
Electron stars for holographic metallic criticality

Sean A. Hartnoll* and Alireza Tavanfar†

Center for the Fundamental Laws of Nature, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 16 October 2010; published 2 February 2011)

We refer to the ground state of a gravitating, charged ideal fluid of fermions held at a finite chemical

potential as an ‘‘electron star.’’ In a holographic setting, electron stars are candidate gravity duals for

strongly interacting finite fermion density systems. We show how electron stars develop an emergent

Lifshitz scaling at low energies. This IR scaling region is a consequence of the two-way interaction

between emergent quantum critical bosonic modes and the finite density of fermions. By integrating from

the IR region to an asymptotically AdS4 spacetime, we compute basic properties of the electron stars,

including their electrical conductivity. We emphasize the challenge of connecting UV and IR physics in

strongly interacting finite density systems.
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I. THE BROADER CONTEXT

A challenge facing contemporary condensed matter
theory is the description of a 2þ 1-dimensional finite
density of fermions interacting with a gapless collective
bosonic excitation, such as a spin density wave or emer-
gent gauge field. Such theories arise, for instance, when a
Fermi liquid is tuned across a quantum phase transition.
The low-energy dynamics of the system of fermions in-
teracting with the critical bosonic mode can be character-
ized as metallic quantum criticality. While in 3þ 1
dimensions one can proceed to integrate out the fermions
and obtain a stable Gaussian theory for the boson [1], this
approach does not give correct answers in 2þ 1 dimen-
sions—see, e.g., [2–4]—as it ignores an infinite number of
nonlocal marginal couplings in the effective theory for the
boson. One should not integrate out the fermions in this
case but rather flow to a scaling regime involving both the
boson and fermion fields. The resulting low-energy theory
is strongly interacting, e.g., [4].

One might have hoped to perform a (vector) large N
analysis as a perturbative handle on the theory. It has
recently been demonstrated [4–6] that the vector large N
expansion breaks down for 2þ 1-dimensional metallic
quantum critical systems. This occurs because a potential
IR divergence at high loop order is cured by a self-
energy of order 1=N, leading to extra factors of N in
the numerator in certain Feynman graphs. Partially mo-
tivated by these difficulties, in this paper we will use the
holographic correspondence [7–10] to study a strongly
interacting system of gapless bosons with a finite density
of fermions. Before proceeding, we should note that
more traditional approaches to this problem have also
been proposed [11–13], and that our framework does not
appear to include ingredients that are likely to be crucial
for applications to the original systems of interest, such

as Fermi lines with cold regions as well as hot spots. We
will, however, describe the emergence of a low-energy
scaling regime from the interaction of critical bosons
with a finite density of fermions. The essential physics
of this process was noted in [14].
In the holographic correspondence, a charge density is

implemented by a bulk Maxwell field, dual to the current
operator in field theory. The asymptotic boundary value of
the Maxwell field determines the chemical potential of the
field theory. This is a UV input, the consequences of which
we wish to explore at low energies. In the simplest bulk
setup of Einstein-Maxwell theory, the gravitational solution
dual to the finite chemical potential theory is then deter-
mined uniquely to be the planar Reissner–Nordstrom–anti-
de Sitter (AdS) black hole. This black hole was, therefore, a
natural starting point for investigations into strongly inter-
acting finite density systems [15–18]. Reviews of this and
other earlier work can be found in [8,9,19].
A conceptually problematic aspect of charged black

holes in an applied holography context is their blackness.
One is often interested in temperatures much lower than
the scale set by the charge density. In this extremal black
hole limit, the horizon remains present, and the actual
source of the bulk electrical field remains hidden. Thus,
within a bulk effective field theory approach to holography,
we do not have explicit access to the zero temperature
charged degrees of freedom.1 Although the universality
of a black hole description of charge density is appealing
and may yet have important consequences, it makes it
difficult to connect with the basic experimental implica-
tions of a finite density that depend on the nature of the
charge carriers, such as a Fermi surface in the case of
fermions. A Fermi surface appears not to be inherent to
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1While in some supersymmetric theories we might hope to be
able to adiabatically continue the problem to a weakly coupled
regime and ‘‘count’’ the degrees of freedom there [20], this does
not help us with our objective of understanding the strongly
interacting finite density dynamics on their own terms.
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the gravitational geometry, but depends on the nature of
external probes [21–25].

It is perhaps fortunate, therefore, that low temperature
charged AdS black holes are found to be unstable towards a
range of processes that discharge the black hole and can
lead to spacetimes without black hole horizons. The insta-
bilities include the condensation of charged scalar fields
[26], Cooper pairings of charged fermions [27], the emis-
sion of D branes [14,28,29], the backreaction of a bulk
fermionic charge density-induced by the local chemical
potential [14], confinement [30–32], and perhaps the emer-
gence of underlying lattice degrees of freedom [33]. It is
not clear, at this stage, whether all zero temperature
charged AdS black holes with a finite size horizon are
unstable [34]. If they are, this fact may be closely tied up
with a version of the ‘‘weak gravity’’ conjecture [35]. The
instabilities lead to a new zero temperature bulk geometry,
often without a finite size horizon (e.g., [36,37]). The
charge is then carried by explicit bulk fields, and we can
identify the corresponding field theory operators as respon-
sible for the finite density dynamics.

A fruitful approach taken in previous works in order to
explicitly model holographic charge carriers even in the
presence of horizons is to add probe D branes into the bulk;
see, e.g., [14,38–40]. The limitation of this approach,
shared with that of probe fermions [21–24], is that it
does not capture the two-way interaction between the
(putatively fermionic) charge carriers and the quantum
critical modes.

In this paper, we will expand upon Sec. 7.4 of [14] and
describe the electromagnetic and gravitational backreac-
tion of charged fermions on the holographic spacetime
geometry. In general, this is a very difficult problem, as
the fermions cannot be treated classically. The coupled
fermion-Maxwell-gravity system becomes tractable in a
limit in which the fermions may be treated locally in the
bulk as an ideal fluid of zero temperature charged free
fermions. This approach mirrors the standard description
of neutron starts in astrophysics, following the original
Oppenheimer-Volkoff-Tolman papers [41,42]. The neutron
star equations were generalized to an asymptotically AdS
setting in [43]. Given that our fermion fluid is charged, we
will refer to our solutions as electron stars.

In the following section, we set up the equations of
motion for a charged ideal fluid in Einstein-Maxwell theory
with a negative cosmological constant. Later, in Sec. IV, we
derive these equations from an action. We discuss the
regime of validity of the fluid description depending on
the Newton and Maxwell couplings, as well as the cosmo-
logical constant. In Sec. III, we characterize the (planar)
electron star solutions to these equations of motion. We
show that the IR of the geometry has an emergent Lifshitz
scaling and compute the dynamical scaling exponent z as a
function of the parameters of the theory. Integrating
out from the IR region to the spacetime boundary, we

numerically obtain the full electron star solutions and com-
pute their mass and charge. By perturbing the solutions in
Sec. V, we obtain the electrical conductivity as a function of
frequency. We find that the electron star conductivity ex-
hibits a universal low-frequency behavior previously noted
in other solutions with an IR Lifshitz scaling. Our work
presents a framework in which the physics of a strongly
interacting finite fermion density system can be investi-
gated; we enumerate some of the more pressing open
directions in the final discussion section.

II. EQUATIONS OF MOTION: BACKGROUND

We are interested in 3þ 1-dimensional zero tempera-
ture configurations of a charged perfect fluid in a holo-
graphic setting. We will introduce an action principle in a
later section, but for the moment will work with equations
of motion. The Einstein-Maxwell equations with a nega-
tive cosmological constant and sources are

Rab � 1

2
gabR� 3

L2
gab

¼ �2

�
1

e2

�
FacFb

c � 1

4
gabFcdF

cd

�
þ Tab

�
(2.1)

and

raF
ba ¼ e2Jb: (2.2)

Here, the perfect fluid energy-momentum tensor and cur-
rent are

Tab ¼ ð�þ pÞuaub þ pgab; Ja ¼ �ua: (2.3)

The four-velocity u should be normalized so that u2 ¼ �1.
The second Bianchi identity requires that the right-hand
side of (2.1) be transverse. Similarly, (2.2) requires that the
current be conserved. In the above expressions, the cos-
mological constant scale L, Maxwell coupling e, and
Newton constant �2 are constants, while the pressure p,
energy density �, and charge density � are fields on space-
time that will be related through the equation of state of the
fluid.
For the background, we wish to make the following

‘‘planar star’’ ansatz for the metric and Maxwell field:

ds2 ¼ L2

�
�fdt2 þ gdr2 þ 1

r2
ðdx2 þ dy2Þ

�
;

A ¼ eL

�
hdt: (2.4)

Here, f, g, and h are functions of the radial coordinate r.
The pressure, energy, and charge densities are also func-
tions of r. It is useful to scale out the couplings and write

p ¼ 1

L2�2
p̂; � ¼ 1

L2�2
�̂; � ¼ 1

eL2�
�̂: (2.5)

The velocity has the nonzero component ut ¼ 1=ðL ffiffiffi
f

p Þ.
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It is straightforward to show that the above Einstein-
Maxwell equations are solved, provided that the following
four equations are satisfied:

p̂ 0 þ ðp̂þ �̂Þ f
0

2f
� h0�̂ffiffiffi

f
p ¼ 0; (2.6)

1

r

�
f0

f
þ g0

g
þ 4

r

�
þ ðp̂þ �̂Þg ¼ 0; (2.7)

f0

rf
� h02

2f
þ gð3þ p̂Þ � 1

r2
¼ 0; (2.8)

h00 þ rh0

2
gðp̂þ �̂Þ � g

ffiffiffi
f

p
�̂ ¼ 0: (2.9)

These are four equations for six variables, and so an addi-
tional equation of state must be specified in order to close
the system. One of the equations is second-order. While we
could set h0 ¼ F at this point to obtain purely first-order
equations in terms of the Maxwell field strength, we are
shortly about to include the effects of Thomas-Fermi
screening, which introduces an explicit dependence on
the Maxwell potential h.

We will focus in this paper on the case in which the ideal
fluid is made from zero temperature charged fermions with
mass m. First, recall that, in flat 3þ 1-dimensional space
with chemical potential �, we would have

� ¼
Z �

m
EgðEÞdE; � ¼

Z �

m
gðEÞdE;

�p ¼ ����: (2.10)

The last of these expressions is the usual thermodynamic
relation for the grand canonical ensemble. We have taken
the charge of the fermion to be one in units where the
Maxwell action is 1

e2
F2. The density of states is

gðEÞ ¼ �E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p
: (2.11)

The constant of proportionality � is order-one; the exact
value is not important for us. We will see shortly that it is a

rescaled constant �̂ that we wish to dial. Finally, if �<m,
then no states above the vacuum are populated, and so
� ¼ p ¼ � ¼ 0.

We will work in the approximation in which the fermion
physics is determined by the local chemical potential,
which is the tangent frame value of the background
Maxwell field,

�loc: ¼ At̂ ¼ At

L
ffiffiffi
f

p ¼ e

�

hffiffiffi
f

p : (2.12)

This ‘‘locally flat space’’ approximation will be shown to
be self-consistent in an interesting regime of parameters
shortly. In Sec. IV, we will derive Eq. (2.12) from the same
action that implies the ideal Einstein-Maxwell-fluid equa-
tions of motion. Substituting into the flat space formulae

(2.10) and scaling the integration variable leads to the
‘‘dimensionless’’ expressions

�̂¼ �̂
Z h=

ffiffi
f

p

m̂
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�m̂2

p
d�;

�̂¼ �̂
Z h=

ffiffi
f

p

m̂
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�m̂2

p
d�; �p̂¼ �̂� hffiffiffi

f
p �̂: (2.13)

Here,

�̂ ¼ e4L2

�2
�; m̂2 ¼ �2

e2
m2: (2.14)

Again, the energy density and other variables vanish if
hffiffi
f

p < m̂. The integrals in (2.13) are easily performed ana-

lytically. The local free fermion equation of state described
by (2.13) does not include corrections, due to gravitational
and electromagnetic interactions. We will check below that
these corrections are negligible in the regime in which we
will work.
The ansatz (2.13) determines three of our six functions,

and, therefore, we have to check that it is consistent with
the four equations (2.6), (2.7), (2.8), and (2.9). Indeed, this
is the case. The first equation (2.6) is, in fact, closely
related to the first law of thermodynamics and is satisfied
by (2.13). The four equations of motion then reduce to the
following three equations:

1

r

�
f0

f
þ g0

g
þ 4

r

�
þ gh�̂ffiffiffi

f
p ¼ 0; (2.15)

f0

rf
� h02

2f
þ gð3þ p̂Þ � 1

r2
¼ 0; (2.16)

h00 þ g�̂ffiffiffi
f

p
�
rhh0

2
� f

�
¼ 0: (2.17)

In these expressions, p̂ and �̂ are given by (2.13).
Before solving these equations, we should discuss the

values of the two free parameters �̂ and m̂2. Recall that, in
the classical gravity regime, �=L � 1. We will see shortly
that the interesting regime we wish to explore in this paper

has the ‘‘scaled’’ constant �̂ of order one. In order to
achieve this, we, therefore, need e2 � �=L � 1.
Curiously, this is a fairly natural relationship from the point
of view of string theory, as it requires the gravitational
(‘‘closed string’’) coupling to be the square of the Maxwell
(‘‘open string’’) coupling. This usually corresponds to the
‘‘probe brane’’ limit; it is interesting that integrating out
fermions charged under a probe brane gauge field results in
an order-one local backreaction on the spacetime, in the
’’dimensionless’’ sense that we mean it.

In the regime in which �̂ is order-one, the dimensionless
mass squared is then of order m̂2 � e2m2L2. The operator
dual to the bulk fermion might typically have a scaling
dimension ��mL� eL=�� 1=e � 1, leading to
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m̂2 � 1. For the moment, we will, therefore, take m̂ to be
order-one (including m̂ ¼ 0).

At this point, we can check whether the approximation
of using the local flat space results is valid. One require-
ment for the flat space treatment is that the density of
fermions is large compared to the curvature scale of the
geometry. Thus, we can compute, under the assumption
that �̂ is order-one and that e2 � �=L � 1,

�L3 � L

e�
� 1

e3
� 1: (2.18)

Therefore, the regime of the order-one backreaction of the
fermions, together with the classical gravity limit, is
compatible with our ‘‘Thomas-Fermi’’ treatment of the
fermions. Also compatible with our treatment is the fact
that mL � 1, implying that the Compton wavelength of
the fermions is much smaller than the curvature scale (in
the massless case, one can note that �loc:L � 1).

We can also now check the validity of our ‘‘mean field’’
description of gravitational and Maxwell interactions. In
this description, the interactions are between local charge
and energy densities, but the equation of state determining
these densities does not incorporate these interactions.
Following [43], we can estimate the local effect of inter-
actions through the Boltzmann formula

d�

dt
� �2vF�: (2.19)

Here, vF is the order-one Fermi velocity, and � is the
gravitational or Maxwell total cross section. Using the
scaling of various quantities given above, we can
easily estimate that the dimensionless quantity
ð��loc:Þ�1d�=dt� e4 � 1 for both gravitational and
Maxwell interactions. Thus, the local effect of interactions
is parametrically negligible. We now proceed to solve the

equations of motion (2.15), (2.16), and (2.17), treating �̂
and m̂ as order-one free parameters.

III. SOLUTION TO THE BACKGROUND
EQUATIONS OF MOTION

A. Low-energy scaling regime

In the IR region of the geometry, which will be r ! 1 in
our coordinates (2.4), one finds [14] an emergent Lifshitz
scaling [44]. In fact, the Lifshitz metric is an exact solution
to the equations of motion (2.15), (2.16), and (2.17). This is
perhaps intuitively reasonable: the effect of having a local
charge density given by the local background chemical
potential (2.12) is to screen the electric field. This might
be thought of as a form of Thomas-Fermi screening. Once
the electric field has a mass, it cannot support an AdS2
extremal near horizon geometry. Instead, massive vector
fields are known to give rise to Lifshitz solutions [44]. The
metric and Maxwell functions take the form

f ¼ 1

r2z
; g ¼ g1

r2
; h ¼ h1

rz
: (3.1)

Here, z is called the dynamical critical exponent and is

given in terms of �̂ and m̂ by plugging the above Lifshitz
ansatz into the equations of motion. From two of the
equations of motion, we find

h21 ¼ z� 1

z
; g21 ¼ 36ðz� 1Þz4

½ð1� m̂2Þz� 1�3�̂2
: (3.2)

The remaining equation of motion then gives a compli-

cated relationship between z, m̂, and �̂, which we cannot

solve explicitly. The dependence of z on �̂ is plotted in
Fig. 1 for three values of m̂. Note that the local chemical
potential (2.12) is constant on these backgrounds.
It is possible to extract the asymptotic behaviors analyti-

cally. For fixed m̂ at large �̂ ! 1,

z ¼ 1

1� m̂2
þ 64=3m̂2=3

ð1� m̂2Þ4=3ð2m̂4 � 7m̂2 þ 6Þ2=3

� 1

�̂2=3
þ � � � : (3.3)

In the massless limit, the expansion is a little different:

z ¼ 1þ 6

�̂
þ � � � ; ð�̂ ! 1; m̂ ¼ 0Þ: (3.4)

At fixed m̂ and small �̂ ! 0 (this was the limit considered
in [14]),

z ¼ 36

ð1� m̂2Þ3=2
1

�̂
� 1þ 3m̂4 log1þ

ffiffiffiffiffiffiffiffiffi
1�m̂2

p
m̂

2ð1� m̂2Þ3=2 þ � � � : (3.5)

It is immediately seen that these asymptotic results agree
with the behavior exhibited in Fig. 1. We see that, at

intermediate values of �̂, the dependence of z on �̂
interpolates between the limiting behaviors without any
intermediate features.

0 10 20 30 40
0

5

10

15

z

FIG. 1 (color online). Dependence of the IR dynamical critical
exponent on �̂. From left to right, the three curves have m̂ ¼ 0,
0.55, and 0.7.

SEAN A. HARTNOLL AND ALIREZA TAVANFAR PHYSICAL REVIEW D 83, 046003 (2011)

046003-4



To make sense of the above expansions, we should first
note that, if z ! 1, the geometry becomes AdS2 � R2. We

see that this occurs as m̂ ! 1 from below, or as �̂ ! 0 at
fixed m̂. In these limits, the fermion backreaction is being
turned off, and one recovers the near-horizon geometry of
an extremal planar Reissner-Nordstrom-AdS black hole. In
particular, it is clear that the above solutions only make
sense for

0 � m̂ < 1: (3.6)

For masses bigger than unity, the Lifshitz background
chemical potential is not able to induce a density of fermi-
ons. It is possible that interesting scaling behavior arises in
the limit m̂ ! 1, but we will not investigate this here. From

(3.3) and Fig. 1, we can see that, by dialing �̂ at fixed m̂, we
can achieve all z satisfying

z 	 1

1� m̂2
	 1: (3.7)

It is also interesting to note that, for massless fermions,

z ! 1 as �̂ ! 1; hence, the geometry becomes AdS4. In
general, the emergence of an IR Lifshitz scaling geometry
with dynamical critical exponent z tunable using couplings
and the mass is reminiscent of similar results for holo-
graphic superconductors [36,37]. The physical difference
between the two cases is that, for the superconductors, the
bulk Maxwell field becomes massive due to the Anderson-
Higgs mechanism, while in the present case, the mass is
due to screening by the charge density. A different type of
screening of the Maxwell field, due to a dilaton coupling
rather than a charge density, was shown to lead to a Lifshitz
IR region in [45,46].

The IR Lifshitz solution has the dual field theory inter-
pretation of a low-energy scaling regime arising from the
interaction of a finite density of fermions with emergent
critical bosonic modes (the metric and Maxwell fields in
the IR of the bulk). To explicitly connect this scaling to the
presence of a finite charge density, we need to integrate out
to the UV boundary of the spacetime, where the charge
density appears as a boundary condition. We do this in the
following subsections. The presence of such density-
induced emergent quantum criticality is a nontrivial and
phenomenologically exciting aspect of our models.

B. From the scaling regime to the
electron star boundary

The next step is to flow up the holographic renormaliza-
tion group flow. We do this by starting with the Lifshitz IR
fixed point of the previous subsection and perturbing it by
an irrelevant deformation. We then follow the flow induced
by this deformation into the UV by (numerically) solving
the differential equations of motion (2.15), (2.16), and
(2.17). Our treatment here is very similar to that of
[36,45]. The main difference with those works is that the
electron star will ‘‘end’’ at some specific radius rs, where

the fluid pressure, charge, and energy densities all go to
zero.
To perturb away from the scaling solution, we can write

f ¼ 1

r2z
ð1þ f1r

� þ � � �Þ; g ¼ g1
r2

ð1þ g1r
� þ � � �Þ;

h ¼ h1
rz

ð1þ h1r
� þ � � �Þ: (3.8)

We are looking for solutions where the perturbation grows
towards the UV (r ! 0) and dies off in the IR (r ! 1). By
substituting the above expansion into the equations of
motion, one easily finds that the three allowed exponents
are

�0 ¼ 2þ z;

�
 ¼ 2þ z

2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9z3 � 21z2 þ 40z� 28� m̂2zð4� 3zÞ2p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� m̂2Þz� 1

p :

(3.9)

As in [36,45], the universal relevant deformation with
exponent �0 presumably generates the finite temperature
solution, which we will not consider here. The two expo-
nents�
 are both real for the range (3.7) of z and m̂ that we
have access to. The exponent�� is negative and, therefore,
this is the mode that we need to follow. The �� and �þ
modes correspond, respectively, to the coupling and ex-
pectation value of an irrelevant operator in the IR theory.
At a practical level, the presence of the �0 and �þ modes,
which must be set to zero for a regular IR Lifshitz region, is
why one must numerically integrate from the IR outwards
towards the boundary rather than the other way around.
Given the exponent ��, by series expanding the equa-

tions of motion, one can determine the coefficients g1, h1,
and all higher coefficients, in terms of f1, which is un-
determined. However, f1 can be set to any value by rescal-
ing the coordinates r, t, and ~x. This reflects the physical
fact that only ratios of dimensionful quantities are mean-
ingful. We can, therefore, set f1 to an arbitrary constant
value (the sign is important, however) but should make
sure to only compute and plot dimensionless quantities.
With the series expansion at hand, we can proceed to
numerically integrate to smaller values of r. A typical
result is shown in Fig. 2. In the plot, we see how the
thermodynamic quantities of the fermion fluid flow from
their constant Lifshitz values at large r to zero at the star
radius r ¼ rs. Note that the IR region of the spacetime,
large r, has a finite volume in the radial direction.
The boundary of the star occurs when the local chemical

potential is not large enough to populate the local Fermi
sea. Thus, from (2.13),

hðrsÞffiffiffiffiffiffiffiffiffiffiffi
fðrsÞ

p ¼ m̂: (3.10)
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C. Matching onto Reissner-Nordstrom
and thermodynamics

Outside of the electron star, �̂ ¼ p̂ ¼ �̂ ¼ 0, and the
solution must become the (planar) Reissner-Nordstrom-
AdS spacetime. This solution has

f¼c2

r2
�M̂rþr2Q̂2

2
; g¼ c2

r4f
; h¼ �̂�rQ̂: (3.11)

The four constants of integration fc; M̂; Q̂; �̂g, to be related
to boundary field theory quantities shortly, must be fixed by
matching ff; g; h; h0g at r ¼ rs. The perhaps unfamiliar
constant c is necessary, because the normalization of the
time coordinate has been fixed already by our choice of f1
in (3.8) in the star interior. We could choose f1 such that
c ¼ 1, but this will not be necessary so long as we consider
dimensionless quantities.

It is physically instructive, mimicking the standard as-

trophysical description of neutron stars, to let fc; M̂; Q̂g
become functions of r and parametrize the solution by
(3.11) throughout the spacetime. It is then a short exercise

to show that the functions M̂ðrÞ and Q̂ðrÞ obey

½rQ̂ðrÞ�0 ¼ cðrÞ
Z 1

r

ffiffiffiffiffiffiffiffiffi
gðsÞp
s2

�̂ðsÞds; (3.12)

M̂ðrÞ � rQ̂ðrÞ2
2

¼ cðrÞ2
Z 1

r

�
�̂ðsÞ
s4

þ h0ðsÞ2
2s4fðsÞgðsÞ

�
ds:

(3.13)

These identities are valid for any ideal fluid and do not
depend on the specific equation of state (although we do
use the zero temperature thermodynamic relation �p̂ ¼
�̂� �̂h=

ffiffiffi
f

p
). The above integrals show how the charge Q̂

and energy M̂� 1
2 rQ̂

2 enclosed within a given radius are

determined, respectively, by the charge density of the ideal
fluid and by the sum of the energy density of the fluid and
the energy in the electromagnetic field.
By evaluating the previous expressions at the boundary,

r ¼ 0, we obtain formulae for the charge and energy
densities of the dual field theory:

Q̂ � Q̂ð0Þ ¼ c
Z 1

rs

ffiffiffiffiffiffiffiffiffi
gðsÞp
s2

�̂ðsÞds; (3.14)

Ê � M̂ð0Þ ¼ c2
Z 1

rs

�
�̂ðsÞ
s4

þ h0ðsÞ2
2s4fðsÞgðsÞ

�
dsþ rsQ̂

2

2
:

(3.15)

These quantities are densities with respect to the two
boundary spatial dimensions, while �̂ and �̂ were densities
with respect to the three bulk spatial dimensions. Because
the UV theory is a relativistic conformal field theory in
2þ 1 dimensions, we must have that the pressure and

energy are related by Ê ¼ 2P̂. Furthermore, in the grand

canonical ensemble, the free energy �̂ ¼ �P̂. It follows
from the zero temperature thermodynamic relation

� P̂ ¼ Ê� �̂ Q̂ (3.16)

that we must have

Ê ¼ 2
3�̂ Q̂ : (3.17)

In these expressions, �̂ is the chemical potential of the dual
field theory—see, e.g., [8]—not to be confused with the
local bulk chemical potential.
The thermodynamic identity (3.17) can be checked nu-

merically. In deriving this result analytically, we were led
to the following useful observation of our solutions:

2rhh0 � 2f� rf0 ¼ 0: (3.18)

We can show this in two steps. First, we note that (3.18) is
true for the Lifshitz solution (3.1), satisfying (3.2). Second,
by differentiating the expression in (3.18) and using the
general equations of motion (2.6), (2.7), (2.8), and (2.9)
together with �p̂ ¼ �̂� �̂h=

ffiffiffi
f

p
, we can show that it

remains zero along the radial evolution. Now, using
(3.18), it is possible to integrate by parts in (3.15) and
derive the identity (3.17).
First integrals of the equations of motion like (3.18) are

common in gravitational backgrounds and typically imple-
ment the isentropy of the classical gravitational flow. In our
case, we are at zero temperature, and the entropy is zero. In
practice, we can replace the second-order equation (2.17)
by the first-order relation (3.18). Thus, we have reduced the
equations of motion to three first-order equations (albeit
still involving a first derivative squared).
To compare the different electron stars at different val-

ues of z and m̂, an instructive variable to consider is the
dimensionless ratio of the total energy and charge (den-
sities). This ratio can also be compared to the value for

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r
rs

FIG. 2 (color online). From bottom to top, the pressure, en-
ergy, and charge density distributions for an electron star with
z ¼ 2 and m̂ ¼ 0:36 (corresponding to �̂ � 20). The boundary
of the star is r ¼ rs. Recall that the boundary of spacetime is at
r ¼ 0, while r ! 1 is the deep IR. In the IR, the thermodynamic
quantities tend to their constant Lifshitz values.
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extremal Reissner-Nordstrom black holes with no fermi-
onic hair,ffiffiffiffiffiffi

27

32

s
M̂2

cQ̂3
¼1 ðextremal Reissner-NordstromÞ: (3.19)

The lower this ratio, the more efficiently the solution is

able to carry the charge Q̂. The ratio is shown in Fig. 3 for
various electron stars as a function of the IR critical scaling
exponent z for different values of the fermion mass m̂.

In Fig. 3, we see that the mass of an electron star at fixed
charge is always lower than the corresponding extremal
black hole with the same charge. The stars are, therefore,
thermodynamically preferred. This might appear surpris-
ing, as extremal black holes are often the lightest charged
objects in the theory with a given charge, being made of
‘‘pure charge’’ in some sense. The situation here is quite
analogous to that of holographic superconductors [47,48].
Furthermore, we should note that in an extremal black hole
background, the local chemical potential h=

ffiffiffi
f

p ! 1 at the
horizon. This can be seen by substituting the extremality
condition (3.19) into the metric (3.11). For any fixed fer-
mion mass m̂ < 1, this chemical potential becomes greater
than the fermion mass before the horizon is reached, and,
therefore, a fermion density is induced. The extremal black
hole is, thus, never a solution to the equations of motion in
the range m̂ < 1 that we are considering. Alternatively, one
could say that the extremal black hole is a solution with an
unstable vacuum for the fermion field, in which the fer-
mion states with energies between m and �loc: are not
populated. Consistently with previous remarks, we see
that the extremal black hole behavior emerges as m̂ ! 1
or as z ! 1.

IV. AN ACTION FOR CHARGED IDEAL FLUIDS

While the equations of motion developed in previous
sections are sufficient for many purposes, an action
principle often plays a useful role in the holographic

correspondence. In this section, we pause in our main
development to describe an action that recovers all of the
equations of motion we have used above.
A simple action for neutral ideal fluids coupled to grav-

ity was formulated by Schutz [49]. We will start instead
from an ‘‘off-shell’’ form of the Schutz action, following
[50] and, more closely, [51], coupled to the Maxwell field
along the lines of [52]. Off-shell refers here to the treat-
ment of a constraint.
For simplicity, we begin with the simplest case of ‘‘non-

rotating’’ fluids2 at zero temperature. The generalization to
thermal rotating fluids is straightforward, as we will in-
dicate below. An action functional describing nonrotating
charged ideal fluids at zero temperature, minimally
coupled to gravity, is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðLEins: þLMxwl: þLfluidÞ; (4.1)

where

L Eins:¼ 1

2�2

�
Rþ 6

L2

�
; LMxwl:¼� 1

4e2
FabF

ab; (4.2)

and

L fluid ¼ ��ð�Þ þ �uað@a�þ AaÞ þ 	ðuaua þ 1Þ:
(4.3)

We will see shortly that ua, �, and � are the four-velocity,
the energy density, and the charge density of the fluid,
respectively; 	 is a Lagrange multiplier; and � is a
‘‘Clebsch’’ potential variable associated with the fluid
velocity. As previously, we have set the charge of the
fermion to be unity and, thereby, conflated the charge
and number densities. Clearly, � must shift under a gauge
transformation in order for the action to be gauge invariant.
We now proceed to derive the equations of motion from

(4.1). The variables, with respect to which we vary the
action functional, are 	, �, �, the covariant velocity ua,
and finally the gauge potential Aa and the metric tensor
gab. The variation, with respect to the first three of these
variables, yields the following equations:


	: juj ¼ �1; (4.4)


�: �0ð�Þ ¼ uað@a�þ AaÞ; (4.5)


�: rað�uaÞ ¼ 0: (4.6)

Equation (4.6) is the continuity equation for the fluid
current vector

Ja � �ua; (4.7)

1 2 3 4 5 6
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27
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M
2

c Q
3

FIG. 3 (color online). Dimensionless ratio of the electron star
mass to its charge, normalized such that the ratio is unity for an
extremal black hole. The three curves correspond, from top to
bottom, to masses m̂ ¼ 0:7, m̂ ¼ 0:36, and m̂ ¼ 0:07.

2Because our fluid is charged, by nonrotating, we will mean
that �abcdubðrcud þ 1

2Fcd=�Þ ¼ 0. In practice, this condition
consistently restricts the degrees of freedom of the fluid to a
‘‘potential flow,’’ as will become manifest below.
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while (4.4) is just the statement that the fluid four-velocity
should be timelike. On physical grounds, we can identify
the left-hand side of Eq. (4.5) as the local chemical
potential

�ð�Þ � �0ð�Þ (4.8)

and introduce the fluid pressure p through the thermody-
namical equation

pð�Þ � ��ð�Þ þ ��ð�Þ: (4.9)

The previous two formulae are simply useful definitions,
insofar as the equations of motion are concerned. We can
rewrite (4.5) in the form

� ¼ uað@a�þ AaÞ: (4.10)

Note that the fluid chemical potential � is gauge invariant.
Next comes the varying of the action with respect to ub.

This leads to


ua: �ð@a�þ AaÞ þ 2	ua ¼ 0: (4.11)

Multiplying the previous equation by ua, the Lagrange
multiplier 	 is determined as

	 ¼ ��

2
¼ 1

2
ð�þ pÞ: (4.12)

Thereby, we also obtain

ua ¼ �@a�þ Aa

�
: (4.13)

This is the so-called ‘‘velocity-potential representation,’’
which is implemented directly in ‘‘on-shell’’ variational
formulations.

Varying the action with respect to the gauge potential
gives the Maxwell equations

rbF
ab ¼ e2Ja; (4.14)

where the current was defined in (4.7) above. Finally, the
Einstein equations for the geometry,

Rab � 1

2
gabR� 3

L2
gab

¼ �2

e2

�
FacFb

c � 1

4
gabFcdF

cd

�
þ �2Tfluid

ab ; (4.15)

are obtained upon varying the action (4.1) with respect to
gab. The energy-momentum tensor of the fluid is given by

Tab
fluid �

2ffiffiffiffiffiffiffi�g
p 



gab

Z
d4x

ffiffiffiffiffiffiffi�g
p

Lfluid

¼ gabLfluid � 2uða½�ð@bÞ�þ AbÞÞ þ 	ubÞ�: (4.16)

Using the previous equations of motion, the on-shell en-
ergy momentum is found to take the standard form for an
ideal fluid:

Tab
fluid ¼ ð�þ pÞuaub þ pgab: (4.17)

We should check that we have, indeed, recovered all the
equations of the previous section from the full action (4.1).
The Einstein-Maxwell-fluid equations (2.1), (2.2), and (2.3)
have been obtained explicitly. The equation of state �ð�Þ
was defined implicitly through Eq. (2.10), by elimination of
�. We can easily check that (2.10), furthermore, implies
that� ¼ �0ð�Þ, as required. The ansatz we made in Sec. II
for the metric, Maxwell field, and fluid velocity corre-
sponds to the setting � ¼ 0 in (4.13), with the local �
consequently given by (2.12).3 Thus, we see that all the
equations used in previous sections correspond to a solution
of the equations of motion following from the action (4.1).
It is now easy to obtain the on-shell form of Lfluid. This

is required, for instance, to evaluate the free energy of the
electron star. Substituting the equations of motion into the
action (4.3) gives

L on-shell
fluid ¼ p: (4.18)

Thus, the on-shell Lagrangian for the ideal fluid is simply
its pressure. Evaluated on our electron star ansatz (2.4), one
can then verify, using the equations of motion (2.6), (2.7),
(2.8), and (2.9), that the full Lagrangian in (4.1) is a total
derivative,

L on-shell ¼ L2

�2

d

dr

f0 � 2hh0

2r2
ffiffiffiffiffiffi
fg

p : (4.19)

The free energy is given by the Euclidean action evaluated
on shell. We have just seen that the bulk action becomes a
boundary term. In order to obtain a finite answer, we must
add the boundary Gibbons-Hawking term and intrinsic
counterterms. We will not describe this standard process
in detail; see, e.g., [8]. The solution near the boundary
takes the form of Eq. (3.11); this is all that is needed to
evaluate the action on shell, as there is no contribution
from the IR Lifshitz endpoint of the integral. The upshot is
that the free energy density is

�̂ ¼ M̂� �̂ Q̂; (4.20)

as we assumed in (3.16) above.
We can also use the action (4.1) as a starting point for

Lifshitz holography, with the UV given by (3.1) rather than
AdS4. Lifshitz holography requires additional boundary
counterterms. These are most conveniently packaged

[53,54] as a series in powers of jd�þ Aj2 þ e2h21
�2 , as this

combination vanishes on the Lifshitz background, and it

3As usual in holographic setups, we fixed a gauge ambiguity
by requiring At to vanish at the horizon. Adding a nonzero
constant @t� in the formula for the gauge invariant local chemi-
cal potential (4.10) would result in a non-Lifshitz invariant IR. A
radially dependent � would take us outside of our ansatz,
introducing radial fluid flow. This choice of requiring � to
tend to a constant in the IR can presumably be thought of as a
choice of fermion vacuum that is regular at the IR horizon.
Thanks to Tom Hartman for discussions of this point.
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becomes apparent that only a finite number of such terms
are necessary.

If, following Schutz [49], we wished to obtain the cor-
rect equations of motion for the fluid as well as the ge-
ometry from the on-shell Lagrangian (4.18), we would first
need to bring the equation of state of the fluid � ¼ �ð�Þ
into the form p ¼ pð�Þ. This is achieved through (4.9),
which may be viewed as the usual Legendre transforma-
tion. Subsequently, we can take the norm of (4.13) to
express the pressure in terms of the Clebsch potential �
and the gauge potential Aa. This leads to the final Schutz
form of the fluid Lagrangian,

L Schutz
fluid ¼ pð�Þ ¼ pðjd�þ AjÞ: (4.21)

This action should be varied with respect to�, Aa, and gab.
This form of the action shows most explicitly that coupling
a charged ideal fluid to gravity without rotation or tem-
perature is equivalent to coupling to a Stückelberg field.

Finally, we should sketch the straightforward general-
ization of the off-shell action (4.1) to describe charged
rotating and finite temperature ideal fluids coupled to
gravity. More details can be found in the papers we referred
to above. One first introduces two pairs of new potential
variables, ð�;�Þ and ðs; �Þ. The first pair will account for
the fluid rotation. In the second pair, swill become the fluid
entropy density, while the variable �, the so-called ‘‘ther-
masy,’’ will be responsible for the fluid temperature.
Accordingly, in the action (4.1), the fluid Lagrangian is
promoted to the following:

Lfluid ¼ ��ð�; sÞ þ �uað@a�þ Aa þ �@asþ �@a�Þ
þ 	ðuaua þ 1Þ: (4.22)

The equation of state has been enhanced to include an
entropy dependence, �ð�; sÞ. Equations (4.4) and (4.6)
will remain the same, while Eq. (4.11) is replaced with

�ð@a�þ Aa þ �@asþ �@a�Þ þ 2	ua ¼ 0: (4.23)

There is a similar modification to Eq. (4.10). Further, we
have the following equations from varying the action with
respect to the new potential variables:

ua@as ¼ 0; ua@a� ¼ 0; ua@a� ¼ 0;

ua@a� ¼ �T � � 1

�

@�

@s
;

(4.24)

in which T denotes the fluid temperature. Similarly to
above, the resulting Schutz form of the action is found to be

L Schutz
fluid ¼ pð�; sÞ; (4.25)

where now the chemical potential in terms of the potential
variables and the gauge field is

� ¼ jd�þ �d�þ �dsþ Aj: (4.26)

V. ELECTRICAL CONDUCTIVITY

To compute the frequency-dependent electrical conduc-
tivity at zero momentum, �ð!Þ, we need to perturb the
backgrounds of the previous sections. We clearly need to
perturb the vector potential Ax, as this is the field dual to the
electric current. At zero momentum, these perturbations
source perturbations of the metric component gtx and the
velocity ux. Specifically, if we take the perturbations to
have time dependence e�i!t, so that

Ax ¼ eL

�

AxðrÞe�i!t; gtx ¼ L2
gtxðrÞe�i!t;

ux ¼ L
uxðrÞe�i!t;

(5.1)

then the linearized Einstein-Maxwell equations about the
above backgrounds are solved if the following three equa-
tions are satisfied:

�̂
Ax þ ðp̂þ �̂Þ
ux ¼ 0; (5.2)


g0tx þ 2

r

gtx þ 2h0
Ax ¼ 0; (5.3)


A00
x þ 1

2

�
f0

f
� g0

g

�

A0

x þ h0

f

�

g0tx þ 2

r

gtx

�

þ g�̂
ux þ!2 g

f

Ax ¼ 0: (5.4)

It is immediately clear that we can eliminate 
gtx and 
ux
from the above equations to obtain a single equation for

Ax,


A00
x þ 1

2

�
f0

f
� g0

g

�

A0

x þ
�
!2g

f
� g�̂2

p̂þ �̂
� 2h02

f

�

Ax ¼ 0:

(5.5)

The structure of this equation is similar to that arising in
holographic superconductors [48]. There is a mass term
due to screening in this case, rather than electromagnetic
symmetry breaking. The rightmost term in Eq. (5.5) is due
to the coupling between metric and Maxwell fluctuations.
It is also a masslike term and leads to an infinite DC
conductivity because the medium has a net charge density
and is translation invariant [17,18].
The equation for the perturbation of the fluid velocity

(5.2) is just 
Ax þ�
ux ¼ 0, which is again compatible
with the irrotational form (4.13), with 
� ¼ 
� ¼ 0. It is
possible that modes with finite momentum k will excite the
scalar degree of freedom of the fluid.

A. The conductivity at low frequencies

In the Lifshitz IR background (3.1), we can solve
Eq. (5.5) for the 
Ax fluctuations analytically in terms of
a Hankel function,
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AðLif:Þ
x ¼ rz=2Hð1Þ

3=2

�
g1=21

!rz

z

�
: (5.6)

In deriving this formula, we imposed ingoing boundary

conditions at the Lifshitz horizon (i.e., 
Ax � eþi!g1=21 rz=z

as r ! 1). We also used the algebraic equations (3.2),

giving g1 and h1 in terms of z, �̂, and m̂, in order to
simplify the index of the Hankel function. Similar Hankel
functions were found for fluctuations of a vector field in a
Lifshitz background in, e.g., [14,37,45]. In fact, the use of
Hankel functions here is overkill, as the previous expres-
sion can equivalently be written as an oscillating exponen-
tial multiplying a polynomial


AðLif:Þ
x ¼

�
1þ i

!rz
z

g1=21

�
ei!rzg1=21 =z: (5.7)

We have changed the (unobservable) overall normalization
relative to (5.6).

The solution for the perturbation in the Lifshitz region
(5.7) will hold for the full solution in the near region
defined by r�̂ � 1. At zero temperature, �̂ is the only
energy scale in the problem. This condition simply means
that we can use the leading-order metric near the horizon.
At low frequencies,! � �̂, the near region has an overlap
with the far region defined by !rz�̂z�1 � 1. In the far
region, away from the nonanalytic ingoing boundary con-
ditions, we can set! ¼ 0 in the Maxwell equation in order
to compute to leading order at low frequencies. We will
now proceed to match the near solution (5.7) to the far
region and obtain the conductivity to leading order at low
frequencies. This computation is essentially identical to
that appearing in, e.g., [37,45,55].

The conductivity of the dual field theory is computed at
the AdS4 boundary. Near the AdS4 boundary, r ! 0, and
the Maxwell field perturbation behaves as


Ax ¼ 
Að0Þ
x þ r
Að1Þ

x þ � � � : (5.8)

The dimensionless conductivity is then given by (e.g., [8])

�̂ � e2� ¼ � ic

!


Að1Þ
x


Að0Þ
x

: (5.9)

The extra factor of c, compared to more common expres-
sions, is due to the normalization of the metric in (3.11).
We use the same symbol for the conductivity of the dual
field theory and the charge density in the bulk. Hopefully,
the context will make obvious that to which we are
referring.

The following flux is independent of the radial
position r:

F ¼ i
ffiffiffiffiffiffiffiffiffi
f=g

q
ð
Ax
A

0
x � 
Ax
A

0
xÞ: (5.10)

Constancy of this quantity follows directly from Eq. (5.5).
Evaluating near the boundary and using (5.9) gives

F ¼ 2j
Að0Þ
x j2!Re�̂ð!Þ: (5.11)

Evaluating using the near horizon solution (5.7) gives

F ¼ 2!: (5.12)

Equating the previous two formulae, we see that, to obtain
the real part of the conductivity, it only remains to compute

the 
Að0Þ
x obtained by matching onto (5.7). Expanding the

near solution (5.7) into the matching region !rz�̂z�1 � 1
gives


Ax ¼ i

!rz
z

g1=21
: (5.13)

As we noted above, in the far region, we can drop the
! dependence in the Maxwell equation (5.5) because
! � �̂. It follows that the ! dependence in the previous
formula will remain the same all the way out to the

boundary, leading (generically) to 
Að0Þ
x / !�1. Putting

all of these facts together then leads to the conclusion
that, to leading order at low (but finite) frequencies,

Re �̂ð!Þ / !2: (5.14)

This is precisely the same low-frequency behavior for the
conductivity in a dual geometry with an IR Lifshitz region
as that obtained in [37,45]. The same behavior also occurs
at extremal black hole horizons [56]. The physics behind
the emergence of the Lifshitz region is apparently distinct
in these various cases; this seeming universality in the
electrical conductivity remains to be properly understood.
As well as the real part (5.14), we can anticipate that

the imaginary part of the conductivity will have a pole as
! ! 0, corresponding to a delta function at ! ¼ 0 in the
real part. Thus, in fact, Re�̂ð!Þ / 
ð!Þ þ!2. This delta
function is due to the fact that the system is translationally
invariant and carries a net charge. When excited by a time-
independent electric field, the whole system is accelerated,
leading to a current that cannot be relaxed [17,18]. We will
see the pole in the imaginary part of the conductivity
shortly in our numerics.
Before moving on to compute the full conductivity

numerically, we should make a remark about the result
that Re�̂ð!Þ / 
ð!Þ þ!2. Namely, that there are two
reasons why the !2 conductivity (which will presumably
translate into a T2 low temperature dependence of the DC
conductivity, as in [57]) should not be taken overly seri-
ously as an experimental feature of this model. First, in
practice, disorder or other physics will smear out the delta
function into a Drude peak. The magnitude of this peak
could easily dominate, e.g., the temperature dependence of
the DC conductivity. Second, putting aside the Drude peak,
an !2 or T2 dependence of the conductivity is very weak
and corresponds to a huge resistivity, going like !�2 or
T�2. It will be very easy for any other conduction channel
to short-circuit this classical contribution. For instance,
one-loop processes in the bulk involving charged fermions,
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analogous to those of [58], will likely have a resistivity that
goes to zero at low temperatures or frequencies. The
semiclassical expansion will, therefore, break down at
sufficiently low frequencies at which nonclassical conduc-
tion becomes favored. It is clearly of interest to investigate
the one-loop physics of our electron star backgrounds.

B. The full conductivity

In this subsection, we compute the full frequency-
dependent conductivity. To do this, we must numerically
solve the differential equation (5.5). We can integrate out
from the horizon to the boundary and then read off the
conductivity using (5.9). The ingoing solution at the hori-
zon, r ! 1, on a general background takes the form


Ax ¼ ei!g1=21 ½rz=zþrzþ��ðg1�f1Þ=2ðzþ��Þ�ð1þ #rzþ2�� þ � � �Þ:
(5.15)

Here, �� < 0 is the exponent of the IR irrelevant mode in
(3.9), while g1 and f1 are the coefficients appearing in (3.8).
These are determined, along with # and higher-order terms,
by a series expanding the equations of motion. From the
definition of �� in (3.9) and the lower bound on z in (3.7),
we can show that zþ �� > 0 and zþ 2�� < 0. This is
why the first power must be kept in the exponent, while the
second can be expanded as r ! 1.

Starting from the series expansion (5.15), we can nu-
merically integrate the Maxwell equation (5.5) out to the
electron star boundary rs. Outside of the electron star, we
need to solve the equation in the Reissner-Nordstom-AdS
background (3.11). This must also be done numerically,
with the value and derivative of the fluctuation 
Ax

matched across the electron star boundary. Integrating
out to the boundary then gives the conductivity (5.9).
We performed these integrations using NDSOLVE in
MATHEMATICA. The resulting real and imaginary parts of

the electrical conductivity as a function of frequency are
shown in Fig. 4.
In the plots of Fig. 4, we see the expected soft gap

��!2 of the (dissipative) real part of the conductivity
at low frequencies anticipated in (5.14) above. The diver-
gence of the imaginary part indicates the presence of a
delta function in the real part, via, for instance, the
Kramers-Kronig relations. As noted above, the divergence
is due to the combination of a net charge density and
translation invariance (i.e., no impurities or lattice). At
large frequencies, the real part tends to a constant. This
follows from the fact that conductivity is dimensionless in
2þ 1 dimensions and that the UV completion of our
boundary field theory is a conformal fixed point with no
inherent scale.
The z ¼ 3 plot of Fig. 4 is already quite similar to the

zero temperature limit of the z ¼ 1 Reissner-Nordstrom
case, which is a charged black hole rather than an electron
star. See, e.g., [8]. The only qualitative effect of the elec-
tron star (i.e., lower-mass fermions and lower IR scaling z)
seems to be to smoothen out the transition from the IR !2

scaling to the constant high-frequency behavior. The coef-
ficient of the �̂!�1 pole in the imaginary part of the

conductivity is proportional to Q̂=�̂2 / Q̂3=Ê2; again,
see, e.g., [8]. It is, therefore, consistent with Fig. 3 that
we see that the pole is stronger at lower fermion mass. At
lower fermion mass, the electron star has a larger charge at
fixed chemical potential.

VI. FINAL COMMENTS

One important objective of holographic approaches to
condensed matter is to characterize possible (computation-
ally controlled) IR fixed point behavior that falls outside of
the Landau-Fermi liquid paradigm. As with the Fermi
liquid itself, this is in the first instance a question about
universal low-energy physics, not about the UV physics (be
it electrons in a lattice or some cousin of N ¼ 8 super
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FIG. 4 (color online). The zero temperature real and imaginary parts of the electrical conductivity as a function of frequency. From
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Yang-Mills theory). This perspective suggests that, in the
bulk, one should focus on the near horizon region of the
geometry, as argued most explicitly in [59,60]. However,
the role of a finite charge density is subtle in this regard.4

The charge density itself, or the chemical potential, is a UV
quantity that is specified at the boundary of the bulk
geometry. The deep IR Lifshitz solution, in our case, for
instance, does not immediately ‘‘know’’ what the value of
this charge density is. In fact, the electric field is zero at the
Lifshitz horizon and grows as one moves out towards the
boundary of the electron star. Therefore, if we wish to
understand how the emergent IR Lifshitz scaling is related
to the fact that we are considering a system at finite density,
we need to connect statements about the UV and IR phys-
ics. In a Fermi liquid, the connection between UV and IR
physics is achieved via the Luttinger theorem [61,62]. This
theorem states that the volume enclosed by the Fermi
surface is determined by the average particle number.
When the low-energy effective field theory is the Fermi
liquid theory, the theorem essentially reduces to counting
charged states in the UV and IR [63]. A pressing open
question in applications of holography to condensed matter
systems is to formulate a useful holographic analogue of
this theorem.

Partially motivated to obtain an arena where an interest-
ing low-energy scaling geometry could be seen to emerge
from a finite density system, in this paper we have con-
structed zero temperature electron star solutions in asymp-
totically AdS4 spacetime, building on results in [14]. These
geometries are solutions to the Einstein-Maxwell-charged
ideal fluid equations of motion. The structure of the solu-
tions is a ‘‘domain wall’’ flow from a near horizon Lifshitz
geometry to AdS4 at high energies. The essential physics of
the flow is that the Maxwell field becomes screened in the
Lifshitz region by the charged fluid. In several regards, our
solutions are qualitatively (and quantitively) similar to the
zero temperature holographic superconductors of [36,37]
and the extremal dilatonic black holes of [45].

Another motivation of our work was to obtain gravita-
tional duals in which the full charge density was manifestly
fermionic. The electron star is literally a Fermi surface that
is inhomogeneous in the bulk radial direction. This may or
may not be an important ingredient in formulating a holo-
graphic Luttinger-like theorem. There are various imme-
diate questions to be explored in this regard. One should
compute the momentum dependence of the conductivity to
look for Fermi surface-related signatures. Also, upon add-
ing a magnetic field to the system, the electron star should
show quantum oscillations already at a classical level,
unlike charged black holes for which quantum oscillations
are only present at one-loop order and reveal a small Fermi
surface [25,64].
There are various directions in which our work could be

extended at the level of generalizing the solutions we have
presented and studying their physics. Upon adding inter-
actions, the stars will likely have instabilities such as
Cooper pairing instabilities along the lines of [27]. One
should explore the effects of changing the equation of state.
There may be circumstances in which clumping instabil-
ities arise. It should be straightforward to place the system
at finite temperature. It is possible that a phase transition to
a black hole solution occurs at some finite temperature,
analogously to the transition in the neutron stars of [43]. A
more challenging question is to move away from the ideal
fluid limit. One would like to solve the Dirac equation in an
unspecified background, populate the low-lying states up
to some chemical potential, and then self-consistently
solve the Einstein-Maxwell equations together with this
quantum source.
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