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Two main obstacles for observing quantum advantage in noisy intermediate-scale quantum computers (NISQ)
are the finite-precision effects due to control errors, or disorders, and decoherence effects due to thermal
fluctuations. It has been shown that dissipative quantum computation is possible in the presence of an idealized
fully engineered bath. However, it is not clear, in general, what performance can be achieved by NISQ when
internal bath degrees of freedom are not controllable. In this work, we consider the task of quantum search of a
marked node on a complete graph of n nodes in the presence of both static disorder and nonzero coupling to an
environment. We show that, given fixed and finite levels of disorder and thermal fluctuations, there is an optimal
range of bath temperatures that can significantly improve the success probability of the algorithm. Remarkably
for a fixed disorder strength o, the system relaxation time decreases for higher temperatures within a robust range
of parameters. In particular, we demonstrate that for strong disorder, the presence of a thermal bath increases the
success probability from 1/(no?) to atleast 1/2. While the asymptotic running time is approximately maintained,
the need to repeat the algorithm many times and issues associated with unitary over-rotations can be avoided as
the system relaxes to an absorbing steady state. Furthermore, we discuss for what regimes of disorder and bath
parameters quantum speedup is possible and mention conditions for which similar phenomena can be observed in
more general families of graphs. Our work highlights that in the presence of static disorder, even nonengineered
environmental interactions can be beneficial for a quantum algorithm.
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I. INTRODUCTION

A major obstacle to the development of a scalable quantum
computer is its interaction with an environment, resulting in
decoherence and loss of quantum advantage [1,2]. Even if a
quantum system is well isolated from the environment, there
are always experimental imperfections in the setting of the
system’s parameters which can lead to a unitary dynamics
different from the desired one and thus to errors in the quantum
computation. In the circuit model, these sources of error can
be countered using various error correction techniques [3].
However, these have proven to be rather expensive as they
require a huge overhead in terms of the number of qubits [4].
Furthermore, for alternative models of quantum computation
such as adiabatic [5,6] or quantum walks [7,8], the theory of
error correction is much less developed or nonexistent [9—11].
Dissipative quantum computation has also been proposed [12];
however, the necessary system-environment interaction must
be highly engineered, which is extremely challenging.

On the other hand, there are quantum processes that are
enhanced by naturally occurring interactions with an external
environment. It has been shown that quantum transport in
certain disordered structures such as protein complexes in
biological systems [13—17] and others [18,19] can be enhanced
for certain ranges of environment parameters. A simplified
interpretation of this behavior is that in a disordered quantum
system there are destructive interferences suppressing quantum
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transport [20] and since decoherence processes suppress these
destructive interferences, transport efficiency is enhanced [21].
Also, relaxation dynamics coming from the interaction with
a thermal bath can significantly improve quantum transport
provided that the bath spectral density is in a regime which
enhances certain desired transitions [22].

In this article, we explore whether a nonengineered envi-
ronment can benefit a quantum algorithm. We address this
by considering the analog version of Grover’s algorithm [23]
which can be seen as an instance of search by CTQW on the
complete graph of n nodes [24]. This algorithm finds a node in
the graph, which is marked by an oracular Hamiltonian, starting
from an equal superposition of all the nodes of the graph, in
O(4/n) time. This running time is quadratically faster than the
best known classical algorithm, and is optimal [23].

We consider the effect of a static diagonal disorder term
of strength at most o in the search Hamiltonian which can be
interpreted as a faulty oracle. We show that foro > O (1/4/n)
the algorithm loses its optimality. Above this threshold, we
find that the maximum probability of success decreases with
the size of the system and several repetitions are needed to find
the marked node.

By coupling the system to a thermal environment [25-27],
the transition from the initial state to the marked node, which
was suppressed in the unitary case due to disorder, is now
enhanced because of thermal relaxation. This is because the dy-
namics occurs mostly in a two-dimensional subspace spanned
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by the ground and first excited states of the system, where the
ground state has a large overlap with the marked node. So, the
system relaxes to a thermal state which has a constant overlap
with the solution and hence the algorithm exhibits a fixed-point
property. Thus only a constant number of repetitions are needed
to find the marked node and a measurement can be made at
any time after the system relaxes. Interestingly, the relaxation
time and thus the algorithmic running time improves with
temperature as long as the two-level approximation is valid.
For the maximum allowed temperature and for a fixed disorder
strength o, the scaling of this relaxation time matches the
running time of the corresponding closed system with the same
disorder strength, up to logarithmic factors.

Our work contrasts with the idea of engineering the dis-
sipation of a quantum system in order to drive a quantum
computation [12]. Instead, we study how a naturally occurring
coupling to a thermal bath can help when static errors are
present in the system Hamiltonian. This way, our results
also differ from those concerning thermal effects in adiabatic
quantum computation [28-33].

Before proceeding with a careful analysis of the scaling of
the running time with the different bath parameters, let us look
at the closed system behavior in the presence of static disorder
and analyze the algorithm in that scenario.

II. ANALOG QUANTUM SEARCH WITH
DIAGONAL DISORDER

Let G be a graph with n vertices V = {1,2,...,n}. We
consider the Hilbert space spanned by the localized quantum

states at the vertices of the graph H = span{|1), ..., |n)} and
the search Hamiltonian given by
Hgearch = — |w) (w] — ¥ Ag, ()

where |w) corresponds to the solution of the search problem,
y is a real number, and A is the adjacency matrix of graph
G [24]. The algorithm is said to be optimal on graph G if
starting from the equal superposition of all states, i.e., |s) =
Y1 li) /4/n, there is a value of y such that the probability of
finding the solution node |w) upon a measurement in the vertex
basis after a time T = O(4/n) is constant, irrespective of w.
Here we consider quantum walk on a complete graph which is
equivalent to the analog quantum search algorithm introduced
in [23]. The search Hamiltonian in that case is given by

Hgearcn = — |U)) (U)| - |S> <S| s ()

where we have chosen y = 1/n. The gap between the ground
state and the first excited state, up to an error of O(1/n), is
A = 2/./n. The dynamics of the algorithm is a rotation in a
two-dimensional subspace containing the initial state |s) and
|w). The success probability P, (t) = sin?(z /+/1) is close to
one after a time T = 7/n/2.

The analog search algorithm requires an oracle that marks
the solution node to an energy that is different from the rest of
the nodes. In order for the problem to have a fair comparison
to the standard Grover’s algorithm in the circuit model, the
energy at the marked node is chosen to be —1 [34]. However,
animperfect implementation of the oracle might severely affect
the algorithmic performance. We define an imperfect oracle as
one which “marks” each node of the graph erroneously: each

non-solution-node j is marked with an energy ¢;, while the
solution node w is marked with an energy —1 + €,, (where
each €, is a random variable). The resultant effect can be
perceived as static disorder on the nodes of the complete
graph. Furthermore we assume that these errors occurring due
to imperfect implementations are fixed in nature; i.e., each
€; remains fixed across multiple iterations of the algorithm.
The case where the instance of oracular defect varies over
iterations has been discussed in Ref. [35]. In our case, we have
the following search Hamiltonian:

HE = —w) (w| = Is) (s| + Y e li) il (3)
i=1

where ¢; are the value of static disorder at vertex ¢ and are
i.i.d. random variables from some probability distribution of
mean 0 and standard deviation o < 1. In fact, the form of the
probability distribution is not very important for the results we
derive, as long as there is a high probability that |¢;| < o, and
also that in a typical instance we have ¢; to be of the same order
aso.

The approximate eigenstates and eigenvalues of HdS
are calculated in Appendix A, whereas here we summarize
the results. Let |s3) be the equal superposition of all nodes
other than the solution node |w). Then by using degenerate
perturbation theory, we find that the approximate ground and
first excited states of the system are obtained by diagonalizing
the search Hamiltonian projected onto the subspace spanned by
{lw), |sz)}. The Hamiltonian of the effective two-level system
is

[-14e —1/4n
Hred— |:_1/ﬁ _1 }7 (4)

which interestingly only depends on the error at the oracle €,,.
The gap between the ground state and the first excited state of
the perturbed Hamiltonian is

A~ [e2 +4/n (5)

and the success probability of the algorithm is given by

; 1 At

Py (1) = | (wle =!|s) |> ~ W sin’ (?), (6)
which is plotted in blue in Fig. 1. The maximum success
probability is achieved atatime 7 = m /A and since it is lower
than 1, we need to repeat the algorithm 1/P,(T) times on
average to find the marked node. Hence, Eq. (6) shows that
there are two distinct regimes for the average running time:

Weak disorder [0 < O(1/4/n)]. The maximum success
probability is constant and the frequency A = O(1/./n).
Thus, the algorithm remains optimal.

Strong disorder [0 > O(1/+/n)]. The maximum success
probability scales as 0(1/1’10’2) and A = O(o). Thus, one
needs to repeat the algorithm ~no? times on average, to obtain
an expected running time of O (no).

This implies that a high degree of control in the system is
necessary to maintain quantum speedup. In fact, unless it is
possible to decrease the disorder strength o with the system
size, only a constant speedup is possible with respect to the
classical case where search takes O (n) time. We note, however,
that for classical unstructured search the average running time
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FIG. 1. Population at the solution node versus time for a complete
graph of 10° nodes where each node of the graph is affected by
disorder of maximum strength o = 0.007 for the cases of no bath
(oscillatory thin blue curve), thermal bath at inverse temperature
B = 40 (thick red curve), and at 8 = 15 (dashed green curve). We
find that the population at the solution is always low in the unitary
regime implying that the algorithm needs to be repeated several times.
In the case where the disordered system is coupled to a thermal bath,
we consider that the bath has an Ohmic spectral density with a cutoff
frequency w. = 2 and system-bath coupling g = 0.02. We numeri-
cally solve the Bloch-Redfield master equation. The interaction with
the thermal bath results in amplifying the population at the solution
with time without compromising much in the algorithmic running
time. Moreover, increasing the temperature of the bath ensures faster
relaxation and improves the running time of the algorithm.

is n/2 whereas we can have o < 1 if we have good control
over the quantum system.

III. ANALOG QUANTUM SEARCH IN THE PRESENCE
OF A THERMAL BATH

We shall now see how the coupling of the system to a thermal
bath can increase the success probability of the algorithm
due to thermal relaxation. We will focus our analysis on the
strong-disorder regime, since it is more realistic to assume that
we would not have sufficient control on the system to ensure
that the disorder strength o is less than 1/4/n, given that the
dimension of the Hilbert space n increases exponentially with
the number of qubits. The weak-disorder regime is treated in
Appendix D.

By looking at the approximate two-level description of
HY%s . given in Eq. (4) one can see that the transitions from
|sp) to |w) are suppressed due to the energy mismatch €,,. On
coupling the system to a thermal bath, we expect it to evolve to
a thermal state which enhances the aforementioned transition
due to thermal relaxation. In fact, in the zero-temperature
regime, we expect the system to relax to the ground state and
thus, if the ground state has a large overlap with |w), we obtaina
maximum probability of success close to 1, in spite of disorder.

In the strong-disorder regime, we obtain that the ground
state of H.q is approximately |w) only if the random
variable €,, <« —1/4/n, which happens with probability of
approximately 1/2 assuming that the probability distribution is
symmetric around 0. In order to ensure that the state |w) almost
always has a large overlap with the ground state we choose the

parameter y = (1 — 0)/n, instead of the value 1/n mentioned
before and chosen in Ref. [23]. This choice does not change
the scaling of the average running time of the search algorithm
with disorder, which is still O(no) on average and requires
~no? repetitions. The gap between the ground state and the
first excited state, as a result of this choice of y, becomes
A =0 — €, + O(1/no), and the approximate eigenstates to
first order in perturbation theory are

1
|w) + m [$@) 5

1

Tno —en) lw) — Isa) (®)
which are obtained in an analogous way as shown in
Appendix A. With this new choice of y, the overlap of the
ground state with the marked node is close to 1 with high
probability, as desired.

We consider the following Hamiltonian which describes
the interaction of the system with a thermal bath of harmonic
oscillators

A1) ~ (7

[A2) ~

Hy =YY" gialaia +al,)1i) (il ©)
i=1 «

where a[Ta and a;, are the bath creation and annihilation oper-
ators obeying [a;, aﬁﬁ] = §;,j0a,p; 1.€., we consider that each
node |i) of the complete graph is coupled to a bosonic bath,
which we assume to be at an inverse temperature 8 (throughout
the article we are working in units where Boltzmann constant
kg = 1). Furthermore we assume that the bath temperature is
low enough that the transitions to states higher than the first
excited state are negligible. To ensure that this happens we
need 8 > B* = O(logn).

To describe the evolution of the system’s density matrix we
first assume that the coupling between each site of the system
and the bath is considered to be identical (g;, = g, for all i, @)
and that g is sufficiently weak that the system and the bath
remain uncorrelated at all times. Second, we consider that
the timescale of decay of the bath correlation functions &t is
much faster than the relevant timescales of the system; i.e.,
the Markov approximation is valid. The condition g < 1/6¢
ensures that this is indeed the case. These assumptions lead us
to the well-known Bloch-Redfield master equation [26,27,36].
This equation allows us to resolve system timescales which, for
the weak-disorder regime, are of O(4/n) and thus are impor-
tant to understand the regimes where the algorithm remains
optimal. This analysis is done in Appendix B, Appendix C,
and Appendix D. In the strong-disorder regime, we are not
interested in resolving the system timescales, which are of
O(1/0) < +/n, and so we can take the secular approximation
[27]. The condition g < /o /&t ensures that both the secular
and Markov approximations are valid (see Appendix E).

Let p;; = (A;]| p |A;) be the density matrix elements of the
system, expressed in its eigenbasis. The master equation that
describes the time evolution of the population of the ground
and first excited states of the system after taking the secular
approximation is

e =Y Wapu — Y Wik i, (10)
17k 1#k
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where k € {1,2} and [ € {1, 2}. The transition rates are given
by

wy 2 0,

{27TJ(a)kl)Ak1N(wkl)a
_ (11)

27 J (i) A [N (o) + 11,

with V(w) = 1/(ef® — 1) and Ay = Y, |cixct|*. The coeffi-
cients c;; are obtained from the basis change |i) = ), cix [Ak).
We consider the spectral density of the bath to be Ohmic with
an exponential cutoff, i.e., J(w) = ngZwe“/*, and the cutoff
frequency w, to be a constant larger than the system energy
scale, i.e., w. > 1. Also, n is a constant normalization factor.

From Eq. (7), we see that the population at the solution is
approximately the population of the ground state. Using this
and Eq. (10), we obtain

Wy < 0,

1
Pw(t)Npll(t)"‘O(m) 12)
1 — e /T o 1 3
1+ehA + <0\/ﬁ>' (13)

The relaxation time is

Trel ~ ;tanh <%>, (14)
A J(A) 2

where A |, can be calculated from Egs. (7) and (8) which yield
A1 = O(1/no?). We obtain thus a quantum algorithm that
is run simply by thermal relaxation and whose running time
is given by Ti.. The probability of success is given by the
ground-state population of the Gibbs state,

Pye = [1 +exp(=BA) 7, (15)

which is always larger than 1/2. This is an important advantage
with respect to the unitary, disordered algorithm since the
population at the solution node only increases with time and
the probability of success is much larger. This way, only two
or fewer repetitions of the algorithm are needed, on average,
to find the marked node in contrast with the O (no?) number
of repetitions needed on average in the disordered unitary case
[see Eq. (6)]. However, a careful analysis of the relaxation time
is needed to ensure that any quantum advantage remains.

Zero temperature (f§ — 00). When the thermal bath is at
zero temperature, i.e., when 8 — oo, the relaxation time of
the system is 7;¢1(00) = O(na/ngz).

High temperature (B* < B < 1/0). In this regime of tem-
perature, tanh(8o/2) &~ Bo /2. This gives us that the relaxation
time T (B) = O(nazﬁ/ngz). Thus the ratio

_ Trel(,B)
Trel(oo)

This shows that increasing the temperature actually ensures
faster relaxation to the thermal state thereby improving the
algorithmic running time. This has been plotted in Fig. 1
where we find that relaxation is faster for the thermal bath
at B = 15 (green) as compared to 8 = 40 (red). Also observe
the difference in the dynamics of the population at solution of
these two curves as compared to the unitary scenario (blue).
The probability at the solution is considerably higher in the
presence of a thermal bath.

In order to analyze the fastest relaxation time we can obtain
in this framework, it is crucial to note that the validity of the

= fo K 1. (16)

secular and Markov approximations implies that we have to
restrict the system-bath coupling to a value g < /o /ét. The
larger the g the faster the relaxation, and so the relaxation
time is minimized for g = x+/0/dt, where x is some small
constant.

We prove in Appendix F and Appendix G that the bath-
correlation timescale &t is 8¢ ~ w, at zero temperature and
is given by 6t ~ § at finite temperature. This implies for
zero temperature the lower bound for the relaxation time is
Tre1(00) = Q(n) which is no better than classical search. For
finite temperatures however, we have that T,,;(8) = Q(nog?).
The relaxation time decreases for higher temperatures but it is
necessary to keep 8 > O(logn) for the two-level approxima-
tion to be valid. Hence, the fastest relaxation possible in this
framework is

Tres = O(no (logn)?), (17)

which matches the running time of the unitary disordered case
up to a logarithmic factor.

We have thus demonstrated that the success probability of
the algorithm improves drastically in the presence of the bath as
compared to the disordered unitary quantum algorithm, despite
a small (logarithmic) overhead in terms of asymptotic running
time. We leave as an open question whether also an asymptotic
improvement in running time can be achieved for other models
of the bath and system-bath interaction. For completeness, we
show in Appendix H, by a simple adaptation of the proof
of Ref. [23], that the lower bound for any quantum search
algorithm interacting with an external system is O (1/n). Given
the model we considered, we can show that this bound is
attained for the case of weak disorder and zero temperature, as
demonstrated in Appendix C.

IV. ENVIRONMENT-ASSISTED QUANTUM SEARCH
ON OTHER GRAPHS

The results derived so far have concerned the problem of
searching a marked node in a complete graph. However, the
same effects are expected to happen for quantum search on
graphs whose adjacency matrix has a large spectral gap, such
that the dynamics of the search problem happens mostly in a
two-dimensional subspace.

In Ref. [37], the authors show a sufficient condition for
the spatial search algorithm to be optimal on any graph G;
the spectrum of the normalized adjacency matrix of G, Ag,
should satisfy the following properties: (i) the gap between two
highest eigenvalues of A is constant and (ii) the overlap of |w)
with the eigenstate |v; ), corresponding to the largest eigenvalue
of Ag, is O(1/4/n). Then starting from |v;), the algorithm
evolves to a state close to |w) in O(4/n) time. Several classes
of graphs obey this sufficient condition such as Erdos-Renyi
random graphs which are graphs of n nodes such that each
edge exists between any two of these nodes with probability
p, random regular graphs [37], strongly regular graphs [38],
or complete bipartite graphs [39].

In these cases, the search Hamiltonian, similarly to the case
of the complete graph, has its ground and first excited state with
energies —1 & A/2, where A is of O(1/4/n). Moreover, the
energy gap between the ground state and second excited state,
A = A3 — Ay, is much larger than A. In this situation, if we
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consider the problem with static disorder and we have o <« A,
the perturbation theory arguments applied in Sec. II hold
and the success probability of the algorithm should decrease
drastically foro > O(1/./n). Furthermore, the coupling of the
system to a thermal bath of inverse temperature 8 > (logn)/A
will induce thermal relaxation and increase the probability at
the marked node while maintaining the population at the higher
excited states negligible. We expect thus that environment-
assisted effects on quantum search algorithms by quantum
walk will happen for several classes of graphs. It would be
interesting to show also whether such effects hold for quantum
search on graphs whose topology changes with time such as the
random temporal networks [40], or for quantum-state transfer
protocols based on quantum search [37].

V. DISCUSSION

We have analyzed the robustness of the quantum analog
search algorithm in the presence of diagonal static disorder
and showed that the algorithm loses optimality for a disorder
strengtho > O(1/4/n). In this regime, the success probability
decreases with the system size and the algorithm needs to
be repeated no? times on average, to have a running time of
O(no).

We have shown that if this system is coupled to a ther-
mal bath, it is possible to significantly increase the success
probability of the algorithm, from 1/(no?) to a fixed value
larger than 1/2, due to thermal relaxation. Moreover, the
algorithmic running time improves with temperature due to
faster relaxation. For an appropriate choice of bath parameters,
we obtain an algorithm in the open regime whose running
time is close to that of the disordered unitary case, with the
added advantage that only a constant number of repetitions are
needed. Similar effects are possible for search by continuous-
time quantum walk on graphs whose adjacency matrix has a
large spectral gap, which includes random graphs [37].

It is important to point out the contrast between our result
and the previous studies of environment-assisted quantum
transport. The known results on excitonic transport study
mostly the efficiency of transport towards a trapping site and
how it improves by coupling the system to an environment.
The modeling of the trapping process is done by a nonunitary
term acting locally at this site. Also, these studies focus on
small system sizes that model light-harvesting molecules. On
the other hand, for the quantum search problem the aim is to
calculate the time needed for the wave function to localize at a
certain marked node of a class of graphs and, most importantly,
how this time scales with the the problem size, which is
assumed to be large. Also, the solution of the search problem is
marked by a local Hamiltonian term, which affects the unitary
evolution of the system. Thus, both the figures of merit and
the equations of motion describing the dynamics are different
when analyzing the problem of quantum transport to a trapping
site and quantum search of a marked node.

In the context of quantum computation, the question of
how different error parameters should be controlled in order
to obtain a certain quantum advantage is crucial for near-term
non-error-corrected quantum devices [41]. Such studies can
guide experimentalists when scaling up these systems. Our
work highlights the importance of controlling the strength

of the static errors o. For the search problem, in both the
unitary and nonunitary scenarios, this parameter dictates how
much advantage we have with respect to classical search. On
increasing the dimension of the search space, to maintain a
certain quantum advantage, it is necessary to decrease the
value of o accordingly. It is interesting to note that in the
nonunitary case, such control is not required for temperature.
In fact, the algorithm performs better for larger temperatures,
due to faster thermal relaxation, and the only restriction is that
B > O(logn).

Our work can be extended in several ways. It would be
interesting to explore whether a similar environment-assisted
effect holds when there is an unknown number of solutions to
the search problem. In such a case, the dissipative dynamics
could lead to a new quantum algorithm for fixed-point search
assisted by the environment, requiring no additional resources
[42,43]. Furthermore, it would be worth exploring whether
other models for bath and system-bath interaction, possibly
taking into account non-Markovian effects, could lead to faster
thermal relaxation and whether it is possible to get close to the
proven lower bound of O(4/n) even in the presence of strong
disorder [22,44].

Finally, our work suggests that naturally occurring open
quantum system dynamics can be advantageous for analog
algorithms affected by static errors.
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APPENDIX A: ANALOG QUANTUM SEARCH
WITH STATIC ERRORS

The analog search algorithm requires an oracle that marks
the solution node to an energy that is different from the rest of
the nodes. In order for the problem to have a fair comparison
with the standard Grover’s algorithm in the circuit model, the
energy at the marked node is chosen to be —1 [24]. However an
imperfect implementation of the oracle might severely affect
the algorithmic performance. We define an imperfect oracle as
one which “marks” each node of the graph erroneously: each
non-solution-node j is marked with an energy ¢;, while the
solution node w is marked with an energy —1 + €,, (Where each
€, 1s a random variable). The resultant effect can be perceived
as an introduction of static disorder to the nodes of the complete
graph. We consider that these errors are systematic; i.e., we
assume that the value of each €; does not change over different
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iterations of the algorithm. We have thus the following search
Hamiltonian:

HdlS

n
oeen = —lw) (w| —Is) (s| + Y e li) il (A
i=1
where ¢; are the value of static disorder at vertex i and are 1.i.d.
random variables from some probability distribution of mean 0
and width 20 In fact, the form of the probability distribution is
not very important for the results we derive, as long as there is
a high probability that —o < ¢; < o, and also that in a typical
instance we have ¢; to be of the same order as o. We assume
that 0 < 1 and that one can estimate the value of o without
having access to the individual ¢;. Using perturbation theory
we calculate the approximate system eigenstates. To do so, let
us rewrite the Hamiltonian in the following form:
Hyoren = = ) (wl = Isa) {sal

Hy

1

ﬁ(|w> (sl + Isa) (W) + Y _ e 1) (il, (A2)

i=1

14

where we have neglected terms of order O (1/n). Itis expected
that the strength of the perturbation V should be dominated
by the disorder when o >> 1/4/n, whereas if 0 < 1/4/n we
expect the algorithm to be unaffected by disorder. In fact we
will see that this threshold is very important for the running
time of the algorithm.

Since Hy has two degenerate eigenstates |w) and |sg), we
apply degenerate perturbation theory to obtain the approximate
ground and first excited states of the system. At first order,
these are calculated by the diagonalization of the Hamiltonian
projected onto this degenerate subspace, which is given by

—1/y/n

—1 + €,

Hred:[_l/ﬁ

where €, is the strength of disorder at the solution node |w)
andé =}, €/(n — 1)is the mean of the disorder at all sites
other than the solution. We will neglect the random variable €
because it has 0 mean and its fluctuations are of O (o/+/n). This
is smaller than the other perturbation term, €,,, which is O (o).
In any case, neglecting € will affect the success probability by
a relative error of O(o).

From Eq. (A3) it is clear that the dynamics is dominated by
the value of disorder at the marked vertex. The diagonalization
of Hq yields the following eigenvectors:

1] 1 €
A" = = [ﬁ w)+(a =) |Sw>], (A4)

my_ Lf(ew _ R
\Az)—K[(z A)|w>+ﬁ|sw>], (AS)

where K = /(%4 — A)? + 1/n is the normalization factor.

The corresponding eigenvalues are
M= —14¢,/2-A, (A6)

AV = —1+4e,/2+A, (A7)

where the gap A is givenby A = A, — A1 = /€2 +4/n. The
success probability of the algorithm, also calculated at first
order in perturbation theory, is given by

. DN,
PV = wlexp™ 1) P g sin® (7>
w

(A8)

The probability P{"(¢) is maximumat T' = /A, P\(T') =
1/(1 + ne2 /4), and hence the algorithm needs to be repeated
1/P{D(T") times on average in order to find the marked vertex.
This gives the average running time as

Tn nez

14+ =2, A9
> +4 (A9)

where we assume that €,, takes the same value if one repeats
the algorithm using the same system (it is a systematic error).
We have thus two regimes of disorder:

Weak diagonal disorder regime. Aslong as o < O(1/4/n),
we have that ne2 < 1. Thus, in this regime the algorithm
keeps an optimal running time of O(y/n) as after this time
the probability of observing the solution state is a constant.

Strong diagonal disorder regime. However beyond this
threshold of o, i.e., when no? > 1, we expect that with high
probability ne2 > 1 and thus the gap between the ground state
and the first excited state is A = |€,|/2 < 0/2. Also from
Eq. (A8) we find that after a time of T} = 7 /€, = O(7/0),
the probability of observing the solution is O(1/nc?). Thus
the algorithm needs to be repeated O(no?) times to obtain
an average running time of 7 = O(no). If we assume that
o depends on n as o = n~?, the algorithm is suboptimal for
o < 1/2.The ground state of the Hamiltonian (not normalized)
is given by

) —lw) + —|€m|1\/;, sa) + O(ﬁ) ife, <0,
1 _\e,,,\1ﬁ|w)+|Sw>+0( : ), if €, > 0,

2
ne w

Tyis =

(A10)

and thus it has a large overlap either with |w) or with [sz)
depending on the sign of the random variable €,,. As explained
in the main text we can ensure that the ground state has always
a larger overlap with the solution by shifting the parameter y .

At this point, it is also important to understand the order
of magnitude of the terms we have neglected in perturbation
theory. The magnitude of the second-order corrections to the
eigenvalues A; and A is of O (]V|?). This means that we expect
that Eq. (A8) is valid for a timescale t < 1/|V |2, which is
sufficient for the discussion of the running time that we have
done previously. Furthermore, it is possible to show that the
terms we have neglected in the probability due to second-order
corrections to the eigenstates are of O(1/n).

APPENDIX B: BLOCH-REDFIELD MASTER EQUATION
FOR A TWO-LEVEL SYSTEM

In this Appendix we derive the Bloch-Redfield master
equation describing the evolution of the system interacting with
a thermal bath [36]. We assume that the system interacts with
a thermal bath whose Hamiltonian is given by

Hg = Z > waal,dia. (B1)
i=l «
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with [a;q, ajﬁ] = §;,j0a,p. Furthermore, we will consider the
interaction Hamiltonian given by

n
Hi =) ) sialaia +al) i) (il (B2)
i=l «
i.e., each node of the graph is coupled to an independent
bosonic bath, which we assume to be in a thermal state at
temperature 1/ (throughout the article we are working in units
where the Boltzmann constant kg = 1).
The analog search Hamiltonian can be approximated by
a two-level system as long as the temperature of the bath is
less than the gap between the first excited state and the rest of
the energy levels. As seen previously, this is also true when
the algorithm is affected by static disorder at the nodes of the
graph. Throughout our analysis we shall assume that the bath
temperature is such that the system can be well approximated
by a two-level system.
Let p;; = (Ai| p |A;), where p denotes the density matrix of
the system. We are interested in calculating the time-evolution
of the population of the solution which is given by

Py(1) = pri] (wlr) P+ poa(0)] (wlho) [*
+ p12(2) (w|A1) (A2|w) + p21(2) (w|A2) (A1|w),
(B3)

where each p;; (t)is given by the solution to the Bloch-Redfield
master equation. That is

Pab = —i@apPab + Y Rabeapea(t), (B4)
abed
where w;; = A; — A;. For a two-level system, {a, b, c,d} €
{1, 2} and

1 o S
Rabcd = _5 Z (de Z AixAiLSJ (wcx) - A(leAg[,S] (wcu)
J X

+ 8ac Y AL ALS (@ar) — AL ALLS (@a) {

(BS)

such that A){y = Cjx cjfy, where the coefficients c;; are obtained
by writing the states |i) in the eigenbasis of the system as
|l> = Zk Cik |)‘¢k)- AlSO,

J ()N (wir), oy < 0,

S; = B6
(@) J ()N (o) + 11, wy = 0, (B6)

with A'(w) = 1/(e#® — 1) and J (w) being the spectral density
of the bath given by

J@)=g") 80— vy, (B7)

where it is assumed that the coupling between each site of
the system and the bath is identical (g;, = g, for all i, ) and
sufficiently weak so that the Markov approximation is valid.
More precisely, the Markov approximation implies that the
timescale of decay of the bath correlation functions §¢ is much
faster than the relevant timescales of the system. We show in
Appendix E that choosing g < 1/5¢ ensures that the Markov

approximation is valid. So in our analysis, we fix a value of g
that ensures the validity of this approximation. As the nodes the
graph are coupled to a set of independent harmonic oscillators,
each having the same spectral density, we have that S;(wy,) is
the same for all j. We drop this subscript henceforth.

We express the two-state system density matrix as

p=3U+i-5), (B8)

where 1 = (py, py, p;) is a vector with real entries and o; are
the Pauli matrices with j € {x, y, z}. In the Pauli basis, the
Bloch-Redfield master equation simplifies to the following set
of differential equations:

) $(0)

Px = —wppy + S(w12) 020, — TO3va (B9)
Py = o12px — {35(0)03 + O1[S(w12) + S(@21)1} py.
(B10)
0: =8(0)020, — O1[S(@12) + S(wa1)]p;
+ O1[S(w21) — S(wi2)], (B11)
where we have that

01=>"(A)" (B12)
0y =) Al (A}, — A, (B13)
05 =Y (A}, — AY)”. (B14)

i
Throughout the article, we assume that the spectral density of
the bath is Ohmic with an exponential cutoff, i.e.,

—w/w.
b

J(w) = ngza)e (B15)

where w, is the cutoff frequency of the bath and 7 is a
constant normalization factor. We fix the cutoff frequency w,
to be a constant greater than one. For an Ohmic bath, S(0) =
lim,_o- S(w) = lim,_, o+ S(w) = ngz/ﬂ. We shall use this
general form of the Bloch-Redfield master equation for an-
alyzing how thermal relaxation can assist the analog search
algorithm, even when static errors affect the algorithm.

APPENDIX C: ANALOG QUANTUM SEARCH IN THE
PRESENCE OF A THERMAL BATH

In this Appendix we use the Bloch-Redfield equation
derived previously to study the evolution of the system density
matrix when there is no static disorder. In this scenario we
have that the gap between the ground state and the first
excited state wp; = A =2/,/n. Thus, to analyze whether
the algorithm remains optimal, it is necessary to resolve the
timescale A~! and so the secular approximation cannot be
taken. Furthermore, we have that (w|i;) = (w|i,) = 1/4/2
and hence

Pu(t) = 3[1+ p: ()], (C)

where we used the fact that p;;(¢) + p(t) =1 and that
2Re[p12(2)] = px(2).
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To obtain the master equation corresponding to o, (¢) ob-
serve that A{; = Aj,. This implies that O, and O3 in Eq. (B13)
and Eq. (B14) are 0. Furthermore, A}, = A', = A;. This
simplifies the Bloch-Redfield master equation considerably as
p is decoupled from p, and p,. Thus to obtain the population
of the solution state with time we have to solve the following
differential equations:

Px = Aloy’ (C2)
Py = —Apx — 20 py, (C3)
where
1 2
r=; Z AF[S(A) + S(—A)] (C4)
A?)J(A
2 tanh(BA/2)
J(A) 2
= A;=1/44 001 . (C6
8tanh(BA/2) [Z =14+ 0 /”)} (€6)
The solution to the Bloch-Redfield master equation is
) oo . o~ (VI=R) _ (VIR
px(t) = N 7
e—(«/l"2—A2)t _i_e(\/F?—Az)t
— 5 . (C7)

From Eq. (C7) we find that there arise two distinct cases that
determine the nature of relaxation dynamics:

(1) Underdamped relaxation to the steady state (I' < A).
When /T2 — AZ? is imaginary, we have that

P,(t) = %(1 - Hf{% sin[(v/ A2 — T'2)r]
+ cos[(v/ A2 — T'2)t] + O(FZ/AZ)}), (C8)

where

_ ng*A
"= (s )

In this regime there is an oscillation timescale of O(A~") after
which there is constant population at the solution. Note that the
relaxation timescale is longer than the oscillation timescale as
the system reaches the steady state after a time O(1/I"), with
P, (c0) = 1/2. Note that the larger the temperature the faster
is the relaxation rate I' but the running time of the algorithm
is still O(1/A), since we are in the regime where I’ < A.

(i1) Overdamped relaxation to the steady state (I" > A). In
this case +/I'2 — AZ? is real. Hence

Py(t) = (1 — ™My 4 0(AY/T?). (C10)

Thus afteratime T = O(I'/A?) = O (nI'), the system reaches
a steady state and the population of the solution is constant.
Unlike the underdamped case, increasing the temperature
makes the relaxation slower.

For a given system-environment coupling strength g, the
parameter that determines whether we are in case (i) or (ii)
is the temperature of the bath. In particular, we consider
two regimes of temperature: the zero-temperature case (8 —
oo) and the high-temperature case [O(logn) < 8 <K 1/A]
where the temperature is higher than the energy of the first
excited state but lower than the energy of the higher ex-
cited states. We do not analyze the intermediate case when
1/A < B < oo as the bath correlation time, given by O(1/8)
(see Secs. V and VII), becomes larger than the system
timescale of 1/A and thus the Markovian approximation is not
valid.

Zero temperature (f — 00). When the thermal bath is at
near-zero temperature we have that

I = 0(ng’A) (C11)
_o(ne
_ o(ﬁ). (C12)

Since g < 1, we are always in the underdamped regime when
the thermal bath is at zero temperature and the population of
the solution state is given by Eq. (C8). So the system oscillates
with a period of O(4/n) and the probability of being at the
solution is a constant which gives the optimal scaling of the
running time of the analog search algorithm. After a timescale
of I'"! = O(/n/g?) these oscillations are damped and the
system converges to the steady state and hence the algorithm
exhibits a fixed-point behavior.

High-temperature regime [O(logn) < B < 1/A]. In this
regime, we consider the scenario where the temperature of
the bath is greater than A, but sufficiently low (8 > logn) to
ensure that the two-level approximation is valid. Note that in
this scenario, tanh(BA/2) =~ BA/2. As discussed previously
and shown in Sec. VII, the correlation time of the thermal bath,
8t = O(B). Therate I is

ngZAefA/wﬂ
N=—-— (C13)
8tanh(BA/2)

2
0 (E) .
B
In this case, whenever g2/8 < O(1/4/n), we are in the under-
damped regime and the algorithmic running time is optimal.
Otherwise, the system is in the overdamped regime and the
relaxation time is

(C14)

2
Toa(B) = 0<"g ”) (C15)

B

In this regime the relaxation time gets slower with increase
in temperature and an advantage with respect to the classical
running time for search is only possible if the ratio g/p
decreases with n.

APPENDIX D: ANALOG QUANTUM SEARCH WITH
DIAGONAL DISORDER IN THE PRESENCE OF A
THERMAL BATH

In this Appendix, we study the dynamics of the search
algorithm coupled to a thermal bath and in the presence
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of static disorder using the Bloch-Redfield equation. This
equation allows us to resolve timescales of the order of the
inverse of system gap A~! & (¢2 +4/n)"1/2, as the secular
approximation is not taken. This is particularly important in the
weak-disorder regime, which is not treated in the main text. In
this regime, we have A~! = O(/n), and hence being able to
resolve such timescales is important to understand whether the
search algorithm runs in optimal time.

As can be seen from the analysis in Appendix A, the
presence of static disorder changes the ground state and the
first excited state of the algorithm. In fact now | (A;|w) | #
| (A2]w) |. In the presence of a thermal bath, we require that the
ground state of the system Hamiltonian have a higher overlap
with the solution state in order to enhance the population at
the solution via thermal relaxation. To ensure that the ground
state of the search Hamiltonian has a higher overlap with the
solution state |w) we need (w|Hyeq|w) < (S| Hred|Sn), Which
can be achieved by an appropriate choice of the parameter y, as
discussed in the main text. A possible choiceisy = (1 — o)/n.
This choice ensures that when the thermal bath is at low
temperatures, the success probability of the algorithm is higher,
although the relaxation time is slower. For example, when the
thermal bath is at zero temperature, this choice of y ensures
that the system relaxes to the solution state.

In this case, the gap between the ground state and the first
excited state, as result of this choice of y, is

A=0—¢,+ 0//n).

As typically €,, = O(o), we have that A = O(o). Also from
Sec. I, there are two regimes of static disorder and for each of

these the analysis for the relaxation of the system is going to
differ.

(D)

1. Weak diagonal disorder

In this regime, i.e., when the strength of disorder o <
O(1//n), the analog search algorithm remains robust to this
error and the optimal running time is maintained. Note that
the ground state and the first excited state have a constant
overlap with the solution state. As mentioned previously, the
new choice of y ensures that the ground state has a higher
overlap with the solution state as compared to the first excited
state. Also the gap between the ground state and the first excited
state A ~ O(1/+/n).

In the presence of the thermal bath, the behavior of the
analog search algorithm is similar to the scenario where there
was no disorder. However, in this regime A}, # A, and so O,
and O3 are nonzero. The Bloch-Redfield equations (B9)—-(B11)
are written as

P —35(0)05 —wn S(@12)0: | [ pa 0
py | = w12 —18(0)0; — 2T 0 oy | + 0 , (D2)
o S(0)0, 0 -2r Jok O1[S(w21) — S(w12)]

M

where wy; = AandI' = O, J(A) coth(BA/2)/2. The quanti-
ties Oy, O,, and O3 are O(1).

Zero temperature (B — 00). At zero temperature, S(0) =
g2/B = 0, which simplifies the master equation and thus the
calculation of the eigenvalues and eigenvectors of the matrix
M of Eq. (D2). We find that I' = O(ng?//n) and the system
reaches the steady state after a time of O(y/n/g?) which has
the same scaling as the case where no static error is present
[see Eq. (C12)].

High temperature [O(logn) < B < 1/A]. In this regime,
no simplification to the master equation is possible and we
resort to numerical simulations. Intuitively, one would expect
that the behavior of the algorithm is similar to the scenario
where there was no disorder. We numerically verify that this
is indeed the case and plot the population at the solution
with time at high temperature in Fig. 2. We observe that the
probability of success oscillates for small times and eventually
the system relaxes to the steady state which is expected to be a
statistical mixture between the solution state |w) and the equal
superposition of the rest of the nodes (|sy)).

2. Strong diagonal disorder

When the strength of disorder o > 1/4/n, the analog search
algorithm loses its optimality. In the unitary case, one observes
that one needs to measure after a time T = O(w /o) to find
the solution with probability O(1/no?). Furthermore, this
probability is amplified by repeating the algorithm O(no?)

(

times, thereby obtaining an expected running time of 7 =
O(no). We show that the introduction of a thermal bath can
amplify the amplitude of the solution node. In fact, increasing
the temperature ensures faster relaxation to the steady state
which has a high overlap with the solution state. Moreover, the
resultant dissipative dynamics ensures that the population at the
solution node only increases with time thereby circumventing
the need to repeat the algorithm several times as in the unitary
case.

Choosing y = (1 — o)/n yields the approximate eigen-
states (not normalized) as

A1) ~ ) (D3)

wy+ —— sy
| > ﬁ(g - 6w) | 1

1
\/ﬁ(o— - €w)
by neglecting higher order terms that will remain small as long
as o < 1, where the gap A, — A is

AXxo—¢€,=0(0).

|A2) ~ lw) — |sa) (D4)

(D5)

Thus there is a gap of 1 — A =1 — O(o) between the first
excited state and the rest of the spectrum which is a constant as
long as 0 < 1. This enables us to approximate our system as
a two-level system for low temperatures, i.e., 8 > O(logn).
The population at the solution, given by Eq. (B3), is now

1
Pw(t)%pn(t)JrO(—), (Do)

o/n
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FIG. 2. Comparison of population at the solution node with time
for a complete graph of 100 000 nodes where each node of the graph is
affected by weak diagonal disorder of standard deviation o = 0.006
in the unitary regime and in the presence of a thermal bath having
a cutoff frequency of w, =2 and system-bath coupling g = 0.04.
The oscillatory thin blue curve indicates the population in the unitary
scenario, i.e., in the absence of a thermal bath. The thick red curve
shows the population at the solution in the presence of a thermal bath
at inverse temperature, § = 15. The steady state of the thermal bath
has an overlap of close to 1/2 with the solution state.

which implies that the population of the solution is deter-
mined by the population of the ground state for 1//n <«
oK1

In this regime of static disorder, we can coarse-grain the
timescale of the relaxation of the system which simplifies the
Bloch-Redifield equation considerably. Note that the Bloch-
Redfield equation already assumes a coarse-graining in the
timescale of the system owing to the Markov approximation.
Furthermore the timescales that we are interested in (~./n) are
significantly greater than the gap A = O(o'); we can take the
so-called secular approximation which implies an additional
course-graining in the relaxation dynamics of the system. In
general, if g is the strength of coupling between the system
and the bath and 6 is the width of the correlation function
of the bath, the typical relaxation timescale of the system is
~1/(g?8t) and for the secular approximation to hold this has
to be greater than 1/A. Thus, we fix a g that respects both the
secular and the Markov approximation. Whenever fo < 1,
the choice of g that respects the secular approximation also
respects the Markov approximation. For further details refer to
Sec.VII. Henceforth, in this Appendix we shall assume that g is
such that in addition to the Markov approximation, the secular
approximation also holds. Taking the secular approximation
ensures that in the Bloch-Redfield equation, the diagonal
terms of the density matrix never couple with the off-diagonal
terms (Lindblad form). Since from Eq. (D6), we find that the
population of the ground state determines the population of
the solution, we have the master equation of the dynamics
of the population of the ground state and the first excited
state:

Prk = Z Wion — Z Wik oxk»

Ik Ik

(D7)

where k € {1,2}and!/ € {1, 2, ..., n}. The transition rates are
given by

. 2nJ(wk1)Ak1N(wk1),
T 2r F ) AN (@) + 11, @ >0,

such that Ay =), |cixcir|?. Solving the differential equation
(D7) we obtain

Wi < 0,
(D8)

Wi —(Wia+Wap)t
pui = (1 — e Wt (D9)
YT W+ Wy
1 " eft/ Trcl
— — p /T;'c]
= 1+e—/3A(1 e )+ (D10)
with the relaxation time given by
1
T = ————. (D11)
Wia + Wa
On substituting the appropriate terms we obtain
1 A
Tt ~ ————— tanh pa . (D12)
ApJ(A) 2

APPENDIX E: VALIDITY OF THE MARKOV
AND SECULAR APPROXIMATIONS

In this Appendix we discuss for what regime of system-bath
coupling parameters the Markov and secular approximations
are expected to hold [31,36]. Let Hg represent the Hamiltonian
of the system while H is the Hamiltonian of the environment.
Consider the following interaction Hamiltonian,

H =g) OiF, (EI)

where Q; are operators acting on the system’s Hilbert space
and F; are operators acting on the Hilbert space of the bath. So
in the interaction picture let

Hi(t) =gy Qi()F:(1), (E2)

where Q;(t) and F;(t) are the previously defined operators in
the interaction picture. Thus we obtain that, after tracing out the
environment degrees of freedom, the evolution of the reduced
density matrix of the system is given by the Bloch-Redfield
master equation which is of the following form:

ddits = (»Cunitary + »Cdiss)pS(t)s (E3)
where Lypitary is the superoperator corresponding to purely
unitary dynamics while Lgiss corresponds to the superoperator
corresponding to purely dissipative dynamics.

The Born approximation is respected as long as we are in the
weak-coupling regime, i.e., ||L eiax|| < |[Lunitary|| = 1. Note
that in the interaction picture, the dynamics of the reduced
density matrix of the system [up to O(g?)] is given by

o5t _ 23 f T4 0101 )51 Q0 E (1)
dt 7 0 i SI¥Y j ij

+ other similar terms, (E4)

where Fj;(t) = (F;(t)Fj;) is the bath correlation function. The
bath correlation function decays after the bath correlation
timescale defined in the article as &z. Thus we have the
term inside the integral, i.e., || Lgiss|| = O(g%8t). Now for the
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Markov approximation to be valid we require that the bath
correlation decay faster than the typical timescale of relaxation
of the system. This implies that

1
8t € —— ES
< Iy (ES)
1
—. E6
=g K 5 (E6)

In the main text we analyze the analog search algorithm
affected by strong diagonal disorder, using a master equation
where the secular approximation was used. This means that
the typical timescale of relaxation of the system due to the
coupling with the bath should be greater than typical system
timescale given by the inverse of the gap A between ground
and first excited states. Hence, we should have

1 1

A < g2t

=g <K,/ A (E8)
§ 5t

Then, for both secular and Markov approximations to be
respected, we need the value of the coupling strength g <

min{1/8t, /A/J51).

(E7)

APPENDIX F: CORRELATION FUNCTION OF AN OHMIC
BATH WITH AN EXPONENTIAL CUTOFF AT ZERO
TEMPERATURE

In this Appendix we calculate the width of the bath corre-
lation function at zero temperature [36] which is an important
quantity to understand the regime of validity of the Markov
and secular approximations (see Sec. V). The spectral density
of this bath is given by

J(w) = ngza)e_‘“/w“, (F1)

where w, is the bath cutoff frequency and if 0 < d < 1, the
bath is sub-Ohmic; for d = 1, the bath is Ohmic; while for
d > 1, the bath is super-Ohmic. On the other hand, the bath
correlation function is given by

Fii(t) = (Fi(0)F;) = /00 J(@)[coth(Bw/2) cos(wr)
0
—isin(wt)]dw, (F2)

where F; and F;(t) are defined in Eq. (E1) and Eq. (E2),
respectively. Also (O) represents the expectation value of
operator O.

For the Markovian approximation to be valid, the width
of the correlation function should decay much faster than the
relevant timescales of the system.

At zero temperature,

o0
Fii(t) = ng® / we e dyy  (F3)
0

oo
=g’ / we w04y (F4)
0
2,2 0
ng’w; -
= —2/ ge 'dq  (F5)
(I +itw:)” Jo

1
[considering q= w(— + it>:| (F6)
W,
2.2
ng @,
=—2_< F7
(14 itw.)? &)

So the width of F;;(¢)is 6t = O(1/w,).

APPENDIX G: CORRELATION FUNCTION OF AN OHMIC
BATH WITH AN EXPONENTIAL CUTOFF AT NONZERO
TEMPERATURES

In this Appendix we calculate the width of the bath cor-
relation function at finite temperature which is an important
quantity to understand the regime of validity of the Markov
and secular approximations (see Sec. V). We follow arguments
similar to that of Ref. [31].

We consider baths with an Ohmic spectral density as in
Eq. (F1). Considering the bath correlation function defined in
Eq. (F2) we have that

o0 1+e—ﬂw eiu)t +e—iwt
o= o))

iot _ ,—iot
- <%) }da) (G1)
o J(w ) .
:/ 2(1 (eiﬂw)(e—zwt_i_ezwt—ﬂw)dw (G2)
0 _
o] d
— ol w ettt/ g,
¢ 0 1 — €_ﬁw
7
[e'e] (,z)d .
+ / g e_ﬂwe""(””‘s“/"’f)dw . (G3)
0 _
vz
First we consider the integral Z;. We have
o9 a)d -
T = / e sme T dw (G4)
0 _
_ L raten
_ﬁdH o l—ed q
j 1 1
x|qg=poandz=" + (G5)
B B
(_1)d+1
= g v ), (G6)

where (9 (z) is the polygamma function defined as " (z) =
m—+1
domiT InT'(z), where I'(z) = [~ e *x*"'dx is the Gamma
function. So " (z) = [;* ’fnf:q dq.
Following similar arguments we have that

(—1)¢+! 1 it
2= G (1 )

(G7)
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Thus the bath correlation function is

B (_l)d-Hnngl d @ it
ru = S v (4 )

1 it
@1 ———ﬂ. G8
+ < * S B (G8)

We shall assume that the quantity Bw, > 1 and expand the
polygamma functions in Eq. (G8) according to Taylor series.

First, observe that dz—mwn(z) Y™+ (z). Then,

. . [e'S) (n+d) (it
) E)z w(i) v ) (5) d
v (ﬂwc B v B +n:1 (Bw:)'n! an

(G9)
1 it it

@1y _HY_,@ 1__)

v <+ﬂwc ﬂ) v ( 5

'S} ]//.(n+d)(1 _ %)
+ —(,Ba)c)”n! . (Gl10)

n=1

For simplicity, henceforth we shall concern ourselves with the
case where the bath is Ohmic (d = 1) and make statements for
d in general at the end. Thus combining Egs. (G8), (G9), and
(G10) we have that the bath correlation function is

Fi(t) = 25| 4™ <1>1_i_t)
(t) ﬂz[df <ﬂ)+1/f( 5

00 (n+1) (it + (n+1)1_g
+Z¢ )y ﬂ)}.(Gn)

(B )'n!

n=1

Now we shall simplify Eq. (G11) using a couple of properties
of polygamma functions. Let us state these two properties first:

n

YO =)+ DY) = (<1 :Z cot(wz),
(G12)
—1)"n!
YOG4 1) = () + nL” : (G13)
z
Using Eq. (G12) forn = 1 and z = it/ we have that
wm(%) + W”(l - %) = —m2csch’(mt/B). (Gl4)
Also using Eq. (G13), we have that
D (] _ ”) (n+1)< >_|_ (=1)'n! (Gl
v ( g) =V ) T G OF

Substituting the results of Eq. (G14) and Eq. (G15) into
Eq. (G11) we obtain

(=1 (n+1)!
—it/B)Y"** (Boc)n!

[eS) Ip(n—t—l)(%)_l_w(rH—l)(_ lﬁ)i|

Fii(1) = }jggz [—n cschz(nt/ﬂ)+z

+ (G16)

(Bwc)'n!

n=1

=D+ 1)

B (=it (@)

[e9) w(n-&-l)(zt) 1//("+l)( ﬂ):|

ny
= (Bor)'n!

From Eq. (G17), we find that the bath correlation time
depends on both 8 and w.. Assume that w. > 1 and that
we are interested in timescales that are larger than the
thermal timescale (i.e., > B) implying that csch?(rt/B) ~
e 2m/B 4 O(e=*/F). In this regime the bath correlation
timescales are 6t ~ O(8).

APPENDIX H: LOWER BOUND ON THE OPTIMALITY
OF ANALOG QUANTUM SEARCH IN THE PRESENCE
OF AN ENVIRONMENT

2
ng |:—— csch’(wt/B) + Z

+ (G17)

We prove that the running time of the analog quantum search
algorithm is lower-bounded by O(+/n) in the presence of an
environment of arbitrary dimension. Our derivation also shows
that the running time of this algorithm cannot be improved any
further by appending an ancillary space to the original search
space. We follow an argument that is similar to Ref. [23].

We are given an oracular Hamiltonian H,, that marks the
search node and add to it a time-dependent drive Hamiltonian
Hp(t). Let us assume that an ancillary space of dimension M
is appended to the search space (in this case of dimension 7).
In such a case, the oracle Hamiltonian is

Hy = |w) (w[® Iy, (HI)

where 1) is the identity matrix of dimension M. This implies
that the oracle marks a node in the search space alone. If the
basis states of the environment are {|j)} for 1 < j < M, then

M
Y wl @ [ Y1) (il (H2)

) (wl® (/) {jl. (H3)

||ME

Notice that the oracle is in fact marking M elements in the
Hilbert space spanned by the system and the environment of
dimension n M. Also

ZHw = InM (H4)

is the sumof (nM)/M = n number of disjoint possible marked
states in the total n M-dimensional Hilbert space.

The driver Hamiltonian Hp(¢) acts on the total Hilbert
space. Thus the total search Hamiltonian is given by

Hrearch = Hw + HD(t)- (HS)
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This formalism is enough to capture the scenarios where the
system under consideration (the underlying graph) undergoes
interactions with the environment. The driver Hamiltonian
encompasses both the Hamiltonian of the environment, the
interaction Hamiltonian, as well as the system Hamiltonian
proportional to the graph’s adjacency matrix. Assume that the
initial state of the algorithm is in some pure state [yy) € C"M.
If the state |w) is marked, let us assume that after a time ¢ we
obtain that the algorithm is in state |y, (¢)). Now if a different
state was marked, say |w’), and the algorithm commenced from
the same initial state |v/), then in order to ensure sufficient
distinguishability between |w) and |w’), the states |/, (7)) and
|, (2)) should be sufficiently distinguishable. In fact for this
to happen [y, (¢)) should be sufficiently different from any
|w)-independent state |i(¢)) resulting from the evolution of
|Y0) under the Hamiltonian Hp(¢). We want to ensure that, for
any w, after some large enough time 7 we have

Y (D) = [W(TH 1> > e

which implies that

> (1)) —

Now we intend to obtain an upper bound for the rate of
change in the norm squared of the separation between the
aforementioned states, i.e.,

(Ho)

[y (T)) 1I* > ne (H7)

d 2 a4

2@ = [P O) I = —2Re— (Yo (O]¥ (1)) (H8)
= 2Im (Y, (1) Hy [ (1)) (HI)
< 2[[Hy [Y (@) I (H10)

Thus
d
Z;”"”w(’) ()| 2Z||H @) Il (H11)
Now let
() = ZZ% li)1J) (H12)
i=1 j=I
where 7| > |a;j|? = 1. Thus
M
Hy [Y(0) = aw; [w) |j) . (H13)
j=1

Let p, = Y, law;|> < 1. Since Y7 _; py =1 it implies

that Y ) _, /Pw < +/n. Thus we have that
% D Y (@) = [y @) | 22 || Huy 19 (1)) 1]
' n
=2 " /pw <21
w=l
(H14)
This gives the following upper bound:
D U (T)) = [ (T 1> < 24/aT. (H15)
Combining Eq. (H7) and Eq. (H15), we obtain that
T> ‘/Zﬁé. (H16)
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