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There is great interest in designing photonic devices capable of disorder-resistant transport and information
processing. In this work we propose to exploit three-dimensional integrated photonic circuits in order to realize
two-dimensional discrete-time quantum walks in a background synthetic gauge field. The gauge fields are
generated by introducing the appropriate phase shifts between waveguides. Polarization-independent phase shifts
lead to an Abelian or magnetic field, a case we describe in detail. We find that, in the disordered case, the
magnetic field enhances transport due to the presence of topologically protected chiral edge states that do not
localize. Polarization-dependent phase shifts lead to effective non-Abelian gauge fields, which could be adopted
to realize Rashba-like quantum walks with spin-orbit coupling. Our work introduces a flexible platform for the
experimental study of multiparticle quantum walks in the presence of synthetic gauge fields, which paves the
way towards topologically robust transport of many-body states of photons.
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I. INTRODUCTION

A long-standing aim in condensed matter physics is to
understand the behavior of electrons in two-dimensional
systems in the presence of a magnetic field [1]. The reasons for
this are both of fundamental and of applied nature. When the
system is well described by weakly interacting quasielectrons,
it is known that topologically protected edge states akin
to those of topological insulators [2] are present. Strongly
interacting electrons in a magnetic field arrange themselves in
nonstandard states of matter [3] that cannot be described by
a local order parameter and the present topological order [4].
The excitations of this state of matter may present non-Abelian
statistics, which could be used for topologically protected
quantum computation [5].

The promise of ground-breaking applications together with
the richness of the underlying physics of two-dimensional (2D)
quantum particles in a magnetic field has made these systems
a favorite subject of quantum simulator proposals [6]. In these
quantum simulators (physical systems unnaturally made to
behave according to a specific model) the magnetic field is
artificial, i.e., synthetic. Instead of using charged particles in
an actual magnetic field, in a quantum simulator one typically
uses neutral particles upon which the effects of a fictitious
magnetic field are imposed. For neutral cold-atom approaches,
methods used to generate a synthetic magnetic field include
rapid rotation [7,8], Raman-laser-induced Berry phases [9],
laser-stimulated tunneling in optical lattices [10–15], or lattice
shaking [16].

An alternative approach to quantum simulation is to directly
implement the time evolution of the system, as opposed
to engineering the underlying Hamiltonian. Quantum walks
(QWs) [17] are a prominent example of this idea and have been
realized in a variety of platforms, including neutral trapped
atoms [18], trapped ions [19,20], and nuclear magnetic reso-
nance in continuous [21] and discrete time [22]. A promising
platform is photonic quantum simulators [23], which have been
used to simulate QWs in the bulk [24,25] and in waveguide
lattices [26], as well as photon time-bin-encoded QWs [27].

Furthermore, two-particle QWs [28] have been realized in
integrated photonic circuits using quasiplanar geometries
[29–31], nonplanar circuits in a crisscross configuration
[32,33], and Anderson localization has been reported in the
disordered case [34].

Discrete-time QWs (DTQWs) in one dimension may be
implemented with a planar integrated photonic circuit (IPC)
forming an array of beam splitters [31]. Each beam splitter
performs the coin and step operator at the same time, shifting
the photon left and right in quantum superposition. Successive
beam splitters create further superpositions, leading to the
genuinely quantum interference phenomena that are charac-
teristic of QWs. In this implementation, time is encoded in the
direction of propagation of the photon in the IPC.

A promising development in IPC technology is the capa-
bility to print the waveguides in a truly 3D configuration.
In particular, it is possible to implement quantum walks on
a 2D lattice using a 3D network of beam splitters. In such
a network, each waveguide corresponds to one lattice site
and there are vertical and horizontal beam splitters, which
shift the photon wave function in an up-down and left-right
superposition, respectively [see Fig. 1(c)]. Similarly to the
implementation of 1D quantum walks, the time is encoded in
the spatial direction of propagation of the photon.

In this work we propose 3D integrated circuits to realize
2D QWs in a synthetic gauge field. This is accomplished
by introducing controlled phase shifts between waveguides
at the beam splitters. The phase shifts are chosen in such a
way that the photons gain global phases when going around
a closed loop, leading to the Aharonov-Bohm effect [35] [see
Fig. 1(a)]. Polarization-independent phase shifts lead to an
Abelian or magnetic field, while polarization-dependent phase
shifts lead to a non-Abelian gauge field [36]. Our scheme
may be readily generalized to QWs of two or more photons
[28], allowing for the implementation of QW exhibiting
topological features [37,38] in the multiphoton case in an IPC.
Furthermore, the spatial dependence of the effective gauge
field is highly tunable, thus allowing for synthetic gauge fields
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FIG. 1. (a) Accumulated phase acquired by the quantum walker
going around two examples of closed trajectories with opposite
chirality. This phase depends only on the chirality and the number
of elementary cells inside the loop, as in the Aharanov-Bohm effect
experienced by a charged particle in a constant magnetic field. (b)
In the proposed implementation of the 2D DTQW, the links of the
lattice are divided into four groups; each group is depicted with
its respective color and number. The motivation is that each site of
the lattice corresponds to one waveguide and each link to a beam
splitter per time step. Since a beam splitter can only couple two
waveguides, the links are divided into four different groups, which
together cover the whole lattice. Each group corresponds to a set of
commuting beam splitters that implement a unitary Ui from Eq. (5).
(c) Diagram of a part of the proposed 3D photonic circuit that realizes
the DTQW on a 2D lattice. The z axis represents the direction of
time, while the xy plane represents the two spatial dimensions where
the QW takes place. One step of the DTQW is composed of four
substeps. In each substep, the waveguides are coupled according to
the different groups of links depicted in (b). In this scheme, three
out of the four different groups of links (beam splitters) from (b)
are depicted, with its respective color and number. Each substep
implements a set of mutually commuting beam splitters, according to
Eq. (5), which can be applied simultaneously. Subsequent substeps
could be implemented in the same way along the z direction.

in exotic configurations, such as magnetic monopoles, with
no added difficulties. There is great interest in engineering
photonic technologies with topologically protected proper-
ties [39]. Although several examples of photonic systems
with topologically protected edge states have been proposed
[40–42] and realized [43,44] with laser light, such as the

quantum Hall effect and the Floquet topological insulator [45],
our proposal is to realize quantum walks in effective gauge
fields in the few-walker regime, using single photons.

II. A 2D QW IN A SYNTHETIC MAGNETIC
FIELD WITH AN IPC

The evolution of a charged bosonic particle in a 2D
lattice with a perpendicular magnetic field is described by
the Hamiltonian

H = J
∑
m,n

(eiφma
†
m,n+1am,n + a

†
m+1,nam,n + H.c.). (1)

The operators a
†
m,n and am,n create and destroy one particle

at site (m,n) of the lattice, respectively, and obey bosonic
commutation relations. The constant J is an arbitrary energy
scale and φ is the magnetic flux per plaquette. The key feature
of this Hamiltonian is that hopping in one of the directions
of the lattice entails the acquisition of a position-dependent
phase, breaking time-reversal symmetry. The specific spatial
profile of these phases is such that the global phase acquired by
a particle going around a closed path on the lattice is position
independent and equal to eiφN , where N is the number of
elementary cells inside the path [see Fig. 1(a)]. The particular
choice of phases is arbitrary [in Eq. (1) we chose the so-called
Landau gauge for convenience] as long as the accumulated
phase along closed paths leads to the correct global phase. The
idea of introducing position-dependent phases has previously
been used to realize chiral QWs on graphs [46,47], as well as
a QW in an effective electric field [48,49].

Here we use an approach involving coinless discrete-time
quantum walks on a 2D lattice where each step implements a
position-dependent phase, in analogy with the dynamics given
by the Hamiltonian from Eq. (1). We explain how to implement
this quantum walk in a 3D IPC and present numerical evidence
that its dynamics shows features similar to the one described
by (1), namely, the presence of topologically protected
edge states. Although in other photonic implementations of
discrete-time quantum walks the polarization of the photon
is used as the coin [25,27], here we assume the IPC to be
polarization independent so that we can use entanglement in
the polarization to simulate bosonic and fermionic statistics
[28], as previously done in 1D quantum walks in Ref. [34], and
so we have a coinless quantum walk. For a general definition
and discussion of spreading properties of coinless quantum
walks on lattices see Ref. [50].

To implement the quantum walk on the 2D lattice using a
3D IPC, a lattice site in a position (x,y) will correspond to a
waveguide engraved in the IPC, also labeled by the position
(x,y), which is extended in the z direction, corresponding to
the time dimension of the DTQW. The hops of the quantum
walk correspond to sequences of beam splitters, which can be
implemented by bringing adjacent waveguides close together
in such a way that they are evanescently coupled. Each lattice
site has at most four neighbors but, since we can only couple
two waveguides at a time, it is not possible for the photon in
a certain waveguide to hop to all its nearest neighbors in one
step. This way, we divide the DTQW into four substeps, as
depicted in Fig. 1(b), where the links in green correspond to
hopping terms that will be implemented by a unitary matrix
U1, the ones in yellow by U2, the ones in red by U3, and finally
the ones in blue by U4. This way, one full step of the quantum
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walk will be given by

Ustep = U4U3U2U1. (2)

This sequence of unitaries can be applied many times along
the z direction of the IPC to implement subsequent steps of
the quantum walk. A schematic representation of part of the
3D photonic circuit implementing the red, green, and yellow
links is shown in Fig. 1(c).

In order to mimic the effect of a magnetic field, we need
to construct Ustep in such a way that if the walker makes a
closed path around N elementary cells, it acquires a position-
independent phase eiφN . To show the form of the unitaries Ui

that satisfy this requirement, we define the states of the Hilbert
space |x〉|y〉, with x ∈ {1,M} and y ∈ {1,M}, and say that
the photon is in state |x〉|y〉 if it is in the waveguide labeled
by the coordinates (x,y). In this basis, we define the hopping
operators in the x and y directions as

Vx = 1√
2

(|x〉〈x| + |x + 1〉〈x + 1|)

+ i√
2

(|x〉〈x + 1| + |x + 1〉〈x|), (3)

Vy(φ) = 1√
2

(|y〉〈y| + |y + 1〉〈y + 1|)

+ i√
2

(e−iφ|y〉〈y + 1| + eiφ|y + 1〉〈y|), (4)

which corresponds to an unbiased beam-splitter matrix and to
a phase-shifted beam splitter, respectively. The operators U1,
U2, U3, and U4 are then defined as

U1 =
M/2−1∑

x=0

V2x+1 ⊗ Iy,

U2 =
M/2−1∑

x=1

V2x ⊗ Iy,

U3 =
M∑

x=1

M/2−1∑
y=0

|x〉〈x| ⊗ V2y+1(xφ),

U4 =
M∑

x=1

M/2−1∑
y=1

|x〉〈x| ⊗ V2y(xφ).

(5)

Here U3 and U4 cause the hopping of the photon in the
y direction and apply a phase that is proportional to the
coordinate x. It can be seen that this quantum walk is chiral
in the sense that it breaks time-reversal symmetry (for a
discussion of chiral quantum walks see Ref. [47]). Previous ex-
periments have shown full phase-shift controllability between
two waveguides, by deforming one of the waveguides and thus
creating a difference in the optical path length [34]. Hence, the
experimental implementation of Ustep, although challenging,
is within reach of current technology.

The previous construction of beam-splitter matrices mimics
the propagation of 2D charged particles in a magnetic field.
This is the case because the beam splitters are not translation-
ally invariant and their position dependence is chosen such that
a photon going around a closed loop of adjacent waveguides

acquires a position-independent phase eiφ as in the case of the
Hamiltonian in Eq. (1). Indeed, we have checked this corre-
spondence numerically, as can be seen in Appendix A, where
we compute the spectrum of an effective Hamiltonian Heff =
i(�T )−1 loge Ustep, yielding the well-known Hofstadter butter-
fly [51], a complex self-similar structure that arises in the case
of electrons propagating on a 2D lattice in a strong magnetic
field. We use units in which the time step �T and � are 1.

This relation, however, can be made more precise by
looking at the exponential of the magnetic Hamiltonian and
performing a Suzuki-Trotter decomposition [see [52] for the
decomposition applied to a tight-binding Hamiltonian like that
in Eq. (1)]. The key observation to make the connection, which
is beyond the scope of this work, is

1√
2

(
1 ieimφ

ie−imφ 1

)
= exp

[
i
π

4

(
0 eimφ

e−imφ 0

)]
. (6)

The left-hand side can be viewed as a beam splitter with a
phase difference, such as operators Vy(φ) in Eq. (5), and
the right-hand side is the exponential of a hopping term
eiφma

†
m,n+1am,n + e−iφmam,n+1a

†
m,n.

III. SIGNATURES OF THE MAGNETIC FIELD FOR
SINGLE PHOTONS

To confirm qualitatively the correspondence between the
proposed IPC and the time evolution generated by Eq. (1),
we have computed the spectrum of the effective Hamiltonian
Heff = i loge Ustep, where Ustep is the unitary operator imple-
mented by the proposed optical circuit. In Appendix A we plot
the spectrum of Heff as a function of φ. We obtain a figure very
similar to Hofstadter’s butterfly [51].

Furthermore, we investigate the effect of the synthetic
magnetic field on the spreading and transport properties of
the QW at the single-photon level, with and without disorder.
Controlled disorder may be implemented via small random
differences in waveguide lengths at the evanescent couplings
[34], which lead to fluctuations in each waveguide’s optical
path (see Appendix B). These fluctuations are static, in the
sense that they are not time dependent [z dependent in
Fig. 1(c)].

To determine how quickly the QW spreads without disorder,
in Fig. 2(a) we plot the variance of the single-particle
probability distribution σ 2 as a function of the number of
steps, for different values of φ, the magnetic flux per plaquette.
We identify the position of the particle by the label of the
waveguide in which the particle is. This way, the position here
is a dimensionless quantity and so is the variance. The initial
wave function is localized at the center of the lattice. Although
we plot here the result for three values of φ, we have observed
that the variance is always smaller for φ �= 0 than for φ = 0.
Hence, without disorder the magnetic field is detrimental to
the expansion of an initially localized photon wave function.
We also study the QW evolution by computing the transport
efficiency between two far-apart waveguides in the presence of
disorder. We choose one corner of the lattice as an initial site or
waveguide and the site at the opposite corner as the target. We
introduce absorption at the target waveguide, corresponding
to position (M,M), at each step of the QW by replacing the
operator Ustep by Ustep(I − |M〉|M〉〈M|〈M|). Our measure
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FIG. 2. In an ordered lattice, a magnetic field hinders the
spreading of the wave function and quantum transport; in a disordered
lattice, a magnetic field enhances transport due to the presence of
nonlocalized edge states. (a) Variance of the single-photon wave
function vs the number of time steps for different values of the
magnetic flux φ. The initial state is localized at the center of the
lattice. For nonzero φ the QW spreads at a slower rate. (b) Transport
efficiency η as a function of time in the presence of Gaussian
disorder with strength δ = 0.1 (defined in Appendix B). The quantity
η measures the accumulated norm at the opposite corner, or the
efficiency of quantum transport across the lattice. In the presence of
disorder, the applied magnetic field qualitatively enhances transport.

of transport efficiency η is the accumulated probability of
finding the photon at the target state |T 〉 = |M〉|M〉, η =∑

t |〈T |ψ(t)〉|2, an approach similar to that used in [53]. Let us
stress that η could be measured in an experiment by coupling
the target waveguide to a long chain of waveguides as proposed
in [33] or to a detector at every time step.

With disorder, low transport efficiency is expected, due
to Anderson localization. Interestingly, we find that while in
the ordered case a magnetic field slows down the expansion
of the QW, in the case of disorder it does the opposite,
thus enhancing quantum transport [see Fig. 2(b)]. This is
attributable to the presence of chiral edge states (see Fig. 3),
which are topologically protected against localization.

IV. A TWO-PHOTON QW WITH A MAGNETIC FIELD

The single-particle probabilities obtained by using one
photon as the input state of the IPC can be reproduced by
using a classical laser light source. However, if two or more
indistinguishable photons are used as input, the probability
distribution measured at the output of the circuit has no
classical analog and for many photons is, in general, hard
to calculate [54,55]. Also, by choosing appropriate entangled
states of two photons, the statistics of bosons and fermions can
be mimicked [28] and bunching and antibunching phenomena
have been observed in 1D QWs [34]. The initial states |	±

0 〉
we chose are

|	±
0 〉 = 1√

2
[|(1,1); (2,1)〉 ± |(2,1); (1,1)〉], (7)

where |(1,1); (2,1)〉 is a two-photon state with one photon
in position (1,1) and the other photon in position (2,1).
Here we have computed observables for the DTQWs of two
entangled photons in a synthetic magnetic field. The average
distance between photons is plotted in Fig. 3 for two entangled
photons starting at the corner of the lattice. The effect of the
particle statistics in this quantity is clear since bosons remain

FIG. 3. Average distance between photons for the two-photon
quantum walk on the IPC, after 20 steps, in a lattice of size 30 × 30,
for different values of the magnetic flux φ. The initial state is localized
at positions (1,1) and (2,1) of the lattice and the photons’ polarization
states are entangled in a symmetric (antisymmetric) way so that the
exchange statistics of the wave function is bosonic (fermionic). We
observe, as expected, that for bosonic statistics the photons tend to
remain closer than in the fermionic case. Also, the presence of the
magnetic field greatly increases the distance between the photons,
as each particle overcomes Anderson localization due to the nonzero
magnetic field.

closer than fermions. Also, the presence of the magnetic
field increases the average distance between particles, as each
particle is able to undergo a QW that is not localized due
to disorder, which is a single-particle effect. The presence of
two-particle edge states can be seen from the probability that
both photons are at the edge of the lattice shown in Appendix C.

V. A NON-ABELIAN 2D QW

Our proposed scheme to realize a magnetic QW with an IPC
may be generalized to a non-Abelian magnetic QW, provided
the relative phases between adjacent waveguides are made
polarization dependent in a controlled way. When polarization
is taken into account, a general term coupling two adjacent
lattice sites i and j can be written in the form

∑
ξτ a

†
iξU

ξτ

ij ajτ +
H.c., where ξ and τ run over photon polarizations and now a

†
iξ

creates a photon at site i with polarization ξ .
Thus, to realize a QW in a non-Abelian synthetic gauge

field, the beam-splitter matrices must be polarization depen-
dent, which are now described by 4 × 4 matrices instead of
2 × 2. In general, the beam-splitter matrices corresponding to
different links of the lattice will not commute with each other
and will lead to nontrivial non-Abelian fluxes when the photons
go around a closed loop [see Fig. 1(a)]. This is tantamount to
a modified Aharonov-Bohm effect, where the photon wave
function is multiplied by the Wilson loop [56] instead of a
phase.

Remarkably, interesting non-Abelian QWs may be imple-
mented using relatively simple IPCs. In particular, a QW with
Rashba spin-orbit coupling [57] may be realized with the
choice Ux = exp(iασy) and Uy = exp(−iασx), where σx and
σy are Pauli matrices. In the 3D IPC architecture, this means
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FIG. 4. Spectrum of the effective Hamiltonian Heff = i loge Ustep

that generates the Abelian QW proposed here, as a function of the
magnetic flux per plaquette φ. We use units in which the time step
�T and � are 1.

adjacent waveguides in the x direction are coupled with Ux

and those in the y direction with Uy . Note that this choice does
not require position-dependent delays between waveguides as
the Abelian magnetic field case does. In this scenario, since the
circuit is now polarization dependent, it would not be possible
to simulate different particle statistics by entangling photons
in polarization.

VI. CONCLUSION

We have introduced a scheme that allows implementing
quantum walks in synthetic gauge fields using integrated
photonic circuits. This scheme requires a strong experimental
and technological effort: We need the capability to engineer
3D structures with a significant number of steps. In the past
year several improvements have been achieved: an eight-mode

fast Fourier transform with 3D structure [58], a reconfigurable
phase [59], and operation at telecom wavelength that ensures
lower losses and hence the possibility to realize longer
chips [59]. Our proposal is well suited for the study of
topological insulators at the single- and few-photon levels
and it is highly flexible, allowing for the simulation of both
Abelian and non-Abelian gauge fields. We have studied the
single-photon quantum walk in a constant Abelian or magnetic
field and computed experimentally accessible observables,
demonstrating topological properties, namely, the presence
of edge states enhancing transport across disordered lattices.
We have also computed observables for two-particle quantum
walks that demonstrate the role of entanglement and magnetic
field in the behavior of the walk. Overall, we have shown that
the development of 3D integrated photonics can lead to the
experimental study of interesting 2D quantum physics with
topological features in the few-body regime.
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APPENDIX A: SPECTRUM OF THE UNITARY
IMPLEMENTED BY THE INTEGRATED

PHOTONIC CIRCUIT

We have constructed a unitary matrix that implements one
time step of the DTQW with a synthetic magnetic field, defined
by Eq. (2). This matrix, denoted by Ustep, can be decomposed
in a product of beam splitter and phase shifter matrices,
which can be implemented in an IPC. In Fig. 4 we plot the
spectrum of the effective Hamiltonian Heff = i loge Ustep as a
function of φ. As expected, we obtain a figure very similar

FIG. 5. Simulation of the IPC implementation of a DTQW in a 2D lattice in zero magnetic field without disorder, starting at position
(X,Y ) = (1,1). The probability distribution of a discrete-time QW on a 60 × 60 ordered lattice is shown after (a) 20, (b) 40, and (c) 60 time
steps. The quantum walk propagates quickly from one corner of the lattice to the opposite corner. The white color corresponds to probabilities
above 0.01, which can go up to 0.11 in (a), 0.056 in (b), and 0.016 in (c). The total probability for each plot is (a) 1, (b) 1, and (c) 0.77. The
coordinates X and Y are merely waveguide labels, so we do not consider units of distance here.
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FIG. 6. Simulation of the IPC implementation of a DTQW in a 2D lattice in zero magnetic field with disorder, starting at position
(X,Y ) = (1,1). The probability distribution of a discrete-time QW on a 60 × 60 disordered lattice is shown after (a) 20, (b) 40, and (c) 60 steps.
The strength of disorder is δ = 0.2 and the magnetic field is set to zero. The presence of disorder hinders the propagation on the lattice and the
photon remains localized close to its starting position, resulting in a low transport efficiency to the opposite corner. The probability amplitude
is averaged over 20 disorder realizations. Note that the scales of the plots are different, for better visualization. The total probability for each
plot is (a) 1, (b) 1, and (c) 0.997. The coordinates X and Y are merely waveguide labels, so we do not consider units of distance here.

to Hofstadter’s butterfly [51]. For relatively large lattices
(30 × 30), the spectrum of Heff presents a fractal nature and
a structure of gaps that is very reminiscent of Hofstadter’s
butterfly.

APPENDIX B: TIME EVOLUTION OF SINGLE-PARTICLE
QUANTUM WALKS IN A MAGNETIC FIELD

We study the effect of a synthetic Abelian gauge field on the
transport properties of a discrete-time 2D QW in the presence
of disorder. All simulations have been done with the beam-
splitter matrices given in Eqs. (4) and (5). The initial wave
function is localized at the lower left corner of the lattice.
In Fig. 5 we plot the evolution of the QW without magnetic
field and without disorder. There is efficient transport from
one corner of the lattice to the other. In Fig. 6 localization
close to the initial position is observed for zero magnetic field
and disorder; transport from one corner of the lattice to the

other is highly inefficient in this case. In Fig. 7 we plot the
evolution of the QW for nonzero magnetic field, φ = π

5 , and
in the presence of disorder. Transport from one corner of the
lattice to the opposite one is clearly accomplished by edge
states, which do not penetrate significantly into the bulk of the
lattice.

At each step of the QW, the probability at the target waveg-
uide is subtracted from the wave function, as we introduce ab-
sorption by replacing the operator U with U exp(−a

†
targetatarget).

Thus, the deviation from unity of the total probability is equal
to the transport efficiency η = ∑

t |〈T |ψ(t)〉|2.
The introduction of static disorder in the DTQW in a 2D

lattice is done by multiplying each beam-splitter matrix Vx or
Vy(φ), defined in Eqs. (3) and (4), by a matrix with random
phases in the diagonal,

V dis
x,y =

(
eiεi 0
0 eiεj

)
Vx,y. (B1)

FIG. 7. Simulation of the IPC implementation of a DTQW in a 2D lattice in nonzero magnetic field with disorder, starting at position
(X,Y ) = (1,1). The probability distribution of a discrete-time QW on a 60 × 60 disordered lattice with magnetic field is shown after (a) 50,
(b) 100, and (c) 150 steps. The strength of disorder is δ = 0.2 and the magnetic field is φ = π/5. The quantum walk propagates mainly along
the edges of the lattice. The presence of topologically protected edge states that do not localize allows for the propagation of the photon to
the opposite corner of the lattice. Here we investigate a larger number of steps as compared to Figs. 5 and 6, in order to see the propagation
to the opposite corner of the lattice (X,Y ) = (60,60). The probability amplitude is averaged over 20 disorder realizations. Note that the scales
of the plots are different, for better visualization. The total probability for each plot is (a) 1, (b) 1, and (c) 0.984. The coordinates X and Y are
merely waveguide labels, so we do not consider units of distance here.
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The quantities εi are sampled from a normal distribution with
standard deviation δ, which we will refer to as the disorder
strength. This will lead to a unitary U ′

step defining the step of the
quantum walk with static disorder. Note that time-dependent
disorder, i.e., if U ′

step depends on the step number, would lead
to dephasing of the QW [34].

APPENDIX C: EVIDENCE OF TWO-PHOTON
EDGE STATES

A quantity that can easily be calculated from the probability
distribution of the position of the photons at the output of the
IPC is the probability that the photons leave the circuit in a
waveguide that belongs to the edge of the 2D lattice. For the
two-photon quantum walk, we calculate this probability for a
lattice of size 30 × 30, after 20 steps, and for variable magnetic
flux φ (see Fig. 8). The two photons are inserted in the circuit
in the corner of the lattice at the position (X,Y ) = (1,1) and
its nearest neighbor in the x direction at the position (2,1).
The two photons are entangled in polarization in a symmetric
(antisymmetric) way in order to simulate bosonic (fermionic)
statistics [28,34]. We see that, for zero magnetic field, it is
very unlikely that the photons leave the circuit by the edge of
the lattice, but with magnetic field this probability increases
up to ≈ 15%. It is interesting that the particle statistics does

FIG. 8. Probability that the two photons are at the edge of
the lattice for the quantum walk on the IPC, after 20 steps, in a
lattice of size 30 × 30, for different values of the magnetic flux
φ. If the photons’ polarization states are entangled in a symmetric
(antisymmetric) way, their statistics is bosonic (fermionic). The
presence of the magnetic field increases significantly the probability
that the two photons are at the edge. However, the exchange statistics
of the two-photon wave function does not affect this quantity much.

not affect much this probability, unlike what happens with the
average distance between particles shown in the main text.
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[28] Y. Omar, N. Paunković, L. Sheridan, and S. Bose, Phys. Rev. A
74, 042304 (2006).

[29] A. Peruzzo, M. Lobino, J. C. Matthews, N. Matsuda, A. Politi,
K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff et al.,
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