω(ρi)] + S[Tr�(ρi)] − S(ρi), (27)

where Trω/� denotes the trace over mode ω/�. The resulting
mutual information of states {ψi} (in bits) is shown in Fig. 3.
In the limit of infinite acceleration the surviving correlations
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FIG. 3. (Color online) Mutual information (dashed lines), mea-
sured in bits, and von Neumann entropy (continuous lines) for max-
imally entangled fermion states {ψi} plotted versus the acceleration
a = aω = a�, measured in units of 1

L
(for some length scale L),

for frequencies ω = � = 1
L

. The mutual information of states �±
FF

and �±
FF , as well as the entropies of these states, approach different

asymptotic values.

are given by I∞
i :

I∞
�±

FF

= 1

8 ln(2)

[
− ln

(
531441

256

)
+ (3 + 2

√
2) ln(3 + 2

√
2)

+ (3 − 2
√

2) ln(3 − 2
√

2)

]
, (28a)

I∞
�±

FF

= 1

ln(2)
ln

(
8

3
√

3

)
. (28b)

As can be seen from Fig. 3, the entanglement entropies
vanish for zero acceleration, as the mode is localized in region
I . So there is no entanglement between modes in region
I and modes in region II . As the acceleration increases,
an acceleration horizon forms and the entanglement entropy
increases due to tracing out modes with support in the region
behind the horizon. We see that the entanglement between
modes in the accessible region and modes in the inaccessible
region does not increase equally for all states, but depends on
the particular ψi . The mutual information of states �±

FF and
�±

FF decreases with increasing acceleration and, in the infinite
acceleration limit, approaches distinct values (I∞

�±
FF

≈ 0.4,

I∞
�±

FF

≈ 0.6). Since I∞
i < 1 for all states, we conclude that

also classical correlations become degraded with increasing
acceleration.

In this section we studied the degradation of quantum
and classical correlations in fermion states that is caused by
uniform acceleration. In the following section we study the
entanglement in bosonic Bell states.

IV. ENTANGLEMENT OF UNIFORMLY ACCELERATED
BOSON-BOSON STATES

We continue by investigating the entanglement of Bell states
of Unruh modes ω and � of a massless uncharged scalar

field,

|�±
BB〉 = 1√

2
(|0ω〉U |1�〉U ± |1ω〉U |0�〉U ), (29a)

|�±
BB〉 = 1√

2
(|0ω〉U |0�〉U ± |1ω〉U |1�〉U ), (29b)

where ω, � are the frequencies and 0, 1 the occupation numbers
of the Unruh modes. We consider the two modes ω and �

undergoing constant accelerations aω and a�, respectively. The
acceleration parameters of the modes are denoted by rω and r�.
We write states (29) in the Rindler basis to obtain the infinite-
dimensional density matrices ρ

(i=�±,�±)
I,II . Then, to describe the

system as it is seen by an observer confined to region I , we
have to trace out modes that have their support in region II .

As in Sec. III, to obtain the negativities Ni of states (29), we
determine the partially transposed reduced density matrices
ρ

pT

i that are block diagonal and calculate the negative
eigenvalues. More details can be found in Appendix B. The
negativities of Bell states (29) are given by the expressions

N�±
BB

= 1

2

1(
Zω

B

)2

1(
Z�

B

)2

[√
Zω

BZ�
B + 1

4

(
nω

B + n�
B

)2

− 1

2

(
nω

B + n�
B

)] +
∞∑

n=1

N
(n)
�±

BB

, (30)

N�±
BB

= 1

2

1(
Zω

B

)2

1(
Z�

B

)2 γ�±
BB

(
nω

B, n�
B

)

+
∞∑

n=1

N
(n,0)
�±

BB

+
∞∑

m=1

N
(0,m)
�±

BB

, (31)

where nω
B = (e

ω
Tω − 1)−1 [n�

B = (e
�
T� − 1)−1] is the Bose-

Einstein distribution with the Unruh temperatures Tω/� =
aω/�

2π
, Z

ω/�

B is the bosonic partition function (14), and γ�±
BB

is given by

γ�±
BB

= 1 − nω
Bn�

B . (32)

N
(n)
�±

BB

, N (n,0)
�±

BB

, and N
(0,m)
�±

BB

give small corrections compared to the
leading term and can be found in Appendix B. The degradation
of entanglement shows fundamentally different characteristics
for the two Bell states �±

BB and �±
BB ; see Fig. 4. While for

�±
BB entanglement vanishes asymptotically, �±

BB loses all its
entanglement for finite acceleration.

In case of �±
BB , for rω = r�, only one of the blocks on

the diagonal of the partially transposed reduced density matrix
admits negative eigenvalues. There is no entanglement gener-
ated in any sector, and only the sector where entanglement is
initialized contributes to the negativity N�±

BB
. From now on,

we refer to a sector as all elements of the reduced density
matrix that contribute to one block of the block-diagonal
partially transposed reduced density matrix. For rω �= r� there
is entanglement created in all sectors.

Note that the negativity vanishes asymptotically. The reason
why �±

BB does not become nondistillable (and therefore does
not become separable) for any finite acceleration is that the
occupation of state |00〉 is always zero; i.e., the Unruh effect
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FIG. 4. (Color online) Negativities for the maximally entangled
boson states �±

BB and �±
BB , where both observers are accelerated,

plotted versus the acceleration a = aω = a�, measured in units of 1
L

(for some length scale L), for frequencies ω = � = 1
L

. The negativity
of state �±

BB (blue continuous line) vanishes for finite accelerations,
while the negativity of �±

BB (red dashed line) vanishes asymptotically.

does not drive the occupation of this state. This is due to the fact
that the constituents of �±

BB both contain one excitation and,
thus, state |00〉 is not accessible. In consequence, the matrix
element |00〉〈00| in ρ�±

BB
is always zero and entanglement

vanishes only asymptotically for infinite acceleration, as in
this regime all occupation is shifted towards highly excited
states.

As we show in Appendix B, the negativity of �±
BB is of

the form N�±
BB

= ∑∞
n,m=0 N

(n,m)
�±

BB

and it can be seen that each

of the N
(n,m)
�±

BB

is bounded from above by N
(0)
�±

BB

≡ N
(0,0)
�±

BB

. The

(partial) negativity N
(0)
�±

BB

can be read off from (31)

N
(0)
�±

BB

= 1

2

1(
Zω

B

)2

1(
Z�

B

)2 γ�±
BB

(
nω

B, n�
B

)
, (33)

where γ�±
BB

is some kind of “cutoff function.” As all N
(n,m)
�±

BB

are

bounded from above by N
(0)
�±

BB

, it follows that N�±
BB

vanishes

for the same parameters as N
(0)
�±

BB

does. These parameters are

characterized by nω
Bn�

B = 1; i.e., as soon as this fraction of the
population is excited to the first state above the vacuum, state
�±

BB loses its entanglement.
This can be understood in an intuitive picture considering

an effective state represented by an effective density matrix

ρ
�±

BB

eff (k) of the kth sector. As we saw, the block-diagonal nature
of the partially transposed reduced density matrix ρ

pT

�±
BB

leads

to a negativity of the form N�±
BB

= N
(0)
�±

BB

+ ∑∞
n=1 N

(n,0)
�±

BB

+∑∞
m=1 N

(0,m)
�±

BB

. So we introduce ρ
�±

BB

eff (k) such that the negative

eigenvalue of (ρ
�±

BB

eff )
pT

(k) provides N
(k,0)
�±

BB

. Although there is
not a strict symmetry between n and m in (31), the effective
description captures the essential features of the behavior of
entanglement, as the vanishing of N

(k,0)
�±

BB

implies that N
(0,k)
�±

BB

is vanishing as well. Imagine that only one observer is

accelerated (aω �= 0), while the other one is inertial (a� = 0);
then we can write an effective state ρω

eff(k) as

ρω
eff(k) = αk(aω)|0k〉〈1(k + 1)| + βk(aω)|0(k + 1)〉〈0(k + 1)|

+ δk(aω)|1k〉〈1k| + γk(aω)|1(k + 1)〉〈0k|, (34)

where δk(aω) ≡ 0 and we denoted |n�〉I ⊗ |mω〉I by |nm〉.
The coherences that are present in the initial state and are
responsible for entanglement are quantified by α0(aω) and
γ0(aω). The coefficients βk(aω) and δk(aω) have the physical
interpretation of quantifying the occupation of the states
|0(k + 1)〉 and |1k〉, respectively. Note that the Unruh effect
drives the occupation of these states [in the present case only
the occupation of |0(k + 1)〉]. Initially, βk(aω) = δk(aω) = 0.
Now it is easy to see that, for fixed k, (34) is always entangled
for finite acceleration, but loses its entanglement for aω → ∞,
as in this limit αk,βk,γk → 0 and thus αk = βk = δk = γk = 0.
This explains why, for one accelerated observer (like in [4]),
entanglement vanishes in the infinite acceleration limit but not
for finite accelerations.

Moving to the general case of aω �= 0, a� �= 0, the effective
density matrix of the k-excitation sector is of the form

ρ
�±

BB

eff (k) = αk(aω,a�)|0k〉〈1(k + 1)| + βk(aω,a�)|0(k + 1)〉
× 〈0(k + 1)| + δk(aω,a�)|1k〉〈1k|
+ γk(aω,a�)|1(k + 1)〉〈0k| (35)

and the negativity vanishes for finite acceleration; i.e., αk =
βk = δk = γk �= 0 for aω,a� < ∞. The equality between the
strength of the coherences and the occupation of states |0(k +
1)〉 and |1k〉, i.e., αk = βk = δk = γk , is achieved due to the
special structure of the reduced density matrix ρ�±

BB
[cf. (B2)].

Let us have a look at the k = 0 sector, where entanglement is
initialized. For vanishing acceleration there are the coherences
|00〉〈11| and |11〉〈00| that are nonvanishing, while the states
|10〉 and |01〉 are not occupied, i.e., β0 = δ0 = 0; this state
is maximally entangled. By increasing the acceleration the
symmetry of the term a2

ma2
n|nm〉〈nm| in the reduced density

matrix ρ�±
BB

[cf. (B2)] leads to an equal occupation of |10〉〈10|
and |01〉〈01|. At the same time the coherences |00〉〈11| and
|11〉〈00| are decreasing symmetrically. So for some finite
acceleration α0 = β0 = δ0 = γ0 �= 0 holds and entanglement
vanishes.

However, there is also entanglement creation in sectors
of higher excitations k > 0 that are initially unoccupied in
the sense of αk = βk = δk = γk = 0. Although entanglement
is initially increasing in these sectors due to acceleration,
it is vanishing for the same acceleration as in the k = 0
sector. This is due to the fact that, besides a2

ma2
n|nm〉〈nm|,

also ā2
mā2

n|(n + 1)(m + 1)〉〈(n + 1)(m + 1)| [cf. (B2)] drives
the occupation of |1k〉〈1k| and therefore compensates part
of the loss of occupation of that state that is caused by the
acceleration. This might be called “diagonal mixing” and is
essential for achieving αkγk = βkδk for finite acceleration.
This condition is satisfied when nω

Bn�
B = 1 holds. The fact

that both modes “smear out” due to the acceleration enables
δk �= 0. This is the crucial point that enables the complete loss
of entanglement for a finite acceleration.

Before moving on, we want to emphasize the dependence
of the negativity on the energy of the modes. The condition for
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entanglement is given by

e− ω
Tω + e

− �
T� � 1 (36)

and we see that entanglement is more persistent for higher
frequency modes. We introduced the Unruh temperature
Tω/� = aω/�

2π
.

It is interesting to note that we can write condition (36),
for the same acceleration for both modes, i.e., aω = a� = a,
equivalently as

ω � T ln
(
Z�

B

) = −F�, (37)

where T = a
2π

and F� = −T ln (Z�
B ) is the Helmholtz free en-

ergy. Note that the same condition with ω and � interchanged
also holds. So at least formally the Helmholtz free energy of
one mode bounds the energy (frequency) of the other one.

To summarize, by increasing the acceleration, i.e., by
scanning through the families of states, entanglement de-
creases for all bosonic Bell states. However, there is also
entanglement created in sectors that have not been entangled
initially. State �±

BB loses all its entanglement for a finite value
of the acceleration, whereas �±

BB is entangled for all finite
accelerations. This is due to the appearance of the function
γ�±

BB
that indicates the presence of a threshold, where the state

becomes nonentangled. The reason for this behavior is the
different occupation patterns of the constituents (structures)
of the states we considered here. The negativities for the
states are plotted in Fig. 4. In contrast to the fermion case
(cf. Sec. III), all states lose their entanglement in the infinite
acceleration limit. This is due to the infinite tower of excitations
for bosonic modes that leads to a partition function ZB

that grows unbounded. Intuitively speaking, the acceleration
leads to a temperature that shifts the occupation to higher
energy states and therefore the occupation of the lowest lying
states approaches zero. Our findings provide evidence that
the structure of the states plays an important role, as this
decides about the set of states that are accessible. The “noise”
introduced by the Unruh effect is state dependent.

Next, after having addressed the bosonic case, we investi-
gate the degradation of entanglement between a bosonic and a
fermionic mode due to acceleration.

V. ENTANGLEMENT OF UNIFORMLY ACCELERATED
BOSON-FERMION STATES

Using the same techniques as in Secs. III and IV, we study
the degradation of entanglement in boson-fermion states. We
start by considering the non-Bell states

|X1〉 = 1√
2

(|0ω〉U
∣∣1F

�

〉+
U

+ |1ω〉U
∣∣1F

�

〉−
U

)
, (38a)

|X2〉 = 1√
2

(|1ω〉+U
∣∣1F

�

〉−
U

+ |1ω〉−U
∣∣1F

�

〉+
U

)
, (38b)

where F labels the fermionic mode, ω, � are the frequencies,
and 0, 1 the occupation numbers of the Unruh modes. + and
− refer to particles and antiparticles, respectively. The mode
of frequency ω is bosonic while the mode of frequency � is
fermionic. The respective acceleration parameters are given

by r = arctanh(e− πω
aω ) for the bosonic and rf = arctan(e− π�

a� )
for the fermionic mode.

Again we use the negativity (A1) as a measure of entangle-
ment and obtain

NX1 = 2Nf Nb,1, (39)

NX2 = 2Nf Nb,2, (40)

where Nf is the (universal) negativity that was found for max-
imally entangled fermions Nf = 1

2 cos2(rf ) = 1
2 (Z�

F )−1 [13]
and Nb,1, Nb,2 are given by

Nb,1 = 1

2

1(
Zω

B

)2 +
∞∑

n=1

Nn, (41)

Nb,2 = 1

2

1

Zω
B

. (42)

These are the negativities in the case that only the bosons are
accelerated (Appendix B). Details of the calculations, as well
as the expression for Nn, can be found in Appendix C.

Thus, the degradation of entanglement in states X1 and
X2 is quite similar to the behavior reported in [4]. Intuitively,
what happens is the following. When accelerated the fermions
get “rotated” and the bosons “smeared out.” Therefore, the
fermions that are less affected by acceleration “mimic” the
nonaccelerated bosons. On the level of the partially transposed
reduced density matrices, we observe that the fermionic and
the bosonic part factorize and thus the resulting negativity can
be expressed in terms of negativities obtained from the cases
of one accelerated observer.

However, as we will see, this is not a generic feature and
it is absent in cases of the boson-fermion Bell states �±

BF and
�±

BF that are given by

|�±
BF 〉 = 1√

2

(|1ω〉U
∣∣0F

�

〉
U

± |0ω〉U
∣∣1F

�

〉+
U

)
, (43a)

|�±
BF 〉 = 1√

2

(|0ω〉U
∣∣0F

�

〉
U

± |1ω〉U
∣∣1F

�

〉+
U

)
. (43b)

The negativities of states (43) are of the form N = ∑
n Nn

and again each of the Nn is bounded from above by N0.
Remember that N0 measures the negativity in the sector,
where the entanglement is initialized. In the following we
denote N0 by N

(0)
�±

BF /�±
BF

. The further Nn for n �= 0 can be
obtained analytically (Appendix C). However, already with
the expression for N

(0)
�±

BF /�±
BF

in hand, we are able to character-

ize N�±
BF /�±

BF
. For states �±

BF and �±
BF we obtain

N�±
BF

= N
(0)
�±

BF

+
∞∑

n=1

N
(n)
�±

BF

, (44)

N�±
BF

= N
(0)
�±

BF

+
∞∑

n=1

N
(n)
�±

BF

, (45)

where

N
(0)
�±

BF

= 1

2

1

Z�
F

1(
Zω

B

)2 , (46)

N
(0)
�±

BF

= 1

2

1

Z�
F

1(
Zω

B

)2 γ�±
BF

(
nω

B,n�
F

)
. (47)
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Further, Zω
B , Z�

F are the partition functions (14), (15),
nω

B = (e
ω
Tω − 1)−1 is the Bose-Einstein distribution, n�

F =
(e

�
T� + 1)−1 is the Fermi-Dirac distribution, and the Tω/� are

the Unruh temperatures introduced by the acceleration. The
function γ�±

BF
is given by

γ�±
BF

=
√

nω
B

n�
F

− nω
B. (48)

Details of the calculations and the expressions for N
(n)
�±

BF

and

N
(n)
�±

BF

can be found in Appendix C. The N
(0)
�±

BF /�±
BF

bound all

the N
(n)
�±

BF /�±
BF

from above and therefore capture the essential
behavior of entanglement degradation. So, in the following we
restrict our discussion to these quantities and refer to them as
negativity.

In case of state �±
BF , the negativity is given by a product of

the inverse partition functions for fermions and bosons. So the
negativity vanishes in the infinite acceleration limit due to the
unboundedness of the bosonic partition function. As for �±

BB

in Sec. IV, the reason why N
(0)
�±

BF

is positive definite for finite
accelerations is that there are no contributions to the density
matrix of the form |00〉〈00|, since these cannot be created by
the Unruh effect for states �±.

Moving to state �±
BF , we realize that, similarly to (33), the

negativity of state �±
BF vanishes for finite accelerations. Fur-

thermore, as in (33), the threshold depends on the occupation
numbers of the excited modes nω

B and n�
F . When the product

nω
Bn�

F equals 1, the negativity of state �±
BF vanishes. So the

threshold condition is of the same form as for �±
BB , where it

is given by nω
Bn�

B = 1. However, why does the negativity of
�±

BF vanish while states X1, X2, and �±
BF are entangled for

all finite accelerations? First, we note that if either r or rf

is vanishing, �±
BF is entangled for all finite accelerations. To

find the answer for the generic case, we use an effective state
description, as in Sec. IV, by

ρ
�±

BF

eff (k) = ρ
�±

BF

eff,1(k) + e
− �

T� ρ
�±

BF

eff,2(k), (49)

where

ρ
�±

BF

eff,1(k) = αk(aω,a�)|k0F 〉〈(k + 1)1F+|
+βk(aω,a�)|(k + 1)0F 〉〈(k + 1)0F |
+ δk(aω,a�)|k1F+〉〈k1F+|
+ γk(aω,a�)|(k + 1)1F+〉〈k0F | (50)

and

ρ
�±

BF

eff,2(k) = αk(aω,a�)|k1F−〉〈(k + 1)1F+1F−|
+βk(aω,a�)|(k + 1)1F−〉〈(k + 1)1F−|
+ δk(aω,a�)|k1F+1F−〉〈k1F+1F−|
+ γk(aω,a�)|(k + 1)1F+1F−〉〈k1F−|, (51)

where we denoted |nω〉I ⊗ |0�〉+I ⊗ |0�〉−I by |n0F 〉, |nω〉I ⊗
|1�〉+I ⊗ |0�〉−I by |n1F+〉, |nω〉I ⊗ |0�〉+I ⊗ |1�〉−I by |n1F−〉,
and |nω〉I ⊗ |1�〉+I ⊗ |1�〉−I by |n1F+1F−〉. Thus, if the
fermionic mode is not accelerated, δk = 0 and �±

BF is
entangled for all finite accelerations. We see that the effective
density matrix (49) splits into two contributions. Further, it is
easy to see that (50) and (51) carry the same entanglement.

Therefore, in the following, we restrict ourselves to ρ
�±

BF

eff,1(k).
Similarly to the bosonic �± state, α0 = β0 = γ0 = δ0 �= 0

for aω,a� < ∞ is achieved due to the special structure of the
reduced density matrix ρ�±

BF
[cf. (C10)]. For the further sectors,

k > 0, αkγk = βkδk �= 0 is enabled. For vanishing acceleration
there are the initially nonvanishing coherences |00F 〉〈11F+|
and |11F+〉〈00F | that decrease with increasing acceleration.
By increasing the acceleration some coherences are cre-
ated (|k0F 〉〈(k + 1)1F+| and |(k + 1)1F+〉〈k0F |) and, further,
the term 1

2 cos4(rf )a2
n(|n0F 〉〈n0F | + tan2(rf )|n1F+〉〈n1F+|)

in (C10) leads to an increasing occupation of |k1F+〉〈k1F+|
and |(k + 1)0F 〉〈(k + 1)0F |. In contrast to the bosonic �±
state, this does not happen symmetrically. However, at some
point, when r and rf fulfill nω

Bn�
F = 1, there is an occupation of

these two states such that αkγk = βkδk �= 0 and entanglement
vanishes.

Furthermore, as for the bosonic �± state, the
term 1

2 cos2 ā2
n|(n + 1)1F+〉〈(n + 1)1F+|, as well as

1
2 sin2(rf ) cos2(rf )a2

n|n1F+〉〈n1F+|, contribute to the
occupation of |(k + 1)0F 〉〈(k + 1)0F | and therefore
compensate part of the loss of occupation of that state
that is caused by acceleration. Above we called this “diagonal
mixing.” This mixing enables αkγk = βkδk �= 0 and therefore
entanglement vanishes for finite accelerations.

Again, we want to emphasize the dependence on the energy
of the entangled modes. The condition for entanglement can
be written as

nω
Bn�

F � 1. (52)

This is equivalent to γ�±
BF

� 0. As in Sec. III, we see that
entanglement is more persistent for higher frequency modes.
Furthermore, we note that, for equal accelerations (aω = a�),
condition (52) can be written in terms of the Helmholtz free
energies as

ω + � � T
[

ln
(
Zω

B

) − ln
(
Z�

F

)] = −Fω + F�, (53)

where Fω/� denote the Helmholtz free energies. Comparing
that condition to (37), we see a huge similarity, as (37)
can be written as ω + � � −Fω − F�. If we would take
these equations for more than just a nice rewriting, we could
conjecture that the origin of the nonvanishing entanglement
for fermions is given by the fact that the condition for
entanglement is ω + � � Fω + F�, where Fω + F� � 0, and
thus it is trivially fulfilled for all accelerations.

To summarize, the negativities of states X1 and X2 factorize
and we observe a product structure similar to the one obtained
in Sec. III, where the total negativity is the product of the
fermion and the boson contributions. That is due to the
structure of the fermion mode �. These families of states
are entangled for all finite accelerations. The negativities
are given by the product of inverse bosonic and fermionic
partition functions and therefore vanish in the limit of infinite
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FIG. 5. (Color online) Negativities for the maximally entangled
boson-fermion states X1, X2, �±

BF , and �±
BF , where both observers are

accelerated, plotted against the acceleration a = aω = a�, measured
in units of 1

L
(for some length scale L), for frequencies ω = � = 1

L
.

The degradation of entanglement occurs at different rates. The
negativity of state �±

BF (blue continuous line) vanishes for finite ac-
celerations, while the negativities of X1 (red dashed line), X2 (purple
dotted line), and �±

BF (green continuous line) vanish asymptotically.

acceleration. In case of the �± and �± states (�±
BF and �±

BF )
this does not hold any more and we observe a behavior that
is similar to the one we obtained for the �± and �± states
in Sec. IV. Again, state �±

BF loses all its entanglement for
finite accelerations, while state �±

BF is entangled for all finite
accelerations; see Fig. 5. The different behavior is due to the
different structures of the states, since only in the case of state
�±

BF diagonal mixing is enabled.
So, we have seen that, for fermion-fermion, boson-boson,

and boson-fermion Bell states, the degradation of entangle-
ment does not depend on, for example, whether the state is a
singlet or a triplet, but on the structure of the particular state.
It is the structure of the state that determines the fading of its
entanglement.

In the following section, we summarize our findings and
discuss the role of particle statistics in the degradation of
entanglement.

VI. ENTANGLEMENT DEGRADATION AND THE ROLE
OF PARTICLE STATISTICS

In this section we discuss the mechanisms behind entangle-
ment degradation and the role of particle statistics therein.
Above we discussed the fermion-fermion Bell states (16),
the boson-boson Bell states (29), and the boson-fermion
Bell states (43). Using the expressions for the negativi-
ties (20), (19), (30), and (31), as well as (46) and (47), we
can write the negativities of all Bell states in a compact form,

N
(0)
S±

XY

= 1

2

1(
Zω

X

)x

1(
Z�

Y

)y γS±
XY

, (54)

where S±
XY = �±

XY ,�±
XY denotes the entangled state, X, Y

encode the statistics of the fields (fermionic, bosonic), and

x,y are equal to 1 for fermions (X,Y = F ) and equal to 2 for
bosons (X,Y = B). The functions γS±

XY
are given by

γ�±
BB

=
√

Zω
BZ�

B + n̄2
B − n̄B, (55a)

γ�±
BF

= 1, (55b)

γ�±
FF

=
√

Zω
F Z�

F + (
Zω

F Z�
F

)2
n̄2

F − Zω
F Z�

F n̄F , (55c)

for the �±
XY states, where n̄B/F = 1

2 (nω
B/F + n�

B/F ) is the
average occupation number, and

γ�±
BB

= 1 − nω
Bn�

B, (56a)

γ�±
BF

=
√

nω
B

n�
F

− nω
B, (56b)

γ�±
FF

= 1, (56c)

for the �±
XY states. Equation (54) gives the negativities in

the k = 0 sector, where entanglement is initiated. For some
states there is entanglement dynamically created in other
sectors but these are always bounded from above by (54); see
Fig. 8. Therefore, these negativities capture the main features
of entanglement degradation and we restrict our attention to
these.

Physically speaking, after fixing the frequencies ω and
�, as seen by the accelerated observers, Eq. (54) gives the
negativity of the two-parameter family of states S±

XY . That
is, for each choice of the pair (aω,a�), Eq. (54) gives the
negativity of the particular state S±

XY that is characterized by
(ω,�,aω,a�), when this state is seen by accelerated observers
of accelerations aω and a�, respectively. For this reason, and
also because the Unruh modes that are considered are global
modes, the setting should be considered as a toy model that
captures the essential features of entanglement degradation.

There are essentially two factors determining the fading of
entanglement. The first one is given by the set of states (as
above, by states we mean diagonal elements of the density
matrix) that become available when a state is accelerated.
This set depends heavily on the structure of the state, as, for
example, for �± the state |00〉〈00| never becomes accessible,
but also on the statistics that does not allow for two- or
more-particle states for fermions. The second determining
factor is whether the population of states |00〉〈00|, |01〉〈01|,
|10〉〈10|, and |11〉〈11| can be transferred completely to higher
excited states like, for example, |21〉〈21|. If that is possible also
the coherences |00〉〈11| and |01〉〈10| vanish with increasing
acceleration. Both factors depend heavily on the statistics of
the underlying field.

For illustrating reasons, consider the density matrix ρ,

ρ =

⎛
⎜⎜⎜⎜⎝

ρ�
0000 0 0 ρ�

0011

0 ρ�
0101 ρ�

0110 0

0 ρ�
1001 ρ�

1010 0

ρ�
1100 0 0 ρ�

1111

⎞
⎟⎟⎟⎟⎠, (57)

written in the basis {|00〉,|01〉,|10〉,|11〉}, where all ρ�
ijkl

(i,j,k,l ∈ {0,1}) are zero for �± states and vice versa. Tracing
out antiparticles, (57) is the full density matrix for fermions
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FIG. 6. (Color online) Energy dependence of the entanglement
in Bell states �±

BB/BF : States of modes of frequencies ω and � (in
units of 1

L
for some length scale L) contained in the red region show

no entanglement, while states of higher energies remain entangled
(white region). The plots show states �±

BB for acceleration aω =
a� = 50 1

L
(a), �±

BB for acceleration aω = a� = 100 1
L

(b), �±
BF for

aω = a� = 50 1
L

(c), and �±
BF for aω = a� = 100 1

L
(d). State �±

FF is
entangled for all frequencies and accelerations and therefore it is not
shown. The zeros of the functions γ�±

BB
and γ�±

BF
define the border

between the regions. The asymmetry in (c) and (d) is due to the fact
that fermions are “more resistant” towards the effects of acceleration.

and acceleration decreases the diagonal elements (ρ�
0000, ρ�

1111;
ρ�

0101, ρ�
1010), as well as the coherences (ρ�

0011, ρ�
1100; ρ�

1001,
ρ�

0110) to a finite value for both �± and �± states. Furthermore,
the “squared” coherences ρ�

0011ρ
�
1100 and ρ�

1001ρ
�
0110 always

dominate the product of the occupations of states ρ�
0000,

ρ�
1111 and ρ�

0101, ρ�
1010, respectively. That is why entanglement

decreases but does not vanish.
For bosons, in contrast, (57) is only the initially nonva-

nishing part of the infinite-dimensional density matrix. The
reason why �± states lose their entanglement (cf. Fig. 6),
while �± are entangled for all finite accelerations, is given by
the set of available states (cf. Secs. IV and V). The reason for
the asymptotic vanishing of the negativity for all boson-boson
and boson-fermion states is given by the second determining
factor (see above). All initially nonvanishing elements of
ρ, i.e., the ρ�

ijkl and the ρ�
ijkl , approach zero in the infinite

acceleration limit, as matrix elements of higher excitation
states are increasing. That is due to bosonic statistics. Naively,
fermions get “rotated” and bosons “smeared” towards higher
excited sectors due to acceleration. Furthermore, note the
asymmetry in Fig. 6 that is due to the fact that fermions are
“more resistant” towards the effects of acceleration.

This explanation based on the two determining factors
captures the role of particle statistics. Particle statistics also
is reflected in the negativities (54) that are written in terms
of the partition functions and the occupation numbers and
therefore make the “effects of statistics” apparent.

In this work we studied maximally entangled states like,
for example,

|�α〉 = sin(α)|0ω〉U |1�〉U + cos(α)|1ω〉U |0�〉U , (58a)

|�α〉 = sin(α)|0ω〉U |0�〉U + cos(α)|1ω〉U |1�〉U , (58b)

where we chose α to be π/4. Differing choices of α lead to less
entangled states, as the negativity N�α

= N�α
= sin(α) cos(α)

is maximized for α = π/4. Given the mechanisms that lead to
entanglement degradation that we outlined above, it is evident
that states (58) behave qualitatively the same for generic α

as they do for α = π/4, i.e., in the maximally entangled
case. In the case of more general mixed states, we expect
that, depending on the state, one observes that the degradation
of entanglement shows characteristics that are best described
by a mixture of the characteristics of the degradations in the
case of �± and �±. However, it seems reasonable to expect
that a random mixed state will lose its entanglement for finite
acceleration with high probability, as in the fermionic case
studied in [41].

In some sense we can think of the functions γ [(55)
and (56)] as deformations of a (universal) particle-statistics-
dependent negativity NU ,

NU = 1

2

1(
Zω

X

)x

1(
Z�

Y

)y , (59)

that only depends on the partition functions that are character-
istic for the particle statistics of the field. Then the particular
structure of the Bell state, as well as the particle statistics, set
the γ that we might call structure functions and denote them by
γstructure. As we saw, these depend heavily on the set of states
whose occupation is driven by the Unruh effect. So finally we
can write the entanglement of a Bell state (negativity Nstate) in
the sector where entanglement is initialized as

Nstate = γstructure NU . (60)

We want to close this section by giving some comments
on Eq. (60). First, choosing the partitioning of Nstate in
γstructure and NU is not unique and there are possible partitions
different from (54). Nevertheless, writing the negativity in
form (60) makes the importance of the particular structure
of the state manifest. Moreover, Eq. (60) makes it possible
to clearly identify the two determining factors: The first one
sets the function γstructure, while the second one determines
NU . Further, we note that a slightly varied form of (60) also
holds for states X1 and X2. We expect that there are slight
modifications when there are different particles involved, like
particles carrying spin. Finally, it would be interesting to figure
out whether the negativities of nonmaximally entangled mixed
states could also be captured in an expression similar to (60).

In the following section, we briefly point out possible
implications of the above findings for particles in Bell states
close to the black-hole horizon.
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VII. DEGRADATION OF ENTANGLEMENT
IN THE VICINITY OF A BLACK HOLE

The framework we used in this work also applies to the
space-time close to a black hole, as outlined in Appendix D
(see also [19]). However, given the caveats in the interpretation
of the states, we described in Sec. III, the following discussion
aims at giving a qualitative idea about entanglement degrada-
tion near black holes.

One point that can be inferred is that entanglement gets
degraded in the vicinity of the black-hole horizon. Further, all
states that involve bosons lose their entanglement in the limit of
reaching the horizon. This is in contrast to the fermion-fermion
states, where entanglement never vanishes. Further, there are
crucial differences between the degradation of entanglement
for states �± and �±. The entanglement of states �±

BB and
�±

BF completely vanishes at a finite distance from the horizon
that is large compared to the Planck length LP (d ≈ 0.01RS ,
where RS is the Schwarzschild radius), whereas states �± are
entangled for any finite distance from the black hole.

Thus, we observed that entanglement, an important re-
source for quantum information tasks, gets degraded very
differently for differing Bell states, i.e., the degradation of
entanglement is state dependent. Our findings imply that
there are particular states that remain entangled as seen by
an observer that is uniformly accelerated or equivalently is
stationary close to a black hole, while, for other choices of the
state, there is no entanglement remaining. This implies that
the gravitational degradation of entanglement depends on the
structure of the state.

VIII. CONCLUSIONS

In this work, we studied families of two uniformly accel-
erated maximally entangled Unruh modes in the general case
of different accelerations and analyzed their entanglement,
measured by the negativity. Therefore, we considered states
containing two fermionic modes, two bosonic modes, as well
as states of one bosonic and one fermionic mode. Special
emphasis was given to the comparison of Bell states �± and
�±. Although the Unruh modes we used do not have a simple
physical interpretation, our studies provide insight into the
mechanisms that lead to the degradation of entanglement due
to acceleration.

We found that, in contrast to the other cases, purely
fermionic families of Bell states are entangled for all accelera-
tions. Still, the entanglement of state �± degrades faster with
acceleration than the entanglement of state �±. Interestingly,
it is only for state �± that both accelerated modes give rise
to a contribution to the same diagonal element of the reduced
density matrix that is relevant for entanglement. We suspect
that this special feature of �± is responsible for the different
behavior regarding entanglement degradation. Furthermore,
we found that also classical correlations are partially lost due
to acceleration.

In the purely bosonic case, as well as in the boson-fermion
case, state �± remains entangled for all finite accelerations,
and entanglement vanishes asymptotically in the limit of infi-
nite accelerations. In contrast, state �± loses its entanglement
for some finite acceleration. This is manifest in the presence

of a “cutoff function” γ�± in the expression for the negativity.
So we found that the type of Bell state (i.e., being �± or �±)
crucially affects the robustness of its entanglement against
acceleration. Furthermore, we obtained that the reason for the
occurrence of this phenomenon is originated in the particular
occupation patterns of the constituents (the “structure”) of the
state, which determine which excitations can be driven by the
Unruh effect.

Applying an effective state picture, we were able to explain
this crucial difference between both types of states. State �±
is entangled for all finite accelerations as the Unruh effect
does not drive the occupation of state |00〉〈00|, and this state
is naturally absent in the density matrix of �±. Entanglement
vanishes only asymptotically for infinite acceleration, as in this
regime all occupation is shifted towards highly excited states.
For state �± things are different. Essentially what happens
is the following. For vanishing acceleration, there exist the
coherences |00〉〈11| and |11〉〈00| that are responsible for the
entanglement, while the occupation of |10〉〈10| and |01〉〈01| is
vanishing. When acceleration is increasing, the coherences are
decreasing, while at the same time the occupation of |10〉〈10|
and |01〉〈01| is driven (symmetrically) by the Unruh effect
by creating one excitation in |00〉〈00|. Thus, for the value
of the acceleration for which the condition for entanglement
[cf. (36), (52)] is violated, entanglement vanishes. Hence, we
traced the difference in the behavior regarding entanglement
degradation back to the set of accessible states and the
symmetry in the distribution of probability among them. It
seems that diagonal mixing, as we coined it above, is required
to achieve sufficient uniformity in the occupation of the states.

Further, we found that there are two factors that determine
the fading of entanglement. The first one, given by the set
of states that become accessible due to the Unruh effect, is
heavily influenced by the structure of the state. Said factor
determines whether a state loses its entanglement for finite
accelerations. The second factor is more closely related to
the particle statistics of the modes that constitute the Bell
state. It is whether higher excitation states become accessible
due to acceleration. That is the case for bosonic modes,
and thus Bell states in which these modes are involved are
nonentangled in the infinite acceleration limit, whereas purely
fermionic Bell states are always entangled. Remarkably, we
found that the negativities of the boson-boson, boson-fermion,
and fermion-fermion Bell states can be expressed in the same
form (54),

N
(0)
S±

XY

= 1

2

1(
Zω

X

)x

1(
Z�

Y

)y γS±
XY

, (61)

where the Z
ω/�

B/F are the partition functions (of a harmonic
oscillator or two-level system with energy gap ω/�) and the
γS±

XY
are functions determined by the first factor, we introduced

above.
Furthermore, we discussed possible effects of hovering over

a black hole on entangled states of two Unruh modes.
In summary, our studies reveal the mechanisms that cause

the behavior of entanglement in accelerated frames to depend
heavily on the particular occupation patterns of the constituents
of the entangled state.
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APPENDIX A: FERMION-FERMION STATES

1. Calculation of negativities

The negativity for a composite system (we denote the sub-
systems by A and B) described by a density matrix ρ = ρAB

is given by the sum of the absolute values of the negative
eigenvalues of the partially transposed density matrix ρ

pT

AB ,

N = 1

2

∑
j

(|λj | − λj ), (A1)

where the λj ’s are the eigenvalues of ρ
pT

AB and for a
density matrix ρAB = ∑

klmn pklmn|k〉〈l| ⊗ |m〉〈n| the partial
transposed is given by ρ

pT

AB = ∑
klmn pklmn|k〉〈l| ⊗ |n〉〈m|.

The calculations of the negativities of the fermion states
{ψi} = {�±

FF ,�±
FF } have to be carried out with care and the

braided tensor product has to be taken into account [42].
As above, when we introduced the Unruh modes, we chose
the ordering |ijkl〉ω̃ = |iω̃〉+I ⊗ |jω̃〉−II ⊗ |kω̃〉−I ⊗ |lω̃〉+II . The
density matrices are obtained as ρ

(i)
I,II = |ψi〉〈ψi |. To obtain the

reduced density matrices ρi = TrII (ρ(i)
I,II ) (i ∈ {�±

FF ,�±
FF }),

we trace out modes supported in region II and take care of the
operator ordering. Finally, we partially transpose the reduced
density matrices and identify the blocks of ρ

pT

i that admit
negative eigenvalues.

In the case that the observers are able to detect particles

as well as antiparticles, the relevant blocks b
�+

FF
μ of ρ

pT

�+
FF

are
given by

b
�+

FF

1 = c
�+

FF

ε=1 , (A2)

b
�+

FF

2 = tan2
(
rω
f

)
c
�+

FF

ε=−1, (A3)

b
�+

FF

3 = tan2
(
r�
f

)
c
�+

FF

ε=1 , (A4)

b
�+

FF

4 = tan2
(
r�
f

)
tan2

(
rω
f

)
c
�+

FF

ε=−1, (A5)

where

c
�+

FF
ε = 1

2
cos2

(
rω
f

)
cos2

(
r�
f

)

×
(

0 ε cos
(
rω
f

)
cos

(
r�
f

)
ε cos

(
rω
f

)
cos

(
r�
f

)
sin2

(
rω
f

) + sin2
(
r�
f

)
)

.

(A6)

The negativity N�+
FF

is sum of the absolute values of the

negative eigenvalues of ρ
pT

�+
FF

. Thus, using that N (c
�+

FF

ε=1 ) =
N (c

�+
FF

ε=−1) and the fact that the b
�−

FF
μ can be obtained from

the b
�+

FF
μ by the replacement ε → −ε, we can write

N�±
FF

= [
1 + tan2

(
rω
f

) + tan2
(
r�
f

) + tan2
(
rω
f

)
tan2

(
r�
f

)]
×N (c

�+
FF

ε=1 )

= 1

4

{− [
sin2 (

rω
f

) + sin2 (
r�
f

)]
+

√[
sin2

(
rω
f

) + sin2
(
r�
f

)]2 + 4 cos2
(
rω
f

)
cos2

(
r�
f

)}
.

(A7)

As expected, assuming that only particles can be detected by
the observers, i.e., tracing out antiparticles, the negativity does
not change. In this case, there is only one block contributing
to the negativity that is given by

1

2

(
0 cos

(
rω
f

)
cos

(
r�
f

)
cos

(
rω
f

)
cos

(
r�
f

)
sin2

(
rω
f

) + sin2
(
r�
f

)
)

, (A8)

which has the negative eigenvalue −N�±
FF

and thus entangle-
ment remains unchanged.

Considering state �+
FF , in the case that the observers are

able to detect particles as well as antiparticles, the relevant

blocks b
�+

FF
μ of ρ

pT

�+
FF

are calculated as above and are given by

b
�+

FF

1 = c
�+

FF

ε=1 , (A9)

b
�+

FF

2 = tan2 (
rω
f

)
c
�+

FF

ε=−1, (A10)

b
�+

FF

3 = tan2 (
r�
f

)
c
�+

FF

ε=1 , (A11)

b
�+

FF

4 = tan2 (
r�
f

)
tan2 (

rω
f

)
c
�+

FF

ε=−1, (A12)

where

c
�+

FF
ε = 1

2
cos2

(
rω
f

)
cos2

(
r�
f

)

×
(

sin2
(
rω
f

)
cos2

(
r�
f

)
ε cos

(
rω
f

)
cos

(
r�
f

)
ε cos

(
rω
f

)
cos

(
r�
f

)
sin2

(
r�
f

)
cos2

(
rω
f

)
)

.

(A13)

We notice that N (c
�+

FF

ε=1 ) = N (c
�+

FF

ε=−1) and that again b
�+

FF
μ →

b
�−

FF
μ is induced by ε → −ε. So we can write the negativity as

N�±
FF

= [
1 + tan2 (

rω
f

) + tan2 (
r�
f

) + tan2 (
rω
f

)
tan2 (

r�
f

)]
×N (c

�+
FF

ε=1 )

= 1
2 cos2

(
rω
f

)
cos2

(
r�
f

)
. (A14)

Assuming that the observers can only detect particles does not
affect the negativity. Tracing over antiparticles in ρ

pT

�+
FF

leads
to

1

2

(
sin2

(
rω
f

)
cos2

(
r�
f

)
cos

(
rω
f

)
cos

(
r�
f

)
cos

(
rω
f

)
cos

(
r�
f

)
sin2

(
r�
f

)
cos2

(
rω
f

)
)

, (A15)

with the negative eigenvalue −N�±
FF

.
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2. Entanglement in different sectors

We briefly discuss the distribution of entanglement in
states ψi , when the acceleration is nonvanishing. While
entanglement in the sector where it was initiated is decreasing
with increasing acceleration, there is entanglement created in
previously nonentangled sectors. Schematically, we can write
N�±

FF
as

N�±
FF

= N (0,0 | 1+,1+) + N (1−,0 | 1+1−,1+)

+N (0,1− | 1+,1+1−) + N (1−,1− | 1+1−,1+1−),

(A16)

where

N (0,0 | 1+,1+) = N
(
c
�+

FF

ε=1

)
, (A17)

N (1−,0 | 1+1−,1+) = tan2
(
rω
f

)
N

(
c
�+

FF

ε=1

)
, (A18)

N (0,1− | 1+,1+1−) = tan2
(
r�
f

)
N

(
c
�+

FF

ε=1

)
, (A19)

N (1−,1− | 1+1−,1+1−) = tan2
(
rω
f

)
tan2

(
r�
f

)
N

(
c
�+

FF

ε=1

)
,

(A20)

are the negativities of the different sectors. N (0,0 | 1+,1+)
is the negativity of the sector, where the entanglement
is initialized, i.e., entanglement between |0ω〉+I ⊗ |0ω〉−I ⊗
|0�〉+I ⊗ |0�〉−I and |1ω〉+I ⊗ |0ω〉−I ⊗ |1�〉+I ⊗ |0�〉−I . There
are three sectors in which entanglement is created due to
acceleration (A18)–(A20). The negativities are plotted in Fig. 7
and we see that the entanglement is distributed equally between
the sectors in the infinite acceleration limit.

FF

FF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.

0.025

0.05

0.075

0.1

acceleration parameter r

ne
ga
tiv
ity

N

FIG. 7. (Color online) Entanglement distribution for states �±
FF

(red dotted line) and �±
FF (blue continuous line) plotted versus

the dimensionless acceleration parameter r = rω
f = r�

f . The in-
finite acceleration limit corresponds to r = π

4 . The middle pair
of solid curves is twofold degenerate due to the symmetry of
the states. With increasing acceleration, entanglement is created
in previously separable sectors. From top to bottom the curves
correspond as follows: red, N (0,0 | 1+,1+), N (1−,0 | 1+1−,1+) and
N (0,1− | 1+,1+1−), N (1−,1− | 1+1−,1+1−); blue, N (1+,0 | 0,1+),
N (1+1−,0 | 1−,1+) and N (1+,1− | 0,1+1−), N (1+1−,1− | 1−,1+1−).

For state �±
FF we see again that entanglement is created in

some sectors and we can write N�±
FF

schematically as

N�±
FF

= N (1+,0 | 0,1+) + N (1+1−,0 | 1−,1+)

+N (1+,1− | 0,1+1−) + N (1+1−,1− | 1−,1+1−),

(A21)

where

N (1+,0 | 0,1+) = N
(
c
�+

FF

ε=1

)
, (A22)

N (1+1−,0 | 1−,1+) = tan2 (
rω
f

)
N

(
c
�+

FF

ε=1

)
, (A23)

N (1+,1− | 0,1+1−) = tan2
(
r�
f

)
N

(
c
�+

FF

ε=1

)
, (A24)

N (1+1−,1− | 1−,1+1−) = tan2
(
rω
f

)
tan2

(
r�
f

)
N

(
c
�+

FF

ε=1

)
,

(A25)

are the negativities of the different sectors. N (1+,0 | 0,1+)
is the negativity of the sector, where the entanglement
is initialized. When the acceleration increases from zero
the negativity N (1+,0 | 0,1+) decreases while (A23)–(A25)
increase. In the infinite acceleration limit all sectors are
equally entangled; see Fig. 7. Comparing states �±

FF and
�±

FF , we note that the “redistribution” of entanglement is the
same for small accelerations, but differs more and more with
increasing acceleration, until finally different limiting values
are approached.

We plot the entanglement in the sectors that show creation
of entanglement in Fig. 7. This effect is due to a symmetric
production of particle-antiparticle pairs. We can, for example,
write state �±

FF schematically as 0,0 | 1+,1+. Then, for
nonzero acceleration, the Unruh effect, that in some sense can
be seen as pair production, populates states 0,1− and 1+,1+1−
and thus creates entanglement [N (0,1− | 1+,1+1−) �= 0] in
the sector 0,1− | 1+,1+1−. In the same manner there is
entanglement created in the sectors 1−,0 | 1+1−,1+ and
1−,1− | 1+1−,1+1−; see Fig. 7. However, in general, not all
states show this behavior. One state that does not show this
feature is 1√

2
(|1F

ω 〉+U |1F
�〉−U + |1F

ω 〉−U |1F
�〉+U ). The reason why

there is no entanglement generated is that for this state
symmetric pair production would require a violation of the
Pauli principle and therefore is forbidden.

APPENDIX B: BOSON-BOSON STATES

We calculate the negativity (A1) for the bosonic Bell states

|�±
BB〉 = 1√

2
(|0ω〉U |1�〉U ± |1ω〉U |0�〉U ), (B1a)

|�±
BB〉 = 1√

2
(|0ω〉U |0�〉U ± |1ω〉U |1�〉U ), (B1b)

where ω, � are the frequencies and 0, 1 the occupation numbers
of the Unruh modes. The two modes ω and � undergo constant
accelerations aω and a�. The acceleration parameters of the
modes are denoted by rω and r�, respectively.

We start with state �±
BB and for concreteness we consider

�+
BB that shows the same entanglement as �±

BB . So in the
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following we always denote �+
BB by �±

BB and similarly for the �± states. The density matrix ρ�±
BB

that we obtain after tracing
out region II is given by

ρ�±
BB

= 1

2

∑
m,n

a2
ma2

n|nm〉〈nm| + 1

2

∑
m,n

ā2
mā2

n|(n + 1)(m + 1)〉〈(n + 1)(m + 1)| + 1

2

∑
m,n

amanāmān|nm〉〈(n + 1)(m + 1)| + H.c.,

(B2)

where |nm〉 = |nω〉I ⊗ |m�〉I and an = an(rω) = tanhn(rω) cosh−1(rω), ān = ān(rω) = tanhn(rω) cosh−2(rω)
√

n + 1.
Accordingly, am = an=m(r�) and ām = ān=m(r�). The negativity can be obtained as a sum over the negativities for
different values of n,m (N�±

BB
= ∑

n,m N
(n,m)
�±

BB

). This can be seen from the block-diagonal structure of the partially transposed

density matrix. The part of the partially transposed density matrix that contributes to N
(n,m)
�±

BB

and the negativity N�±
BB

are given by

1

2

tanh2n(rω) tanh2m(r�)

cosh2(rω) cosh2(r�)

⎛
⎜⎝

[
1 + (m+1)n

sinh2(rω) sinh2(r�)

]
tanh2(r�)

√
(m+1)(n+1)

cosh(rω) cosh(r�)

√
(m+1)(n+1)

cosh(rω) cosh(r�)

[
1 + (n+1)m

sinh2(rω) sinh2(r�)

]
tanh2(rω)

⎞
⎟⎠ (B3)

and

N�±
BB

=
∑
n,m

N
(n,m)
�±

BB

=
∑

n

N
(n,0)
�±

BB

+
∑
m

N
(0,m)
�±

BB

= N
(0)
�±

BB

+
∞∑

n=1

tanh2n(rω)

4 cosh2(rω) cosh2(r�)

(
tanh2(rω) + tanh2(r�) + n

sinh2(rω) cosh2(r�)

+ 2

sinh2(rω) sinh2(r�) cosh(rω) cosh(r�)

{
n2

4
cosh2(rω) sinh2(r�) tanh2(r�) + sinh4(rω) sinh4(r�)

×
[
n

2
+ 1

4
cosh2(rω) sinh2(r�) tanh2(r�) + 1

]
+ n

2
sinh2(rω) cosh2(rω) sinh4(r2) tanh2(r�)

+ sinh6(rω)

[
1

4
tanh2(rω) sinh4(r�) cosh2(r�) − 1

2
sinh6(r�)

]} 1
2
)

+
∞∑

m=1

(ω ↔ �; n → m), (B4)

where we used that N
(n,m)
�±

BB

�= 0 only for either n = 0 or m = 0

or n = m = 0. It can be seen that each of the N
(n,m)
�±

BB

is bounded

from above by N
(0)
�±

BB

≡ N
(0,0)
�±

BB

that describes the entanglement
between the modes we initially start with. For nonvanishing
acceleration there is entanglement created between higher
modes, i.e., N

(n,m)
�±

BB

�= 0, but this will be a small contribution

compared to N
(0)
�±

BB

; see Fig. 8(a).

To obtain N
(0)
�±

BB

, we set n and m to zero in (B3). The

negativity N
(0)
�±

BB

can be written in the form

N
(0)
�±

BB

= 2N0,ωN0,� γ�±
BB

(
nω

B, n�
B

)
, (B5)

where n
ω/�

B = (e
ω/�

Tω/� − 1)−1 is the Bose-Einstein distribution
and N0,ω/� denotes the negativities if only mode ω/� is
accelerated. These can be obtained from (B4) by setting the
acceleration parameter r�/ω to zero,

N
(0)
�±

BB

(rω,r� = 0) ≡ N0,ω = 1

2

1(
Zω

B

)2 , (B6)

where Z
ω/�

B is the bosonic partition function (14). Further,
γ�±

BB
is given by

γ�±
BB

= 1 − nω
Bn�

B . (B7)

Now we move to state �±
BB , where the relevant part of the

partially transposed reduced density matrix is given by the
following expression:

1

2

tanh2n(rω) tanh2m(r�)

cosh2(rω) cosh2(r�)

⎛
⎜⎝

m

sinh2(r�)
+ n

sinh2(rω)

√
(m+1)(n+1)

cosh(rω) cosh(r�)

√
(m+1)(n+1)

cosh(rω) cosh(r�) (m + 1) tanh2(rω)
cosh2(r�)

+ (n + 1) tanh2(r�)
cosh2(rω)

⎞
⎟⎠. (B8)

Contrary to (B3), only the eigenvalues of the block (n = 0,m = 0) can be negative [Fig. 8(b)] for rω = r�. In this case, the sum
of the partial negativities N�±

BB
= ∑

n,m N
(n,m)
�±

BB

collapses to N�±
BB

= N
(0)
�±

BB

and we find

N
(0)
�±

BB

= 1

2

1(
Zω

B

)2

1(
Z�

B

)2

[√
Zω

BZ�
B + 1

4

(
nω

B + n�
B

)2 − 1

2

(
nω

B + n�
B

)]
. (B9)
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FIG. 8. (Color online) Negativities, where both observers are accelerated, plotted against the acceleration a = aω = a�, measured in units
of 1

L
(for some length scale L), for frequencies ω = � = 1

L
. While for states �±

BB , �±
BF , and �±

BF there is entanglement created in initially
nonentangled sectors (a), (c), and (d), there is no entanglement production (with this special choice of the acceleration parameter r = rω = r�)
for �±

BB (b). Therefore, in the generic case there is entanglement generated in initially nonentangled sectors. (a) N
n,m=0
�±

BB

; (b) N
n,m=0
�±

BB

; (c) N
(n)
�±

BF

;

(d) N
(n)
�±

BF

.

In the case rω �= r�, we assume without loss of generality rω > r�. Then the blocks for m = 0 admit negative eigenvalues and
we find the negativity

N�±
BB

= N
(0)
�±

BB

+
∞∑

n=1

tanh2n(rω)

4 cosh4(rω) cosh4(r�)

(
−n coth2(rω) cosh2(r�) − (n + 1) sinh2(r�) − sinh2(rω)

+ 1

sinh2(rω)

{[
n

2
cosh(2rω) cosh(2r�) + n

2
+ sinh2(rω) sinh2(r�) + sinh4(rω)

]2

− 1

4
sinh2(2rω) sinh2(2r�)[n(n + 1) sinh4(r�) − sinh2(rω) sinh2(r�)]

} 1
2
)

, (B10)

where N
(0)
�±

BB

is given by (B9).

APPENDIX C: BOSON-FERMION STATES

We calculate the negativities for maximally entangled states of a bosonic mode entangled with a fermionic one. To start, we
consider the states

|X1〉 = 1√
2

(|0ω〉U
∣∣1F

�

〉+
U

+ |1ω〉U
∣∣1F

�

〉−
U

)
, (C1a)

|X2〉 = 1√
2

(|1ω〉+U
∣∣1F

�

〉−
U

+ |1ω〉−U
∣∣1F

�

〉+
U

)
, (C1b)
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where F labels the fermionic mode, ω, � are the frequencies,
and 0, 1 the occupation numbers of the Unruh modes. + and
− refer to particles and antiparticles, respectively. The mode
of frequency ω is bosonic while the mode of frequency � is
fermionic. The respective acceleration parameters are given

by r = arctanh(e− πω
aω ) for the bosonic and rf = arctan(e− π�

a� )
for the fermionic mode. As in Appendix A, we carefully take
into account the operator ordering for fermions, especially
when we are performing partial traces. The relevant part of the
partially transposed reduced density matrices for these states
can be computed to be

1

2
cos2(rf )

tanh2n(r)

cosh2(r)

⎛
⎝ n

sinh2(r)

√
n+1

cosh2(r)√
n+1

cosh2(r)
tanh2(r)

⎞
⎠ (C2)

for state X1 and

1

2
cos2(rf )

tanh2m+2n(r)

cosh6(r)

×
(

n
√

(m + 1)(n + 1)√
(m + 1)(n + 1) m

)
(C3)

for state X2. We observe that the fermionic and the bosonic
part factorize and so we find that the resulting negativity can
be expressed in terms of negativities obtained from the cases
of one accelerated observer. That is,

NX1 = 2Nf Nb,1, (C4)

NX2 = 2Nf Nb,2, (C5)

where Nf is the negativity Nf = 1
2 cos2(rf ) = 1

2 (Z�
F )−1 and

Nb,1, Nb,2 are given by

Nb,1 = 1

2

1(
Zω

B

)2 +
∞∑

n=1

Nn, (C6)

Nb,2 = 1(
Zω

B

)3

∞∑
n,m=0

e− 2π(n+m)
aω = 1

2

1

Zω
B

, (C7)

i.e., the ones we obtain when we only accelerated the bosons.
The Nn in (C6) can be obtained by setting r� = 0 in (B3) and
are given by

Nn = tanh2n(r)

2 cosh2(r)

[
n

2 sinh2(r)
+ 1

2
tanh2(r)

+
√

n2

4 sinh4(r)
+

n
2 + 1

4 sinh2(r) tanh2(r) + 1

cosh2(r)

]
.

(C8)

Next we move to Bell states �±
BF and �±

BF that are given
by

|�±
BF 〉 = 1√

2

(|1ω〉U
∣∣0F

�

〉
U

± |0ω〉U
∣∣1F

�

〉+
U

)
, (C9a)

|�±
BF 〉 = 1√

2

(|0ω〉U
∣∣0F

�

〉
U

± |1ω〉U
∣∣1F

�

〉+
U

)
. (C9b)

The negativity of state �±
BF is calculated in the following.

For concreteness we carry the calculations out for state �+
BF .

After obtaining the reduced density matrix ρ�+
BF

by tracing out
region II ,

ρ�+
BF

= cos2(rf )

2

{∑
n

cos2(rf )a2
n|n〉〈n| ⊗ (|00〉〈00| + tan2(rf )|10〉〈10|) +

∑
n

ā2
n|(n + 1)〉〈(n + 1)| ⊗ |10〉〈10|

+
∑

n

cos(rf )anān|n〉〈(n + 1)| ⊗ |00〉〈10| + H.c.non diag.

}

+ sin2(rf )

2

{∑
n

cos2(rf )a2
n|n〉〈n| ⊗ (|01〉〈01| + tan2(rf )|11〉〈11|) +

∑
n

ā2
n|(n + 1)〉〈(n + 1)| ⊗ |11〉〈11|

−
∑

n

cos(rf )anān|n〉〈(n + 1)| ⊗ |01〉〈11| + H.c.non diag.

}
, (C10)

where an = an(r) = tanhn(r) cosh−1(r), ān = ān(r) = tanhn(r) cosh−2(r)
√

n + 1, and the notation |ij 〉 = |i�〉+I ⊗ |j�〉−I . Then
after partial transposition, the relevant part of the reduced partially transposed density matrix is of the form

⎛
⎝c

�+
BF

ε=1 0

0 tan2(rf )c
�+

BF

ε=−1

⎞
⎠, (C11)

where

c
�+

BF
ε = 1

2
cos2(rf )

tanh2n(r)

cosh2(r)

⎛
⎝ cos2(rf ) tanh2(r) ε cos(rf )

√
n+1

cosh2(r)

ε cos(rf )
√

n+1
cosh2(r)

n

sinh2(r)
+ sin2(rf )

⎞
⎠. (C12)
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Already at this stage we see that the fermionic contribution does not simply “factor out” as it was the case for states X1 and X2.
Due to the block-diagonal form of (C11), the negativity N�+

BF
that equals N�±

BF
can be written in the form

N�±
BF

=
∑

n

N
(n)
�±

BF

= [1 + tan2(rf )]
∑

n

Ñ
(n)
�±

BF

, (C13)

where from now on we identify N�+
BF

and N�±
BF

, and Ñ
(n)
�±

BF

is the negativity calculated from (C12). Again, one can see that each

N
(n)
�±

BF

is bounded from above by N
(0)
�±

BF

; see Fig. 8(c). To obtain N
(0)
�±

BF

we have to calculate Ñ
(0)
�±

BF

Ñ
(0)
�±

BF

= 2Nf N0,ωe
�
T�

(√
n�

F nω
B − n�

F nω
B

)
, (C14)

where nω
B = (e

ω
Tω − 1)−1 is the Bose-Einstein distribution, N0,ω is given by (B6), and n�

F = (e
�
T� + 1)−1 is the

Fermi-Dirac distribution and the Tω/� are the Unruh temperatures. Now we can use N
(0)
�±

BF

= [1 + tan2(rf )]Ñ (0)
�±

BF

to
calculate

N
(0)
�±

BF

= 2Nf N0,ωγ�±
BF

(
nω

B,n�
F

)
, (C15)

where

γ�±
BF

(
nω

B,n�
F

) =
√

nω
B

n�
F

− nω
B. (C16)

The further N
(n)
�±

BF

for n �= 0 can be obtained analytically and the negativity N�±
BF

is obtained to be

N�±
BF

= N
(0)
�±

BF

+
∞∑

n=1

tanh2n−2(r)

4 cosh4(r)
{n + sinh2(r) cos2(rf )[tanh2(r) + tan2(rf )]

−
√

n2 + 2 sinh2(r)[(n + 2) tanh2(r) cos2(rf ) + n sin2(rf )] + sinh4(r)[sin2(rf ) − tanh2(r) cos2(rf )]2}. (C17)

To obtain a condition for vanishing negativity, we have a look at (C16) and realize that the condition for entanglement can be
written as

nω
Bn�

F � 1. (C18)

Finally, we calculate the negativity of state �±
BF , where we again, for the sake of concreteness, consider �+

BF . The relevant
part of the reduced partially transposed density matrix is of the form⎛

⎝c
�+

BF

ε=1 0

0 tan2(rf )c
�+

BF

ε=−1

⎞
⎠, (C19)

where

c
�+

BF
ε = 1

2
cos2(rf )

tanh2n(r)

cosh2(r)

⎛
⎝ cos2(rf ) n

sinh2(r)
ε cos(rf )

√
n+1

cosh2(r)

ε cos(rf )
√

n+1
cosh2(r)

n+1
cosh2(r)

sin2(rf ) + tanh2(r)

⎞
⎠. (C20)

Due to the structure of (C19) the negativity again has the form (C13). Then N�±
BF

is calculated to be

N�±
BF

= N
(0)
�±

BF

+
∞∑

n=1

tanh2n−2(r)

4 cosh4(r)

(
tanh2(r)[(n + 1) sin2(rf ) + sinh2(r)] + n cos2(rf )

−2

{
n2

4
cos4(rf ) + tanh4(r)

[
n + 1

2
sinh2(r) sin2(rf ) + 1

4
(n + 1)2 sin4(rf ) + 1

4
sinh4(r)

]

+ tanh2(r) cos2(rf )

[(
n

2
+ 1

)
sinh2(r) − n + 1

2
n sin2(rf )

]} 1
2
)

, (C21)

where

N
(0)
�±

BF

= 1

2

1

Z�
F

1(
Zω

B

)2 . (C22)

N
(0)
�±

BF

again gives an upper bound on all the N
(n)
�±

BF

and an lower bound on N�±
BF

; see Fig. 8(d).
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APPENDIX D: NEAR HORIZON LIMIT
FOR A SCHWARZSCHILD BLACK HOLE

In the presence of a Schwarzschild black hole the
space-time outside the black hole is characterized by the
Schwarzschild metric,

ds2 =
(

1 − RS

r

)
dt2 − 1

1 − RS

r

dr2 − r2d�2, (D1)

where G is the gravitational constant, M is the mass of the
black hole, RS = 2GM is the Schwarzschild radius, and d�2

is the line element of the unit 2-sphere. In order to obtain the
limiting form of (D1) close to the horizon of a Schwarzschild
black hole, we consider an observer placed at r = r0 with
proper time η = (1 − 2GM/r0)t . Introducing

ρ2 = 8GM(r − 2GM), (D2)

we obtain the following metric up to terms of order 1
2GM

in the
near horizon limit

ds2 = ds2
R − ds2

2 , (D3)

where

ds2
R = 1

16G2M2

(
1 − 2GM

r0

)−1

ρ2dη2 − dρ2, (D4)

ds2
2 = (2GM)2d�2. (D5)

So (D1) reduces to the product of two-dimensional Rindler
space (ds2

R) and a 2-sphere of radius 2GM (ds2
2 ). Comparing

ds2
R to the two-dimensional Rindler metric (2), we see that

the acceleration a experienced by an observer at fixed position
r = r0 is given by

a = 1

4GM

(
1 − 2GM

r0

)− 1
2

. (D6)

To extend the considerations of Secs. III, IV, and V in
2D Rindler space to this space-time, we consider the wave
equation for a massless scalar field ψ that is given by �ψ = 0.
In the near horizon limit (D3) we can write

(�R − �S2 )ψ(η,ρ,φ,θ ) = 0, (D7)

where φ, θ are angular coordinates, �R is the d’Alembertian
of 2D Rindler space, and �S2 is the Laplacian of the 2-sphere.

We are looking for solutions of the form

ψ(η,ρ,φ,θ ) = ψrad(η,ρ)ψang(φ,θ ), (D8)

that satisfy

�Rψrad(η,ρ) = 0, (D9)

�S2ψang(φ,θ ) = 0. (D10)

The solutions of (D9) are the well known solutions of
the Klein-Gordon equation in Rindler space that we used
above. The eigenfunctions of �S2 are given by the spherical
harmonics Ym

l (φ,θ ). The eigenvalues are l(l + 1). So we pick
the eigenfunctions with l = 0, i.e.,

ψang(φ,θ ) = eimφP m
l=0[cos(θ )] = 1, (D11)

where the P m
l [cos(θ )] are the associated Legendre poly-

nomials. We conclude that for the choice l = 0, i.e., zero
angular momentum, we can describe the near horizon limit
by restricting our considerations to 2D Rindler space.

Therefore, in the following we restrict ourselves to wave
functions ψ of vanishing angular momentum satisfying (D8).
When we consider maximally entangled fermion states (16)
to hover over a black hole at some distance d = r0 − RS from
the horizon, the system can be described in 2D Rindler space
(for some more details on this correspondence, see [19]). The
analog of the Rindler vacuum |0〉I is the Boulware vacuum
|0〉B and the Unruh vacuum |0〉U corresponds to the Hartle-
Hawking vacuum |0〉H . Further, the physical effect that causes
the degradation of entanglement is now the Hawking effect.
Near a black hole of mass M the acceleration a in (2) is
set by (D6). So, we see that the limit of infinite acceleration
corresponds to the limit of r0 approaching RS . Considering an
observer stationary at a radial distance of r0, one can write the
acceleration parameter as

r = arctanh
(
e
− ωg

2

√
1− RS

r0
)
, (D12)

rf = arctan
(
e
− ωg

2

√
1− RS

r0
)
, (D13)

where ωg and �g are the rescaled frequencies ωg =
4πRSω and �g = 4πRS�. Plugging the acceleration param-
eters (D12) and (D13) into the expressions for the negativities
we obtained above, one obtains the negativities of the respec-
tive states in the case that the acceleration is due to the presence
of a black hole.
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Lett. 110, 101301 (2013).

[3] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, J. High
Energy Phys. 02 (2013) 062.

[4] I. Fuentes-Schuller and R. B. Mann, Phys. Rev. Lett. 95, 120404
(2005).

[5] D. E. Bruschi, A. Dragan, A. R. Lee, I. Fuentes, and J. Louko,
Phys. Rev. Lett. 111, 090504 (2013).

[6] E. Martin-Martinez, D. Aasen, and A. Kempf, Phys. Rev. Lett.
110, 160501 (2013).

[7] N. Friis, D. E. Bruschi, J. Louko, and I. Fuentes, Phys. Rev. D
85, 081701 (2012).

[8] K. Brádler, P. Hayden, and P. Panangaden, J. High Energy Phys.
08 (2009) 074.

[9] N. Friis, A. R. Lee, K. Truong, C. Sabin, E. Solano,
G. Johansson, and I. Fuentes, Phys. Rev. Lett. 110, 113602
(2013).

[10] M. Montero and E. Martin-Martinez, J. High Energy Phys. 07
(2011) 006.

022334-19

http://dx.doi.org/10.1103/PhysRevLett.110.101301
http://dx.doi.org/10.1103/PhysRevLett.110.101301
http://dx.doi.org/10.1103/PhysRevLett.110.101301
http://dx.doi.org/10.1103/PhysRevLett.110.101301
http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1103/PhysRevLett.95.120404
http://dx.doi.org/10.1103/PhysRevLett.95.120404
http://dx.doi.org/10.1103/PhysRevLett.95.120404
http://dx.doi.org/10.1103/PhysRevLett.95.120404
http://dx.doi.org/10.1103/PhysRevLett.111.090504
http://dx.doi.org/10.1103/PhysRevLett.111.090504
http://dx.doi.org/10.1103/PhysRevLett.111.090504
http://dx.doi.org/10.1103/PhysRevLett.111.090504
http://dx.doi.org/10.1103/PhysRevLett.110.160501
http://dx.doi.org/10.1103/PhysRevLett.110.160501
http://dx.doi.org/10.1103/PhysRevLett.110.160501
http://dx.doi.org/10.1103/PhysRevLett.110.160501
http://dx.doi.org/10.1103/PhysRevD.85.081701
http://dx.doi.org/10.1103/PhysRevD.85.081701
http://dx.doi.org/10.1103/PhysRevD.85.081701
http://dx.doi.org/10.1103/PhysRevD.85.081701
http://dx.doi.org/10.1088/1126-6708/2009/08/074
http://dx.doi.org/10.1088/1126-6708/2009/08/074
http://dx.doi.org/10.1088/1126-6708/2009/08/074
http://dx.doi.org/10.1088/1126-6708/2009/08/074
http://dx.doi.org/10.1103/PhysRevLett.110.113602
http://dx.doi.org/10.1103/PhysRevLett.110.113602
http://dx.doi.org/10.1103/PhysRevLett.110.113602
http://dx.doi.org/10.1103/PhysRevLett.110.113602
http://dx.doi.org/10.1007/JHEP07(2011)006
http://dx.doi.org/10.1007/JHEP07(2011)006
http://dx.doi.org/10.1007/JHEP07(2011)006
http://dx.doi.org/10.1007/JHEP07(2011)006


BENEDIKT RICHTER AND YASSER OMAR PHYSICAL REVIEW A 92, 022334 (2015)

[11] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier,
Phys. Rev. A 74, 032326 (2006).

[12] Q. Pan and J. Jing, Phys. Rev. A 77, 024302 (2008).
[13] E. Martin-Martinez and J. León, Phys. Rev. A 80, 042318 (2009).
[14] D. E. Bruschi, J. Louko, E. Martin-Martinez, A. Dragan, and

I. Fuentes, Phys. Rev. A 82, 042332 (2010).
[15] E. Martin-Martinez and I. Fuentes, Phys. Rev. A 83, 052306

(2011).
[16] Q. Pan and J. Jing, Phys. Rev. D 78, 065015 (2008).
[17] E. Martin-Martinez and J. León, Phys. Rev. A 81, 032320 (2010).
[18] D. E. Bruschi, A. Dragan, I. Fuentes, and J. Louko, Phys. Rev.

D 86, 025026 (2012).
[19] E. Martin-Martinez, L. J. Garay, and J. León, Phys. Rev. D 82,

064006 (2010).
[20] J. León and E. Martin-Martinez, Phys. Rev. A 80, 012314 (2009).
[21] M. Montero and E. Martin-Martinez, Phys. Rev. A 84, 012337

(2011).
[22] E. Martin-Martinez and J. León, Phys. Rev. A 81, 052305 (2010).
[23] J. Chang and Y. Kwon, Phys. Rev. A 85, 032302 (2012).
[24] M. Shamirzaie, B. N. Esfahani, and M. Soltani, Int. J. Theor.

Phys. 51, 787 (2012).
[25] S. Khan, N. A. Khan, and M. Khan, Commun. Theor. Phys. 61,

281 (2014).
[26] J. Wang and J. Jing, Phys. Rev. A 83, 022314 (2011).
[27] D. Ahn and M. Kim, Phys. Lett. A 366, 202 (2007).

[28] G. Adesso, I. Fuentes-Schuller, and M. Ericsson, Phys. Rev. A
76, 062112 (2007).

[29] A. Dragan, J. Doukas, E. Martin-Martinez, and D. E. Bruschi,
Classical Quantum Gravity 30, 235006 (2013).

[30] A. Dragan, J. Doukas, and E. Martin-Martinez, Phys. Rev. A 87,
052326 (2013).

[31] J. Doukas, E. G. Brown, A. Dragan, and R. B. Mann, Phys. Rev.
A 87, 012306 (2013).

[32] G. Adesso, S. Ragy, and D. Girolami, Classical Quantum
Gravity 29, 224002 (2012).

[33] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved
Space (Cambridge University Press, Cambridge, UK, 1984).

[34] S. Takagi, Prog. Theor. Phys. Suppl. 88, 1 (1986).
[35] W. G. Unruh, Phys. Rev. D 14, 870 (1976).
[36] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
[37] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[38] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

223, 1 (1996).
[39] N. Friis, A. R. Lee, and D. E. Bruschi, Phys. Rev. A 87, 022338

(2013).
[40] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett.

80, 5239 (1998).
[41] M. Montero, J. León, and E. Martin-Martinez, Phys. Rev. A 84,

042320 (2011).
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