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We study the collective dynamics of accelerated atoms interacting with a massless field via an Unruh-deWitt–
type interaction. We first derive a general Hamiltonian describing such a system and then, employing a Markovian
master equation, we study the corresponding collective dynamics. In particular, we observe that the emergence
of entanglement between two-level atoms is linked to the building up of coherences between them and to
superradiant emission. In addition, we show that the derived Hamiltonian can be experimentally implemented by
employing impurities in Bose-Einstein condensates.

DOI: 10.1103/PhysRevA.96.053612

I. INTRODUCTION

The vacuum perceived by a noninertial observer is by no
means a boring place. For instance, it is well known that
an accelerated observer coupled to the vacuum experiences
it as a thermal field1 [1] and that a pair of accelerated
atoms starting from a separable state can become entangled
[2–5]. Furthermore, it is known that for entangled states
entanglement can be degraded due to acceleration, as described
for nonlocalized Fock states [6–9] and for localized Gaussian
states [10]. As expected from the equivalence principle, the
creation and the degradation of entanglement can also be
observed in curved spacetimes [11–14]. Also, acceleration can
affect the interactions between two atoms [15,16].

In order to analyze these effects, the accelerated atoms are
often considered as an open quantum system coupled to a
quantum field, which therefore plays the role of an environ-
ment [17,18]. With this approach, the evolution equation of the
atomic reduced density operator—also known as the master
equation—can be computed by considering a weak coupling
between the atoms and their surrounding field [19–22]. In
such master equations, the action of the field in the atomic
dynamics is encoded in the dissipative rates, which in turn
depend on a sum over environment fluctuations defining the
environment correlation function. In this regard, most earlier
approaches were based on taking a Wightman correlation
function, which describes the environment fluctuations as seen
from the laboratory frame of reference [4,20,22].

In contrast to this, in this paper we consider Rindler space-
time to reexpress the Hamiltonian of a collection of uniformly
accelerated atoms within the frame of reference of one of
them. For the sake of clarity and to avoid technical subtleties,
we restrict our analysis to world lines corresponding to fixed
conformal positions of the atoms. This has the advantage
that it allows us to explicitly incorporate in the Hamiltonian
the redshifts between atoms having different accelerations.
In addition, this representation shows that, for equally accel-
erated atoms, we recover the Hamiltonian corresponding to

1Throughout this work, we refer to a quantum field in a thermal
(Gibbs) state as a thermal field.

standing atoms coupled to a thermal reservoir, as expressed
via a thermofield transformation [23]. Hence, our approach
provides more physical insight than previous ones, as it allows
comparing the case of accelerated atoms in vacuum with the
case of atoms in a thermal field at the Hamiltonian level, i.e.,
without having to compare the dynamics corresponding to the
two cases. Furthermore, the derived Hamiltonian describes an
arbitrary number N of atoms coupled to a massless field via
an Unruh-deWitt interaction. This general form enables us
to investigate collective effects such as superradiance and to
analyze the emergence of entanglement beyond the commonly
considered case of only two uniformly accelerated atoms
[2,4,19,20].

To illustrate our formalism we analyze the dynamics of
a collection of N atoms both when they are all equally
accelerated and when they have different accelerations. In
this context, we explore the conditions for the emergence
of cooperative phenomena and coherent emission. Moreover,
considering a Markov and a secular approximation, we obtain
a Lindblad master equation, which allows us to compute
entanglement between the atoms based on a well-defined (i.e.,
positive) reduced density operator. We find that entanglement
is indeed built up during the evolution and persists in the
long-time limit, an observation that is consistent with previous
studies of two uniformly accelerated atoms [19]. However, our
approach allows us to show that the entanglement itself is not
due to the acceleration, which merely produces the effect of a
thermal bath in the case of equal accelerations, but rather it is
due to the presence of a common environment for the atoms.

For the accelerations that can be achieved in laboratories,
relativistic effects such as the ones described above are gener-
ally small [24]. Recently, this also was reported in experiments
studying photonic entanglement [25]. Therefore, experiments
employing analog systems are more promising candidates
to observe these phenomena. Proposed platforms for such
experiments include circuit QED [26,27], superconducting
qubits [28], and cold atoms [29–31]. For the Unruh effect,
in particular, an analog experiment utilizing a Bose-Einstein
condensate was proposed [29,30,32]. Recently, also a classical
analog of the Unruh effect was proposed [33]. Here, the
derived Hamiltonian for the Rindler modes enables us to
propose an implementation to simulate the collective dynamics
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of a collection of colinearly accelerated atoms based on
Bose-Einstein condensates. The key idea is to model the field
by the Bogoliubov excitations of the Bose-Einstein condensate
and to use optical tweezers to produce artificial two-level
atoms.

The outline of the paper is the following. In Sec. II, we
introduce the framework that is used in the present work and
derive the Hamiltonian describing a system of N accelerated
two-level atoms2 coupled to a scalar field. In Sec. III, we derive
the master equation governing the time evolution of the atoms.
In Sec. IV we consider such an equation to analyze the atoms’
dynamics for different representative cases, and we propose
an experimental setup to simulate the open system dynamics
in Bose-Einstein condensates. Finally, in Sec. V we draw the
conclusions from this work.

II. FRAMEWORK FOR ACCELERATED ATOMS

In this work we consider the setting of several two-level
systems, which we refer to as atoms, interacting with a
massless scalar field at zero temperature, i.e., in the vacuum
state. Assuming that the atoms are initially in the ground state
and are in arbitrary inertial motion, it is clear that the system
remains in its ground state and no correlations between the
atoms can emerge. However, if the atoms are in uniformly
accelerated motion, this statement does not remain true. From
the perspective of an observer traveling together with one of
the atoms, the field is no longer in the ground state but in
an excited state. Therefore, a single atom being accelerated
can become excited [1], and several atoms interacting with
the same field can become correlated [2,19]. In the following,
we study a framework suitable to describe this situation. In
particular, we derive the Hamiltonian governing the evolution
of many accelerated atoms.

A. Scalar field in Rindler spacetime

Before moving to the case of Rindler spacetime, we briefly
recall some properties of scalar fields in Minkowski spacetime.
Let φ be a massless scalar field confined to a box of length L

obeying the Klein-Gordon equation �φ = 0, where � denotes
the d’Alembert operator. Then we can expand the field in a
complete set of solutions,

φ =
∑

k

[akuk(x,tM) + a
†
ku

∗
k(x,tM)], (1)

where the uk(x,tM) are plane-wave solutions of the Klein-
Gordon equation that are created and annihilated by the
operators a

†
k and ak , respectively. However, in the following,

we choose to expand the field φ in a different complete set of
modes that is motivated by the setting we are considering in
this work.

Rindler coordinates are suitable to describe an accelerated
observer [34,35]. In these coordinates a uniformly accelerated
object is at rest. Here we discuss the 1 + 1-dimensional case,

2In the literature these are sometimes referred to as Unruh-deWitt
detectors.

i.e., we neglect the orthogonal Euclidean directions usually
labeled by y and z. The metric reads in conformal coordinates,

ds2 = e
2 aξ

c2 (c2dτ 2 − dξ 2), (2)

where τ is the timelike and ξ the spacelike coordinate and a

is a parameter with the dimension of acceleration. The range
of τ and ξ in each of the wedges is (−∞,∞). In Minkowski
coordinates the world line (x,ctM) of a particle moving with
constant proper acceleration is given by

x = ±c2

a
e

aξ

c2 cosh

(
aτ

c

)
, (3a)

ctM = c2

a
e

aξ

c2 sinh

(
aτ

c

)
, (3b)

where the sign ± depends on the direction of acceleration; see
Fig. 1. The proper acceleration α is related to the acceleration
parameter a, as α = a exp(−aξ/c2). In consequence, the
spatial coordinate ξ is constant and dictated by α for world
lines of uniformly accelerated observers.

Considering, for instance, two particles with proper accel-
erations α1 and α2, one obtains the world lines (x1,ct

M
1 ) and

(x2,ct
M
2 ), parametrized by the coordinate time τ that equals

the proper time of particle 1, for ξ1 = 0, as

(
x1,ct

M
1

) = c2

α1

(
± cosh

(
α1τ

c

)
, sinh

(
α1τ

c

))
, (4a)

(
x2,ct

M
2

) = c2

α2

(
± cosh

(
α2τ

c

)
, sinh

(
α2τ

c

))
. (4b)

To arrive at (4), without loss of generality we have chosen
the acceleration parameter a to coincide with the proper
acceleration of particle 1, i.e., a = α1. In consequence, the
spacial coordinate of particle 1 is zero, ξ1 = 0. It may seem that
α2 or equivalently the world line (x2,ct

M
2 ) depend on α1 = a.

However, that is not the case, as ξ2 is fixed by the proper
acceleration of particle 2, α2 = a exp(−aξ2/c

2). Therefore,
α2 and α1 are two independent parameters. What we have
done to arrive at (4) is to choose a particular value for the a

priori, unphysical parameter a to obtain a simple form of the
world lines; for an insightful discussion of this issue, we refer
to Ref. [5].

Next, we consider the quantization of a massless scalar field
φ in this spacetime;3 see [34] for details. A scalar field in a box
(size L) with periodic boundary conditions can be expanded
as

φ =
∑

k

[
bI

ku
I
k(ξ,τ ) + bII

k uII
k (ξ,τ )

] + H.c. , (5)

where

uI
k(ξ,τ ) = 1√

2L|k|e
i(kξ−|k|τ ), in region I, (6a)

uII
k (ξ,τ ) = 1√

2L|k|e
i(kξ+|k|τ ), in region II, (6b)

3In the following, we work in units where h̄ = kB = c = 1.
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FIG. 1. Schematic figure showing atoms interacting with a
massless scalar field. The ground state of the field is entangled
between regions I and II. Therefore the reduced vacuum state in
either of the regions is given by a thermal state. In (a), the two atoms
are in antiparallel accelerated motion and interact with the massless
field supported in causally disconnected regions of spacetime. In (b),
the two atoms are accelerated in parallel and therefore only interact
with the field in region I.

are solutions of �φ = 0, where � denotes the d’Alembert
operator. The solutions are δ normalized, (u�

k ,u�′
l ) = δ(k −

l)δ�,�′ , (u�
k ,u�′∗

l ) = 0 with �,�′ ∈ {I, II} [34].4 The timelike
Killing vectors in regions I and II are given by ∂τ and

4Here, similar to the quantization of the electromagnetic field, we
consider that the field is confined in a box so that the momentum k is
quantized. This situation also arises when simulating the system with
Bose-Einstein condensates (cf. Appendix B), as these are naturally

∂−τ and act on the solutions as ∂τu
I
k(ξ,τ ) = −i|k|uI

k(ξ,τ )
and ∂−τ u

II
k (ξ,τ ) = −i|k|uII

k (ξ,τ ), i.e., these are the positive
frequency solutions. The free-field Hamiltonian H I/II in each of
the wedges is given by H I/II = ∑

k |k|bI/II†
k bI/II

k . Therefore, the
vacuum state in each of the regions I/II is given by H I/II|0〉I/II =
0 and the global vacuum can be written as |0〉R = |0〉I ⊗ |0〉II.
To obtain the complete free-field Hamiltonian Hf, one has to
take care of the fact that the timelike Killing vectors in regions
I and II, ∂τ and ∂−τ , differ by a minus sign [34]. Therefore, the
Hamiltonian also contains a relative minus sign

Hf = H I − H II =
∑

k

|k|(bI†
k bI

k − b
II†
k bII

k

)
. (7)

Alternatively, the field φ can also be expanded in a complete
set of solutions of the Klein-Gordon equation for Minkowski
spacetime. One finds that the Minkowski (M) vacuum |0〉M is
related to the Rindler (R) vacuum by

|0〉M = S|0〉R, (8)

where the operator S acts as

S†bI/II
k S = cosh(rk)bI/II

k + sinh(rk)bII/I†
k , (9)

where rk is defined by tanh(rk) = e− π |k|
a . In consequence, the

Minkowski vacuum expressed in Rindler modes according to
(8) reads

|0〉M =
∏
k

1

cosh(rk)

∞∑
n=0

tanh(rk)n|nk〉I ⊗ |nk〉II. (10)

Thus, Eq. (10) shows that the Minkowski vacuum written in
Rindler modes exhibits entanglement between regions I and
II. State (10) is the purification of a thermal state in region
I by modes of region II. Therefore, taking the partial trace
over one of the regions results in a thermal state of the Unruh
temperature TU ≈ α, where α is the proper acceleration of the
observer [34]. In consequence, the expectation value of the
particle number operator can be expressed as

sinh(rk)2 = 1

eβ|k| − 1
≡ n(k), (11a)

cosh(rk)2 = 1

1 − e−β|k| = 1 + n(k), (11b)

which depends on the inverse Unruh temperature β = 2π
α

.
Written in this suggestive form, (11a) gives the Bose-Einstein
distribution at inverse temperature β.

B. Hamiltonian for accelerated atoms

In the following we derive the Hamiltonian governing the
evolution of N two-level atoms with rotating frequencies ωi

coupled to a massless scalar field by an Unruh-deWitt–type

confined to a finite scale L (the size of the condensate). In the
continuum limit corresponding to L → ∞, the normalization of the
solutions (6) is modified and the sums over momenta are transformed
into integrals.
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coupling [34]. The interaction is described by an interaction
Hamiltonian of the form

H
(i)
int = χ (τi)Q(τi)φ[x(τi)], (12)

where χ (τi) is the coupling that might be chosen to be constant
[χ (τi) = χ = const.], Q(τi) is the monopole moment of the
ith atom, and x(τi) is its trajectory. The full Hamiltonian for
atom i, that generates the time translations with respect to the
proper time τi of the atom, in the Schrödinger picture is given
by

H = dτ

dτi

Hf + H
(i)
S + H

(i)
int , (13)

where H
(i)
S = ωiσ̂

+
i σ̂−

i is the Hamiltonian describing the
internal degrees of freedom of the ith atom with σ̂+ =
1
2 (σ̂x + iσ̂y) and σ̂− = 1

2 (σ̂x − iσ̂y), H
(i)
int gives the atom-field

interactions, Hf is the free-field Hamiltonian (7), τ is the time
coordinate, and τi is the proper time of the atom. A priori, there
is no preferred mode expansion for the field φ. The expansion
in Minkowski modes, Eq. (1), as well as the expansion in
Rindler modes, Eq. (5), are both legitimate choices that are
equivalent. In this work, contrary to, e.g., [4], we choose
to formulate the Hamiltonian governing the evolution using
the expansion in Rindler modes. We consider the atoms
moving along the world lines (ξ (τi),τ (τi)) introduced in Eq.
(3), where ξ (τi) = ξi is fixed by the proper acceleration αi

according to αi = a exp(−aξi) and the time coordinate reads
τ = τi exp(−aξi). Thus, we identify the redshift

dτ

dτi

= e−aξi , (14)

and thus the redshifted frequencies are defined as

�i = dτi

dτ
ωi. (15)

Even though the chosen family of world lines is not the most
general one,5 in the following we show that this restricted
class of world lines gives rise to a lot of interesting physical
phenomena and that it encompasses various different scenarios
involving accelerated atoms. We aim at investigating the
general setting of N atoms coupled to a common scalar field
φ according to (12). Therefore, the Hamiltonian (13) has to
be generalized to describe more than one atom. It is clear
that the free-field Hamiltonian Hf remains unchanged, while
the contribution to the energy from the internal dynamics of
the atoms is given by the sum of the individual (redshifted)
energies described by dτi

dτ
H

(i)
S , i.e., the total contribution HS

is given by HS = ∑
i

dτi

dτ
H

(i)
S . Finally, we have to take care

of the individual interaction terms (12). Also for these, the
total interaction energy is given by the sum Hint = ∑

i
dτi

dτ
H

(i)
int .

5The set of world lines of several equally accelerated atoms that
at τ = 0 are spatially separated, for example, is not contained in
the family considered here, since the spacial coordinate ξi is fixed
by the proper acceleration αi . We also do not consider the case of
overlapping Rindler wedges that naturally leads to crossing world
lines. For a discussion of this possibility, see [5].

Therefore, considering N atoms, we can write the Hamiltonian
in the Schrödinger picture with respect to the time τ as

H (S) =
∑

k

|k|bI†
k bI

k −
∑

k

|k|bII†
k bII

k

+
NI∑
i=1

�iσ̂
+
i σ̂−

i −
N∑

i=NI+1

�iσ̂
+
i σ̂−

i

+
NI∑
i=1

∑
k

dτi

dτ

gk,i√
2L|k| (σ̂+

i + σ̂−
i )

(
bI

ke
ikξi + b

I†
k e−ikξi

)

−
N∑

i=NI+1

∑
k

dτi

dτ

gk,i√
2L|k| (σ̂+

i + σ̂−
i )

× (
bII

k eikξi + b
II†
k e−ikξi

)
, (16)

where the first NI atoms accelerate in positive direction and
the remaining ones accelerate in negative direction, i.e., they
live in wedges I and II, respectively. Further, we defined
gk,i(τi) = χ (τi)gk,i = χgk,i , where gk,i is the usual coupling
appearing in Q(τi). We note that in case we consider the
Minkowski vacuum, the state of the Rindler modes is given by
the entangled state (10), such that the field in each wedge is in a
thermal state, i.e., ρI

B = TrII{|0〉M〈0|} ≈ exp[−β
∑

k |k|bI†
k bI

k],
and ρII

B = TrI{|0〉M〈0|} ≈ exp [−β
∑

k |k|bII†
k bII

k ].
Since, throughout this work, we are interested in atoms

coupled to a scalar field in the Minkowski vacuum, we
frequently encounter vacuum expectation values 〈HR〉M of
some Hamiltonian HR, defined with respect to Rindler modes.
Therefore, it is convenient to absorb the transformation S,
relating Minkowski and Rindler vacua, into the Hamiltonian
and to define transformed Hamiltonians H ′

R by

〈HR〉M = 〈S†HRS〉R = 〈H ′
R〉R, (17)

where the action of S is given in Eq. (9). The free Hamiltonian
transforms trivially, H ′

f = H I − H II = Hf. The interaction
Hamiltonians H

(i)
int , however, are not invariant and pick up

nontrivial contributions. The transformation of the Hamilto-
nian H (S) can be performed straightforwardly. The same goes
through very similarly for the Hamiltonian in the interaction
picture, where we first transform using the operator S and,
subsequently, we go to the interaction picture

〈H (S)〉M =〈0|SeiH0τH (int)′e−iH0τ S†|0〉R, (18)

where we introduced the definition

H (int)′ = e−iH0τ S†H (S)SeiH0τ . (19)

Using expression (16) for H (S) and definition (19), one obtains
for the Hamiltonian in the interaction picture

H (int)′ =
NI∑
i=1

dτi

dτ

[∑
k

gk,i√
2L|k|

(
σ̂+

i ei�iτ + H.c.
)

× (
cosh(rk)

(
bI

ke
i(kξi−|k|τ ) + b

I†
k e−i(kξi−|k|τ )

)
+ sinh(rk)

(
bII

k ei(kξi+|k|τ ) + b
II†
k e−i(kξi+|k|τ )

))]
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−
N∑

i=NI+1

dτi

dτ

[∑
k

gk,i√
2L|k|

(
σ̂+

i e−i�iτ + H.c.
)

× (
cosh(rk)

(
bII

k ei(kξi+|k|τ ) + b
II†
k e−i(kξi+|k|τ )

)
+ sinh(rk)

(
bI

ke
i(kξi−|k|τ ) + b

I†
k e−i(kξi−|k|τ )

))]
. (20)

Due to the above transformation, the effective temperature
produced by the acceleration is now encoded in the Hamil-
tonian itself [through the coefficients cosh(rk) and sinh(rk)],
while the initial state of the Rindler modes is now the vacuum,
|0〉I ⊗ |0〉II. Furthermore, the Hamiltonian (20) describes an
ensemble of N = NI + NII atoms of which NI are accelerated
in one direction and the remaining NII are accelerated in the
opposite direction. Each atom might experience a (different)
arbitrary uniform acceleration, where ξ (τi) = ξi is constant
and fixed by the proper acceleration αi according to αi =
a exp(−aξi), such that our chosen reference frame moving
with atom 1 sees their frequencies redshifted according to
(15). Further, we have considered the definitions (11) in terms
of the inverse Unruh temperature β.

Our description allows us to read-off that, in the case
that all atoms are equally accelerated, the Hamiltonian (20)
is exactly equivalent to the one describing a collection of
N = NI atoms located at position ξi = ξ > 0 and coupled to a
common thermal field in 1 + 1 dimensions, once such field is
treated with thermofield (also known as thermal Bogoliubov)
transformation [23,36,37].

Having established the Hamiltonians (16) and (20), we now
move on to study the dynamics of the system of accelerated
atoms coupled to a massless scalar field. For this purpose, in
the next section we derive the respective master equations that
govern such evolution in different cases, while in Sec. IV we
use this equation to numerically analyze the dynamics of up
to six accelerated atoms.

III. MASTER EQUATION

We derive the master equation obtained by considering a
second-order perturbative expansion in the coupling Hamilto-
nian between the atoms and the scalar field. As discussed in
Appendix A 1, this equation reads as follows:

dρS(t)

dt
= −

∫ t

0
dsTrB

{[
V 0

t H (int)′ ,
[
V 0

s H (int)′ ,ρ
eq
B ⊗ ρS(t)

]]}
,

(21)
where we refer to the evolution time, given by the proper
time τ of atom 1 as t . In this section, we consider two main
situations: all atoms accelerating in the same direction, and
then some atoms accelerating in the opposite direction.

A. Coaccelerating atoms

We insert the Hamiltonian (20) with NI = N atoms ac-
celerated in one direction and NII = 0 atoms accelerated in
the opposite direction in the master equation (21). Then, we
perform the trace over the environment and consider a change
of variables in the time integrals t − s → s, such that the

resulting equation can be written as

dρS(t)

dt
=

∑
i,j

∑
ξ,η=+,−

γ
ηξ

ij (t)
[
σ̂

η

j ρS(t),σ̂ ξ

i

] + H.c., (22)

with the coefficients γ
ηξ

ij (t) defined as

γ
ηξ

nl (t) =
∫ t

0
dsCnl(s)eηi�l (t−s)eξi�nt . (23)

The correlation functions Cnl(s) read

Cnl(t − s) = αI
nl(t − s) + αII

nl(t − s), (24)

with

αI
nj (t − s) =

∑
k

Gnj cosh2(rk)Tr
{
ρI

BbI
kb

I†
k

}
eik(ξn−ξj )e−i|k|(t−s)

=
∑

k

Gnj cosh2(rk)eik(ξn−ξj )e−i|k|(t−s),

αII
nj (t − s) =

∑
k

Gnj sinh2(rk)Tr
{
ρII

BbII
k b

II†
k

}
× eik(ξn−ξj )ei|k|(t−s)

=
∑

k

Gnj sinh2(rk)eik(ξn−ξj )ei|k|(t−s), (25)

where we have defined Gnj = ( dτn

dτ
)( dτj

dτ
)gkngkj , and ρ

I,II
B =

|0〉I,II〈0| is the vacuum for the modes in I and II, respectively.
We now consider the Markov approximation in the master

equation (22), which implies that the integral limits of the
coefficients (23) are extended to infinity [17,18]. As further
detailed in Appendix A 2, within this limit the coefficients
γ

ηξ

jn (t = ∞) can be written as

γ +−
jn =g+−

jn δ(�j − �n)eik0j (ξj −ξn),

γ −+
jn =g−+

jn δ(�j − �n)eik0j (ξj −ξn), (26)

where we have introduced the notation γ +−
jn =γ +−

jn (∞), γ −+
jn =

γ −+
jn (∞), with g−+

jn = Gnj (n(k0j ) + 1), g−+
jn = Gnjn(k0j ), and

the resonant wave vector k0j = �j , while the number of ex-
citations in the field is given by the Bose-Einstein distribution
(11a).6 In terms of these coefficients, the Markovian master
equation can be written, back in the Schrödinger picture, as

dρS(t)

dt
= −i[HS,ρS(t)] +

∑
i,j

γ +−
ij [σ̂+

j ρS(t),σ̂−
i ]

+
∑
i,j

γ −+
ij [σ̂−

j ρS(t),σ̂+
i ] + H.c. (27)

6Notice also that unlike in higher dimensions, the rates (26) do not
decay with the distance rjn between atoms j and n. This can naively
be understood in analogy with an electric field E = ∇ϕ (ϕ: electric
potential). A consequence of Gauss’s law in d spacelike dimensions
is that ∇E scales with the distance r as ∇E ≈ r1−d and, therefore,
in one dimension, E is constant in regions with vanishing charge
density. We note, however, that the factor 1 + sgn(�nj ) ensures that
causality is respected, in the sense that atoms only become connected
through the field, so that the rates γ

γ ξ

jn are nonzero, once their effective
separation becomes timelike.
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In contrast to the second-order master equation (22), which
does not preserve positivity of ρS(t), Eq. (27) is in the
Lindblad form and therefore preserves not only the trace and
the hermiticity but also the positivity of the reduced density
matrix. This is an important property that shall be required if
we want to calculate quantities such as entanglement.

B. Counteraccelerating atoms

Following the same steps as in Sec. III A, we find, for atoms
accelerating in different directions, that their reduced density
matrix obeys the master equation

dρS(t)

dt
=

∑
i,j

∑
ξ �=η=+,−

γ
ηξ

ij (t)
[
σ̂

η

j ρS(t),σ̂ ξ

i

]

+
∑
κ,γ

∑
ξ �=η=+,−

γ ηξ
κγ (t)

[
σ̂ η

γ ρS(t),σ̂ ξ
κ

]

−
∑
i,κ

∑
ξ=η=+,−

γ
ηξ

κi (t)
[
σ̂

η

i ρS(t),σ̂ ξ
κ

]

−
∑
i,κ

∑
ξ=η=+,−

γ
ηξ

iκ (t)
[
σ̂ η

κ ρS(t),σ̂ ξ

i

] + H.c., (28)

where the coefficients γ ηξ
... (t) are defined similarly to the ones

in the case of parallel acceleration, as detailed in Appendix A 3.
In the long-time limit, we find that the equation shall be written
as

dρS(t)

dt
=

∑
i,j

γ +−
ij (t)[σ̂+

j ρS(t),σ̂−
i ]

+
∑
i,j

γ −+
ij (t)[σ̂−

j ρS(t),σ̂+
i ]

+
∑
i,j

γ +−
κγ (t)[σ̂+

γ ρS(t),σ̂−
κ ]

+
∑
i,j

γ −+
κγ (t)[σ̂−

γ ρS(t),σ̂+
κ ]

−
∑
i,κ

γ +−
κi (t)[σ̂+

i ρS(t),σ̂−
κ ]

−
∑
i,κ

γ −+
κi (t)[σ̂−

i ρS(t),σ̂+
κ ]

−
∑
i,κ

γ +−
iκ (t)[σ̂+

κ ρS(t),σ̂−
i ]

−
∑
i,κ

γ −+
iκ (t)[σ̂−

κ ρS(t),σ̂+
i ] + H.c., (29)

where we have defined γ −+
ij (t), γ +−

ij (t), γ +−
κγ (t), and γ −+

κγ (t)
as in Eq. (26), and

γ +−
κi = g̃+−

κi δ(�i − �κ )eik0i (ξi−ξκ ),

γ −+
iκ = g̃−+

iκ δ(�i − �κ )eik0i (ξi−ξκ ), (30)

with g̃+−
κi = g̃−+

κi = Gκi

√
n(k0i)

√
1 + n(k0i) and g̃+−

iκ =
g̃−+

iκ = Giκ

√
n(k0i)

√
1 + n(k0i). We note that the cross rates
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FIG. 2. Evolution of the atomic population (top panel) and
emission rate (bottom panel) for N = 6 atoms at the same ac-
celeration. The different curves correspond to increasing values
of the acceleration α = 2,4,6,8,10 in a rainbow scale going from
blue to red curves (in direction of the arrow). In the top panel,
higher accelerations also have higher values of the long-time limit
population, while in the lower panel, higher accelerations correspond
to a higher maximum in the emission rate.

(30) for counteraccelerating atoms are in general nonvanishing
and may give rise to entanglement as described in Refs. [3,4].

IV. EXAMPLE WITH SIX ATOMS

Having developed all the necessary tools, in this section
we analyze the collective dynamics of six two-level atoms
as viewed from the instantaneous rest frame of the atom
j = 1. We consider for simplicity that all atoms are in the
excited state and are accelerated in the same direction, such
that N = NI in the Hamiltonian (20), and that the reference
atom has a frequency ω1 = ωs . We use units such that
h̄ = kB = c = 1. Further, time is measured in units of ω−1

s .
In consequence, a proper acceleration of α = 1 corresponds to
α ≈ 3 × 1021 m/s2 for ωs = 1013 s−1.

In Figs. 2 and 3 we consider additionally that atoms have
the same acceleration. As can be seen in the top panel of Fig. 2,
the population of the reference atom j = 1,

P1(t) = 〈�0|σ̂+
1 (t)σ̂−

1 (t)|�0〉, (31)

evolves to a steady state, which contains a finite population
in the excited level. Such population is higher the higher the
acceleration is. Moreover, as we already noted above, in the
case that all atoms experience the same acceleration, their
dynamics is equivalent to the dynamics of atoms coupled to
a thermal field that is formulated employing a thermofield
transformation [23,36,37].

However, in general, the steady state achieved is not a
thermal state ρth

S = e−βHS /ZS . Indeed, even if the thermal
state is a fixed point of the master equation (27), it is
not its only possible steady state due to the presence of
symmetries in the system [38]. This can be confirmed by
analyzing the spectrum of the Lindblad superoperator L
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FIG. 3. Evolution of the atomic coherences (top panel) and
concurrence (bottom panel) for N = 6 atoms at the same acceler-
ation. The different curves correspond to increasing values of the
acceleration α = 2,4,6,8,10 (blue to red curves, in direction of the
arrow). In both panels, the curves with higher acceleration have lower
maxima than the ones with lower acceleration.

corresponding to such an equation (27) when written in the
vector form, i.e., dρS/dt = LρS . In more detail, when the
zero eigenvalue of L is degenerate, there is no unique steady
state. As a consequence, different initial states will evolve
into different steady states, and not necessarily to a single
and unique (in this case thermal) steady state. In our case of
a collection of atoms coupled to a common field, the zero
eigenvalue of L is degenerate, and therefore the system does
not always thermalize. We note also that such degeneracy is
only removed when the emission rates of the equation are such
that γ

ηξ

lj ≈ δlj γ
ηξ

ll , so that the atoms are virtually coupled to
independent environments and evolve independently from the
others.

The fact that atoms are coupled to a common environment
also has important consequences for the emission rate,

Rtot(t) = −dPtot(t)

dt
= −

N∑
j=1

d〈σ̂+
j σ̂−

j 〉
dt

, (32)

where Ptot(t) = ∑
j Pj (t) and Pj (t) is the population of the

atom j . As can be observed in the bottom panel of Fig. 2, the
atomic emission rate increases for sufficiently small times.
This is a clear signature of superradiance [39,40]. As can
also be observed, such a slope, as well as the location of the
superradiant peak [given by the maximum of R(t)], is highly
dependent on the value of the atomic acceleration. In general,
it can be concluded that collective effects are stronger (and
therefore the superradiant peak occurs later) the smaller the
acceleration is.

The presence of collective effects in the emission is related
to the building up of coherences in the atomic system.
Such coherences can be quantified in many different ways,
such as, for instance, by considering the sum of the off-
diagonal elements of the reduced density matrix as proposed

in Ref. [41],

Ccoh(t) =
∑
j �=l

|〈σ̂+
j σ̂−

l 〉|. (33)

In turn, coherences are also related to the generation of
entanglement in the atomic ensemble. However, even though
coherences are necessary for entanglement to exist, they are
not sufficient. That is, a density matrix can have nonvanishing
off-diagonal elements (coherences) and still there can be
zero entanglement. Therefore, we also consider here the
concurrence for a pair of atoms of the ensemble j = 1,2. As
described in Ref. [42], the concurrence is defined as

C(ρS) = max{0,λ1 − λ2 − λ3 − λ4}, (34)

and the λi’s are the eigenvalues, in decreasing order, of
the Hermitian matrix R = √√

ρSρ̃s
√

ρS , with ρ̃S = (σ 1
y ⊗

σ 2
y )ρ∗

S (σ 1
y ⊗ σ 2

y ), where ρ∗
s is the complex conjugated of the

reduced density matrix.
Figure 3 displays the evolution of the coherences (top panel)

and the concurrence (bottom panel) for the same value of
accelerations as in Fig. 2. In general, coherences are built up
in the system around the time at which the emission rates
achieve their maximum. However, the persistence of such
coherences in the steady state is more significant the higher
the acceleration is. In addition, the amount of entanglement
encoded in such coherences, as quantified by the concurrence,
presents also a growth at initial times of the evolution and
shows a higher maximum the smaller the acceleration is. In
contrast, at longer times the entanglement appears to be more
persistent for accelerations α � 4.

When a set of atoms with equal frequencies experience
different accelerations, their dynamics can no longer be
mapped to that of atoms (having equal frequencies, too)
coupled to a common thermal field. Instead, as shown in
Fig. 4, they present features that are unique to such a system.
Focusing in particular on the dynamics of the emission rate
and the concurrence, we analyze in these figures the following
situations: (a) all atoms having the same acceleration (as
considered in the previous Figs. 2 and 3) α = 2; (b) all atoms
j having different accelerations given by

αj = 0.2 + �α(j − 1), (35)

where we have defined �α as an acceleration mismatch
parameter. We also consider that all atoms have the same
frequency ωj = ω1, such that �j �= �l for any j �= l. In this
case, the decaying rates (26) are such that γ

ηξ

lj ≈ δlj γ
ηξ

ll , and
each atom evolves independently to the others and relaxes to
a thermal state. Finally, in (c) we consider the case where
all atoms have different accelerations, but we chose ωj =
exp(−aξj ) ω1, such that �j = �1 = ω1. With such a resonant
condition, even when the atoms are accelerated differently, the
rates γ

ηξ

lj are also nonvanishing for l �= j and collective effects
are still present in the dynamics. However, as shown by Fig. 4,
superradiance disappears when the acceleration mismatch �α

is too large.
For counteraccelerating atoms, coherences are also built

between atoms accelerated in opposite directions. However,
such coherences do not produce superradiant effects in the
emission. To be more specific, when considering an initial
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FIG. 4. Evolution of the emission rate (top panel) and concur-
rence (bottom panel) for different acceleration distributions and
considering all atoms initially excited. Solid red and solid black
curves correspond, respectively, to the cases (a) where all atoms have
the same acceleration α = 2 and (b) where all atoms have different
accelerations given by Eq. (35) with �α = 0.6 and ωj = ω1 = 1 for
all j . In the latter case, no entanglement is generated. The dashed
green and dotted blue curves correspond to the case (c) where atoms
have different accelerations, as given by Eq. (35), with �α = 0.6
and �α = 0.03, respectively. In this case the atomic frequencies are
chosen such that �j = ω1 = 1.

state that has no coherences, so that the initial state is
separable along the bipartition in atoms in wedge I and
atoms in wedge II, both sets of atoms become entangled as
time evolves. This is a well-known phenomenon that was
studied in a lot of detail [2,4,5,10,43]. However, as analyzed
numerically (not shown here), the atomic population and
the emission rates are not sensitive to the growth of such
interwedge coherences, and therefore these quantities behave
in each region independently of each other. This can also be
understood by considering the Heisenberg equations for the
correlations

d〈σ̂+
l σ̂−

n 〉
dt

=
∑

j

γ +−
lj

〈
σ̂ z

l σ̂−
n σ̂+

j

〉 − ∑
j

γ −+
nj

〈
σ̂+

l σ̂ z
n σ̂−

j

〉

+
∑

j

(γ +−
nj )∗

〈
σ̂−

j σ̂+
l σ̂ z

n

〉 − ∑
j

(γ −+
lj )∗

〈
σ̂+

j σ̂ z
l σ̂−

n

〉

+
∑

κ

γ −+
nκ

〈
σ̂+

l σ̂ z
n σ̂−

κ

〉 − ∑
κ

γ +−
lκ

〈
σ̂ z

l σ̂−
n σ̂+

κ

〉
+

∑
κ

(γ −+
lκ )∗

〈
σ̂+

κ σ̂ z
l σ̂−

n

〉 − ∑
κ

(γ +−
nκ )∗

〈
σ̂−

κ σ̂+
l σ̂ z

n

〉
.

(36)

In this regard, for n �= l, the evolution of 〈σ̂+
l σ̂−

n 〉 depends on
correlations between the atoms in different wedges. However,
the populations 〈σ+

n σ−
n 〉 do not, since the relevant terms pro-

portional to correlations between the wedges, �(〈σ̂+
l σ̂ z

n σ̂−
κ 〉)

and �(〈σ̂ z
l σ̂−

n σ̂+
κ 〉), cancel each other.

Analyzing the physics of an accelerated atomic ensemble is
experimentally challenging. This is because for accelerations
that can be achieved in laboratories, relativistic effects are
typically negligibly small. However, the derived Hamilto-
nian (16) can be implemented by considering, for instance,
Bose-Einstein condensates (BEC). In Appendix B we give
an experimentally feasible scheme to simulate this system
that allows us to observe the collective effects displayed in
Figs. 2–4. In particular, the proposed scheme allows us to
simulate the case of atoms accelerating in the same direction
as described by Hamiltonian (16). To this order, we consider
a BEC to play the role of the reservoir (more precisely,
the excitations on top of the BEC, the so-called Bogoliubov
modes) and a set of impurities immersed in the BEC, which
play the role of two-level atoms. The impurities are affected
by the potential created by a set of optical tweezers, which
provides the ability to tune their internal energies [44].
BECs of alkali atoms are specially suited for the quantum
simulation for two reasons. First, the Bogoliubov spectrum in
the long-wavelength limit is linear, ω ≈ k (with k being the
wave vector labeling the Bogoliubov mode), which naturally
mimics Unruh radiation. Secondly, the kHz energy scale of the
BEC excitations is suitable to couple to the two-level atoms
created by the optical tweezers. Employing these tweezers, a
large number of two-level systems can be created on demand
having different energy gaps, coupling strengths with the field,
and relative spatial positions. Further details of our proposal
are given in Appendix B.

V. CONCLUSIONS

In this work we have studied the emergence of collective
effects and entanglement in an ensemble of uniformly accel-
erated two-level atoms. We have derived a Hamiltonian which
describes the system in the accelerated frame of reference
of one of the atoms. We have shown that, in the limit in
which all atoms are equally accelerated, this Hamiltonian is
exactly equivalent to the one describing a collection of N

atoms coupled to a thermal field once such a thermal field is
treated with thermofield or thermal Bogoliubov transformation
[23,36,37].

We found that superradiance emerges in an ensemble of
accelerated atoms as it is witnessed by the presence of a
positive slope in the atomic emission rate at initial times. The
slope as well as the location of the subsequent maximum of
the emission rate (superradiant peak) varies strongly with the
value of the atomic accelerations. In this regard, we found
that with higher accelerations the superradiant peak occurs
later and therefore collective effects are stronger. As it is also
shown, the emergence of such collective effects is linked to
the building up of coherences in the atomic system.

Moreover, our formalism shows that the creation of coher-
ences and entanglement within the two-level atoms is due
to the fact that they are coupled to a common field, and
not directly a consequence of their acceleration. Indeed, for
atoms equally accelerated, the acceleration merely converts
the surrounding field into an effective thermal field. In this
regard, entanglement can be built-up even if the atoms are
not accelerating (such that the effective temperature of the
field is zero), provided that they are initially in an excited
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state (see discussion of entanglement generation in common
fields in Ref. [18]). Obviously, entanglement cannot be created
if atoms are initially in their ground state and they have
zero acceleration. Thus, acceleration, which leads to a finite
temperature field, becomes a fundamental resource to create
entanglement only in the case when the initial state of the
atoms is the ground state.

However, when atoms having certain frequencies undergo
different accelerations the situation is more complex and the
dynamics present features that do not correspond to the case
of atoms with the same frequencies and coupled to a common
thermal field. Thus, the physics of atoms experiencing different
accelerations cannot be observed in any other scenario than
the relativistic one, unless a simulator is specifically designed
for this purpose. We have given a concrete proposal for
such a simulator of multiple colinearly accelerated atoms
based on Bose-Einstein condensates. The key idea is to
simulate the Unruh radiation field by the Bogoliubov modes
(BEC excitations) and to implement the artificial atoms
with optical tweezers. Interestingly, the latter setup is not
limited to the simulation of collective effects and entangle-
ment generation but also offers the possibility to simulate
other effects such as entanglement degradation in accelerated
atoms.
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APPENDIX A: MASTER EQUATION

1. Derivation of the master equation

In this Appendix, we give the details of the derivation of
the master equation (21) used in Sec. III.

The von Neumann equation for the density operator of the
total system in the interaction picture, ρ(int)

tot (t), reads as follows:

dρI
tot(t)

dt
= 1

i

[
V 0

t H (int)′ ,ρ
(int)
tot (t)

]
, (A1)

where we have defined

V 0
t−t0

H (int)′ = U−1
0 (t,t0)H (int)′U0(t,t0), (A2)

and also ρ
(int)
tot = U−1

0 (t,t0)ρ(t)U0(t,t0) with the free evolution
operator U0(t,t0) = e−iH0(t−t0). To simplify the notation, we set
ρ

(int)
tot (t) = ρ(t). We can integrate (A1) between t0 and t . After

two iterations and a trace over the environmental degrees of
freedom, this leads to the following equation:

�ρS(t) = 1

i

∫ t

t0

dτ̄TrB
{[

V 0
τ̄ H (int)′ ,ρ(t0)

]}

+
(

1

i

)2 ∫ t

t0

dτ̄

∫ τ̄

t0

dτ̄ ′TrB
{[

V 0
τ̄ H (int)′ ,

[
V 0

τ̄ ′H
(int)′ ,ρ(τ̄ ′)

]]}
, (A3)

where ρS(t) = TrB{ρ(t)} is the system reduced density opera-
tor and

�ρS(t) = ρS(t) − ρS(t0). (A4)

Equation (A3) is exact, but some assumptions have to be made
in order to express it as a closed equation for ρS(t). For an
initially uncorrelated state of the form ρ(t0) = ρS(t0) ⊗ ρB ,
and considering the case where

TrB
{
V 0

t0
H (int)′ρ

eq
B

} = 0, (A5)

the first term in Eq. (A3) can be eliminated. Note that this
occurs, for instance, when the environment is initially in
thermal equilibrium, ρB = ρ

eq
B = e−βHB

TrB {e−βHB } .
After the change of variable T = τ̄ and s = τ̄ − τ̄ ′,

Eq. (A3) becomes

ρS(t) = ρS(t0) −
∫ t

t0

dT

∫ T −t0

0
dsTrB

{[
V 0

T H (int)′ ,

[
V 0

T −sH
(int)′ ,ρ(T − s)

]]}
. (A6)

The evolution equation for the reduced density operator can
be obtained by deriving (A6) with respect to t ,

dρS(t)

dt
= −

∫ t−t0

0
dsTrB

{[
V 0

t H (int)′ ,
[
V 0

t−sH
(int)′ ,ρ(t − s)

]]}
,

(A7)
with initial condition ρS(t0). The density operator appearing
in the right-hand side of (A7) has the general form

ρ(t) = ρS(t) ⊗ ρB(t) + χSB (t). (A8)

However, the term χSB(t), which describes the correlation
between the system and the environment at time t , can be
neglected with the assumption that τC � �t , where τC is the
environment correlation time. Such time defines the time that
the environment takes to return to its equilibrium state after
interacting with the system, and therefore defines also the
time scale at which system-environment correlations persist.
Neglecting χSB(t) corresponds to the Born approximation,
which is valid only up to order g2 in the perturbation parameter
[18,45,46]. Also, in order to transform the resulting equation
into a time-local form, we further replace ρS(t − s) = ρS(t)
within the integral term. This approximation is valid provided
that the system evolution time TA is much slower than the
correlation time of the environment τC , which settles the scale
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in which the integral decays. This is sometimes referred to as
the first Markov approximation in the literature.

Choosing t0 = 0, the evolution equation (A7) becomes,
after a trivial change of variable s ′ → t − s,

dρS(t)

dt
= −

∫ t

0
ds ′TrB

{[
V 0

t H (int)′ ,

[
V 0

s ′ H
(int)′ ,ρB (t) ⊗ ρS(t)

]]}
, (A9)

where ρB(t) = TrS{ρ(t)}, and the initial condition is ρS(0).
This equation can be further simplified by considering that the
environment always remains in its equilibrium state, ρB(t) ≈
ρ

eq
B . Considering this, we find our basic model of equation to

consider:

dρS(t)

dt
= −

∫ t

0
dsTrB

{[
V 0

t H (int)′ ,
[
V 0

s H (int)′ ,ρ
eq
B ⊗ ρS(t)

]]}
.

(A10)

2. The dissipative rates for coaccelerating atoms

Considering the long-time limit of Eq. (22) implies that the integral limits of the coefficients (23) can be extended to infinity,

γ −+
jn (∞) =

∫ ∞

0
ds

[
αI

jn(t − s) + αII
jn(t − s)

]
e−i�j s+i�nt

=
∫ ∞

0
ds

[
αI

jn(s) + αII
jn(s)

]
ei�j s−i(�j −�n)t

= δ(�j − �n)
∫ ∞

0
dsαI

jn(s)ei�j s, (A11)

where we have considered that in the long-time limit, ei�j s−i(�n−�j )t leads to a nonvanishing contribution only when the phase
is zero, i.e., when �n = �j . Considering the definition in Eq. (25) and going to the continuum limit, we can write

γ −+
jn (∞) = δ(�j − �n)

∫ ∞

−∞

dk

2π

∫ ∞

0
dsGnj cosh2(rk)eik(ξn−ξj )ei�j s−i|k|s . (A12)

Separating now the negative and positive integrals in k, we can rewrite the above as

γ −+
jn (∞) = δ(�j − �n)

∫ ∞

0

dk

π
2 cos[k(ξn − ξj )]

∫ ∞

0
dsGnj cosh2(rk)ei�j s−i|k|s . (A13)

Considering now that
∫ ∞

0 dteiωt = πδ(ω) + iP (1/ω), we find

γ −+
jn (∞) = δ(�j − �n)Gnj

[
2 cos[k0j (ξn − ξj )] cosh2(rk0j

)[n(k0j ) + 1] + i
2

π
P

∫ ∞

−∞
dk

(
Re{eik(ξj −ξn)Jj (k)[n(k) + 1]}

|k| − �j

)]
,

(A14)

where we have defined the resonant wave vector k0j = �j and extended the limits of the principal value part of the integral
to −∞, which can be done given the fact that the integrand is even. Going now to the frequency representation, we rewrite
Eq. (A15) as

γ −+
jn (∞) = δ(�j − �n)Gnj

[
2 cos[k0j (ξn − ξj )] cosh2(rk0j

)[n(k0j ) + 1]

+ i
2

π
P

∫ ∞

−
dω

(
Re{eik(ω)(ξj −ξn)Jj (k(ω))[n(k(ω)) + 1]}

ω − �j

)]
. (A15)

We now consider the Kramers-Kronig relationship,

Im[f (ω0)] = − 1

π
P

[ ∫ ∞

−∞
dω

Re[f (ω)]

ω − ω0

]
, (A16)

which replaced in Eq. (A16) leads to the desired result,

γ −+
jn (∞) = g+−δ(�j − �n)eik0(ξj −ξn), (A17)

where we have defined the coupling strength g+− =
2Gnj [n(k0) + 1]. In a similar way we find that

γ +−
jn (∞) = g−+δ(�j − �n)eik0(ξj −ξn), (A18)

where now g+− = 2Gnjn(k0). In addition, we have defined
the number of excitations in the field as Eq. (11a). Note that
similarly as in the quantum optical case, due to causality these
rates are nonvanishing only when t � (ξj − ξn). However,
such a causality condition is not directly captured by the
Markov approach used here (see, for instance, the comment in
[47]) but rather should be considered as an ad hoc condition.
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This condition is particularly important when the values
of ξj − ξn involved are large compared to the evolution
time, which is not the case in our numerical examples. A
nice discussion on the retardation effects that exists when
connecting different emitters through a common field can be
found, for instance, in Ref. [48].

3. The dissipative rates for counteraccelerating atoms

Here, we give the coefficients, γ ηξ
... (t), appearing in the

master equation counteraccelerating atoms, Eq. (29). We
define the coefficients as

γ
ηξ

ij (t) =
∫ t

0
dsCij (s)eηi�j (t−s)eξi�i t ,

γ
ηξ

iκ (t) =
∫ t

0
dsCiκ (s)e−ηi�κ (t−s)eξi�i t ,

γ
ηξ

κi (t) =
∫ t

0
dsCκi(s)eηi�κ (t−s)e−ξi�i t ,

γ ηξ
κγ (t) =

∫ t

0
dsCκγ (s)e−ηi�γ (t−s)e−ξi�κ t , (A19)

where the correlation functions Cij appearing in Eq. (A19) are
given by

Cij (t − s) = αI
ij (t − s) + αII

ij (t − s) (A20)

with

αI
ij (t − s) =

∑
k

Gij cosh2(rk)e−i|k|(t−s),

αI
κγ (t − s) =

∑
k

Gκγ sinh2(rk)e−i|k|(t−s),

αI
iκ (t − s) =

∑
k

Giκ sinh(rk) cosh(rk)eik(ξi−ξκ )e−i|k|(t−s),

αII
ij (t − s) =

∑
k

Gij sinh2(rk)ei|k|(t−s),

αI
κγ (t − s) =

∑
k

Gκγ cosh2(rk)ei|k|(t−s),

αII
iκ (t − s) =

∑
k

Giκ sinh(rk) cosh(rk)eik(ξi−ξκ )ei|k|(t−s).

(A21)

These satisfy the following properties: αI
κi(t − s) = αI

κi(t −
s) = [αI

iκ (t − s)]∗ and αII
κi(t − s) = [αII

iκ (t − s)]∗.

APPENDIX B: SIMULATION IN BOSE-EINSTEIN
CONDENSATES

In this Appendix, focusing on the case of atoms that are
accelerated in the same direction, we propose a simulation of
the system described in Sec. IV. The simulation is based on
Hamiltonian (16).

1. Bogoliubov excitations as Unruh radiation

We start by implementing the first term of Eq. (16). A
bosonic field φ(x,t) in a quasi-one-dimensional Bose-Einstein

condensate (BEC) is described by the following Hamiltonian:

Hf =
∫

dxφ†
[
− h̄2

2m

∂2

∂x2
− μ + u0φ

†φ

]
φ, (B1)

where μ is the chemical potential, u0 is the interaction strength,
and ak is a bosonic operator satisfying the usual commutation
relation [ak,a

†
k′] = δk,k′ [49]. In the following we make use of

the Bogoliubov approximation, which amounts to neglecting
the depletion from the macroscopically occupied vacuum state
〈φ〉 = √

n0, such that

φ(x,t) = e−iμt/h̄

[
√

n0 + 1√
L

∑
k

(ake
ikx + a

†
ke

−ikx)

]
.

(B2)

Plugging this into Eq. (B1), we obtain

Hf = E0 +
∑

k

εka
†
kak

+ 1

2
u0n0

∑
k �=0

brk(2a
†
kak + a

†
ka

†
−k + aka−k), (B3)

where E0 = Nu0n0 is a spurious energy shift, with N denoting
the total number of particles in the BEC, and εk = h̄2k2/(2m).
By performing a Bogoliubov-Valatin transformation of the
form ak = ukbk + v∗

k b
†
−k , the condition of bk being also a

bosonic operator implies the normalization condition |uk|2 −
|vk|2 = 1, and diagonalizes the Bogoliubov Hamiltonian (B3)
as

Hf =
∑

k

Ekb
†
kbk, (B4)

where Ek = √
εk(εk + 2μ) is the energy spectrum, and the

Bogoliubov coefficients are given by [49]

uk,vk =
(

εk + μ

2Ek

± 1

2

)1/2

. (B5)

The condensate depletion (both quantum and thermal) per
mode k is given by 〈a†

kak〉 = |vk|2 + (|uk|2 + |vk|2)nk , where

nk = 1

eεk/kBT − 1
(B6)

is the Bose-Einstein statistics and T is the temperature of
the system. Since our goal is to mimic Unruh radiation,
we identify the Bogoliubov modes with the Unruh modes
propagating in region I of Rindler spacetime with acceleration
α = 2πckBT /h̄. As such, we guarantee that the first term
appearing in the Hamiltonian (16) is accurately simulated by
Eq. (B4).

2. Optical tweezers as tunable two-level systems

In order to emulate the Hamiltonian of the two-level
systems (atoms), we make use of a set of optical tweezers,
which can be located at different positions on demand. As
we are about to see, the spatial distribution of the optical
tweezers will simulate the location of the atoms at different
positions in Rindler spacetime [50]. Let ψ(x) denote the
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FIG. 5. (a) Width of the bound states as a function of the optical
tweezer potential depth. (b) Dependence of the atom energy on the
bound state width. In both panels, the shadowed region corresponds
to the two-level condition in Eq. (B9).

field of an auxiliary particle (impurity) inside the BEC. The
corresponding Hamiltonian reads

HS =
∫

dxψ†
[
− h̄2

2M

∂2

∂x2
− V0e

−x2/w2

]
ψ, (B7)

where V0 represents the depth of the potential (associated
with the laser intensity) and w is the potential width (i.e.,
the laser beam waist). By expanding the field in the form
ψ(x) = ∑

n ϕn(x)cn, where ϕn(x) satisfies the Schrödinger
equation HSϕn(x) = εnϕn(x) and cn is a bosonic operator with
algebra [cn,c

†
m] = δn,m, we can evoke the WKB approximation

in order to determine the number of bound states nb as

nb =
⌊

2

h̄2

√
V0M

πw
− 1

2

⌋
, (B8)

with �·� denoting the integer part. We are mostly interested
in the case where exactly two bound states can be produced
(nb = 2); see Fig. 5. By keeping the potential depth constant
and tuning the tweezer waist, for example, we obtain two-level
atoms with energies in the range

4

5h̄2

√
MV0

π
< w <

4

3h̄2

√
MV0

π
. (B9)

In that case, the two bound states n = 0 and n = 1 can be
approximately described by the following variational wave
functions:

ϕ0(x) =
(

2

πa2
0

)1/4

e−x2/a2
0 , ϕ1(x) = 2

x

a0
ϕ0(x), (B10)

where a0 is the width of the bound state, which can be related
to the tweezer parameters as

w2

2a2
0

(
2

a2
0

+ 1

w2

)3

= V 2
0 M2w4

h̄4 . (B11)

The variational energies are then given by εn = 〈ϕn|HS |ϕn〉,
and the two-level (atom) transition energy � = ε1 − ε0 is then
given by

� = 2h̄2

Ma2
0

−
√

2V0

√
2a4

0 + a6
0

w2(
a2

0 + 2w2
)2 . (B12)

Multiple atoms can therefore be simulated by tuning the width
wi of the different tweezers independently, which will then
emulate the atoms’ Hamiltonian in Eq. (16) provided the
identification ωidτi/dτ → �i , yielding

HS =
∑

i

�iσ
+
i σ−

i , (B13)

where σ+
i = c

†
i,1ci,0 and σ− = c

†
i,0ci,1.

3. System-bath interaction in the rotating-wave approximation

The interaction between a collection of two-level systems,
created by the impurities trapped in the optical tweezers,
and the phonons in the BEC is described by the following
Hamiltonian:

Hint = g
∑

i

∫
dxψ†(x − xi)φ

†(x)φ(x)ψ(x − xi), (B14)

where xi is the location (in the laboratorial frame) of each
optical tweezer and g is the atom-atom interaction strength
(g = u0 if the atoms and the reservoir are of the same species).
By using the expansion in Eq. (B3) and the two-level condition
in Eq. (B9), we obtain

Hint = H
(0)
int + H

(1)
int + H

(2)
int , (B15)

where H
(0)
int = gn0/L

∑
i

∑1
n=0 c

†
i,nci,n is the BEC Stark shift,

which can be incorporated by a renormalizing of the energy
levels in the form εn → εn + gn0. The last term is second order
in the bosonic operators bk , O(b2

k), which we neglect in the
spirit of the Bogoliubov approximation. Finally, the first-order
term can be easily given as

H
(1)
int =

∑
k

∑
j

1∑
m,n=0

Gmn
ik eikxi c

†
i,mbkci,n + H.c., (B16)

where the components of the coupling tensor explicitly read

G00
ik = g

√
n0S(k)

L
e−k2a2

0/2,

G11
ik =

(
1 − a2

0k
2

2

)
G00

ik ,

G10
ik = G01∗

ik = ia0kG00
ik . (B17)

Here, S(k) = uk − vk denotes the BEC static structure factor
within the Bogoliubov approximation. Equation (B16) con-
tains intraband (m = n) and interband (m �= n) terms. How-
ever, intraband couplings involve long-wavelength phonons
k ≈ 0, for which S(k) ≈ 0, and can therefore be neglected
[51]. Moreover, we choose a narrow range of atom energies
�i for which the quasiresonant ki modes are located around
the maximum of |G01

ik | (see Fig. 6 for illustration). We then
go to the interaction picture, as described above, to drop
the terms proportional to σ+

i b
†
k and σ−

i bk . Within the RWA
approximation, the interaction Hamiltonian finally reads

H RWA
I �

∑
i,k

Cike
ikxi σ+

i bk + H.c., (B18)

where Cik = G10
ik . The latter is valid if the coupling between

the optical tweezers and the BEC is sufficiently weak, i.e.,
provided the condition g � u0. This is why a different
species is necessary, allowing for g to be tuned via Feshbach
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FIG. 6. (a) Dispersion relation of the Bogoliubov modes and the
choice of the resonance value of the atoms. The horizontal (vertical)
dashed line indicates the frequency (wave number) resonant with the
central atom transition �. The shadowed horizontal (vertical) stripes
indicate the range of near-resonant frequencies (wave vectors) for a
centered distribution of atom proper accelerations. (b) Strength of the
couplings |G00

ik | (dashed line), |G11
ik | (dot-dashed line), and |G10

ik | (solid
line) near resonance. For illustration, we have used a0 = 2.2w.

resonances. The appropriate simulation of the system-bath
reservoir in Eq. (16) is performed if we identify the laboratory
positions xi with the Rindler coordinates ξi and the matrix
element Cik with the term gikdτi/dτ .

Typical experimental setups with laser powers of ∼800 mW
result in potential depths of V0 ≈ 2π × 1 kHz and beam waist
of w ≈ 1.0 μm [52]. The latter are comparable to the typical
values of healing length ξheal and chemical potential μ in
elongated 87Rb condensates [53]. Moreover, the atoms could
be constructed with 172Yb atoms, which are heavy (M/m � 2)
and weakly interacting enough (an estimate of the scattering
lengths aRb−Yb ≈ −160.7aBohr and aRb−Rb ≈ 90.0aBohr yields
g ≈ 0.18u0 [54,55]) such that the approximations above
hold (see Ref. [56] and references therein). In typical 87Rb
experiments with n0 ≈ 50 μm−1 (i.e., ∼ 5000 atoms confined
in a trap of size 100 μm [57]), and using the reasoning of
Ref. [56], we estimate that retardation effects can be neglected
for up to N ≈ 20 atoms separated by d ≈ 2.8 μm. In this case,
hopping between the different tweezers can also be prevented.
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