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In this work, we introduce classical holographic codes. These can be understood as concatenated
probabilistic codes and can be represented as networks uniformly covering hyperbolic space. In particular,
classical holographic codes can be interpreted as maps from bulk degrees of freedom to boundary degrees
of freedom. Interestingly, they are shown to exhibit features similar to those expected from the AdS/CFT
correspondence. Among these are a version of the Ryu-Takayanagi formula and intriguing properties
regarding bulk reconstruction and boundary representations of bulk operations. We discuss the relation
of our findings with expectations from AdS/CFT and, in particular, with recent results from quantum
error correction.
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I. INTRODUCTION

The holographic principle is the statement that a gravi-
tational theory describing a region of space (the bulk) is
equivalent to a (nongravitational) theory confined to the
boundary of that region [1,2]. That is, intrinsically non-
geometric features can be equivalently described geomet-
rically. An explicit and very well understood example is the
AdS/CFT correspondence [3]. It relates (quantum) gravity
on (dþ 1)-dimensional asymptotically Anti–de Sitter
(AdS) space to a d-dimensional conformal field theory
(CFT) on the boundary. One remarkable aspect of this
duality is the interplay of geometry and entanglement that
is most evident in the proposal by Ryu and Takayanagi that
entanglement entropy in the CFT is equivalently given by
the area of a minimal surface in the AdS geometry [4,5].
This is known as the Ryu-Takayanagi (RT) formula.
Since then, many more connections between geometry

and entanglement have been proposed [6–12]. Also, more
generally, concepts of quantum information theory were
fruitfully applied to gravity and, in particular, to black holes
[13–19]. Recently, tensor networks—a tool originally from
condensed matter physics to efficiently represent quantum
many-body states, especially their entanglement structure
[20]—were employed to describe holography [21] and, in
particular, AdS/CFT [6,22]. Furthermore, similarities
between the properties of bulk operator reconstruction in
AdS/CFT and properties of certain quantum error-
correcting codes (QECC) were reported in [23]. There, it
is argued that operator reconstruction properties of AdS/
CFT are captured by the fact that bulk logical operations

can be described by multiple operations on the boundary.
Implementing these ideas, an interesting family of toy
models for holography was proposed in [24]. There, the
authors combine tensor networks and quantum error-
correcting codes. AdS space is tiled with perfect tensors
that build up a holographic code and establish an isometric
tensor from the bulk to the boundary. These holographic
quantum error-correcting codes reproduce some of the key
features of the AdS/CFT correspondence, as, e.g., the RT
formula and remarkable bulk reconstruction properties.
Later, it was pointed out that a version of the Ryu-
Takayanagi formula holds quite generically in quantum
error-correcting codes [25]. Furthermore, networks of
random tensors [26,27] and almost-perfect tensors [28]
were considered. Also, issues like sub-AdS locality [29]
and the relation to gauge invariance [30] were addressed.
All these constructions are intrinsically quantum and focus
on the structure of entanglement.
In this work, we pose the question how far one can get

without quantum correlations, like entanglement. Or to put
it differently, which features can be reproduced in classical
codes that are defined on similar networks? Interestingly,
we are able to produce features similar to many of those
mentioned above. Thereby, one of the goals is to emphasize
and clarify the importance of the structure of (classical)
correlations in holographic models. However, even so that
we obtain important properties that are expected to hold in
AdS/CFT, we do not intend to develop a purely classical
model for the AdS/CFT correspondence.
First, motivated by the qutrit example provided in [23],

we consider a classical encoding for trits, where one logical
(bulk) trit is probabilistically encoded in three physical
(boundary) trits. This code has the properties that a “version
of the RT formula” for the mutual information holds, the
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bulk trit can be reconstructed from any two of the boundary
trits, and logical operations on the bulk trit can be
represented by operations on any two of the boundary
trits; i.e., there is a notion of subregion duality. Therefore,
key features of the AdS/CFT correspondence are captured
qualitatively1 by this example.
Motivated by this example, we then construct a classical

code on a network defined by a uniform tiling of hyperbolic
space, inspired by the holographic quantum error-
correcting codes of [24]. We reproduce many of the
features of this quantum code but phrased in a classical
language. Although the code is classical, it is not deter-
ministic. We choose probabilistic mappings at the vertices
of the network, and therefore the full mapping from bits in
the bulk to bits on the boundary is probabilistic, too.
The code produces entropy and classical correlations,
where we focus on the latter. For example, we compare
the result for the classical mutual information—a measure
of correlations—of a finite interval on the boundary with
the result for the quantum mutual information. We find that
in our classical examples a version of the RT formula holds.
That is, the mutual information of an interval on the
boundary and its complement is directly proportional to
the length of the corresponding minimal surface in the bulk.
On the one hand, it might be suspected that the mutual
information scales as the area of the minimal surface, since
the entanglement entropy measures both classical and
quantum correlations, and it scales with the area of this
minimal surface. On the other hand, it is, a priori, not clear,
as we do not require any “quantumness” at all to produce
the result.2 This points to the fact that the structure of all
correlations, classical and quantum, is encoded in the
underlying geometric structure.
We also investigate the reconstruction of bulk bits from the

knowledge of subsets of the boundary bits and the repre-
sentation of bulk logical operations on the boundary. Bit flips
on a single bulk bit correspond to nonlocal operations on the
boundary. Furthermore, there exists a notion of subregion
duality. Therefore, we find a remarkable similarity to the
results from quantum codes modeling holography.
The rest of this work is organized as follows. In Sec. II,

we briefly review the properties of the qutrit error-
correcting code introduced in [31] and the holographic
pentagon code of [24]. Next, in Sec. III, we introduce
classical holographic codes. We begin by analyzing a

probabilistic trit code that resembles many AdS/CFT-like
features in Sec. III A. Subsequently, in Sec. III B, we study
a network, where each vertex is interpreted as a probabilistic
mapping. In particular, in Sec. III C, we prove a version of
the RT formula for the mutual information, the possibility
of bulk reconstruction from regions on the boundary, the
representation of bulk operations on the boundary, and the
subregion duality. In addition, we discuss the secret sharing
property of these codes. In Sec. IV, we give a physical
interpretation of the radial direction in the bulk as a coarse
graining parameter that interpolates between the macro-
scopic description in the center of AdS and the microscopic
description on the boundary. Finally, in Sec. V, we give the
conclusions of this work.

II. HOLOGRAPHIC QUANTUM
ERROR-CORRECTING CODES

A. Qutrit example

In this section, we briefly review a very simple toy model
for the AdS/CFT correspondence that is based on quantum
error correction. It is formulated as a qutrit3 code that
encodes one logical qutrit into three physical ones such that
the logical qutrit can be reconstructed even if one of the
physical ones is lost. The key idea is to identify the bulk
degrees of freedom with logical qutrits and the boundary
degrees of freedom with the physical qutrits [23]. The
logical qutrit j ~ψi is encoded as

j~0i ¼ 1ffiffiffi
3

p ðj000i þ j111i þ j222iÞ;

j~1i ¼ 1ffiffiffi
3

p ðj012i þ j120i þ j201iÞ;

j~2i ¼ 1ffiffiffi
3

p ðj021i þ j102i þ j210iÞ; ð2:1Þ

where we indicated the logical qutrit by a tilde to distin-
guish it from the physical ones [31]. That is, the logical
qutrit is encoded in a subspace of the larger Hilbert space of
three qutrits, where the code subspace is spanned by the
Greenberger-Horne-Zeilinger (GHZ)-type states (2.1),

j ~ψi ¼
X2
i¼0

cij~ii: ð2:2Þ

In consequence, none of the physical qutrits can carry any
information about the encoded state, as its reduced density
matrix is maximally mixed. However, interestingly, from
any two physical qutrits—we denote them by A, B, and
C—the logical one can be reconstructed. That is because of

1By “qualitatively” we mean that, for example, we cannot
represent general quantum operators, as the system is classical.
However, we can implement all classical logical operations on the
bulk trit by acting on a subset of the boundary trits.

2One might argue that the randomness required to generate a
probabilistic mapping is reminiscent of quantum superpositions.
However, in the case we study, there is no need for any quantum
correlations, and the randomness in any probability distribution
could, in principle, be interpreted as arising from some quantum
superposition.

3A qutrit is very similar to a qubit. However, there is one
additional base vector spanning its Hilbert space. Therefore, the
qutrit state is described by jψi ¼ P

2
i¼0 cijii.
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the existence of operatorsUIJ, where I; J ¼ A, B, C, acting
nontrivially only on two of the physical qutrits such that

UIJj~ii ¼ jiiI ⊗ jχiJK; jχi ¼ 1ffiffiffi
3

p ðj00i þ j11i þ j22iÞ:

ð2:3Þ

Therefore it is clear that access to any two qutrits out
of the three (I; J; K ∈ fA; B;Cg) suffices to learn about the
logical qutrit. One simply acts on these two physical qutrits
with the operator UIJ and obtains qutrit I in the state jii of
the logical qutrit. From this it follows that the action of a
logical operator ~O, acting as ~Oj~ii ¼ P

j
~Ojij~ji, can be

achieved by the action of a corresponding operator OIJ
acting nontrivially on any two physical qutrits. It is of
the form

OIJ ¼ U†
IJOIUIJ; ð2:4Þ

where OI denotes an operator acting solely on qutrit I such
that OIJj~ii ¼

P
j
~Ojij~ji. That is, any logical operation ~O

on the logical qutrit can be performed by acting with the
corresponding OIJ on any two physical qutrits. As it was
pointed out in [23], this models “subregion duality” in AdS/
CFT. Furthermore, this simple toy model obeys a version of
the RT formula [25], as we demonstrate next.
As it is clear from above, an arbitrary (mixed) state ~ρ on

the code subspace can be written as

~ρ ¼ UABðρA ⊗ jχihχjBCÞU†
AB: ð2:5Þ

Interpreting the physical qutrits A, B, and C as boundary
degrees of freedom, we can calculate the entanglement
entropy between regions (here: points) in the boundary; see
Fig. 1. From (2.5), one easily obtains the entanglement
entropies

Sð~ρCÞ ¼ logð3Þ;
Sð~ρABÞ ¼ logð3Þ þ Sð~ρÞ; ð2:6Þ

where ~ρC and ~ρAB are the reduced density matrices of
qutrits C and AB, respectively. That fulfills the RT formula
with area operator logð3Þ [25]. Closely related to entangle-
ment entropy is the mutual information that is, in the
present case, given by

IquðC;ABÞ¼ SðCÞþSðABÞ−SðC;ABÞ¼ 2 logð3Þ: ð2:7Þ

The mutual information, however, does not capture con-
tributions from the bulk entropy in this model.4 Therefore,

restricting the states of the boundary qutrits to the class of
pure states, it is evident that the RT formula can be stated in
terms of the mutual information IquðA; AcÞ. In this form the
RT formula states that the mutual information between a
boundary region A and its complement Ac is given by twice
the area of the minimal surface in the bulk.

B. Holographic pentagon code

The ideas outlined in the previous section led to the
investigation of extended networks of concatenated quan-
tum error-correcting codes [24,26]. Here, we restrict
ourselves to the holographic pentagon code (see Fig. 2)
introduced as a toy model for AdS/CFT in [24] and briefly
outline some of the ideas behind its construction.
The basic building block of the networks of [24] are

perfect tensors. These are defined as tensors Ta1;a2;…;a2n
with the property that they are proportional to isometric
tensors from A to Ac for all subsets A of the tensor indices
with jAj ≤ jAcj. In particular, perfect tensors are related to
quantum states of 2n v-dimensional spins as

jψi ¼
X

a1;a2;…;a2n

Ta1a2���a2n ja1a2 � � � a2ni: ð2:8Þ

These states jψi have the special property that they are
maximally entangled along any possible bipartition into
sets of n spins and therefore show a very particular
entanglement structure. Specifically, states of this kind
are referred to as absolutely maximally entangled states
[32] and possess interesting properties [33]. Interpreted as a

FIG. 1. Simplistic toy model for the AdS/CFT correspondence.
One logical qutrit ~T (representing the bulk degrees of freedom) is
encoded in three physical qutrits A, B, and C (representing the
boundary degrees of freedom). The red line sketches a minimal
surface in the bulk. The logical qutrit can be reconstructed from
any two of the boundary qutrits, while only one of these contains
no information about it. Furthermore, logical operations on ~T can
also be performed by acting on only two of the physical qutrits.
These features are also captured in a classical version of this code
we introduce in Sec. III A.

4This does not necessarily hold for more elaborate models, as
bulk matter can backreact and, in principle, it can modify the
geometry.
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map from one spin to the remaining 2n − 1 spins, a perfect
tensor establishes the encoding map of a quantum error-
correcting code. It encodes one logical spin into 2n − 1
spins and allows the recovery of the logical one even if up
to n − 1 spins are lost. One explicit example for a perfect
quantum error-correcting code that gives rise to a state of
the kind described in (2.8) is given by the five qubit code in
[34]. The qutrit code described in the previous section
provides a further example.
For the construction of the holographic pentagon code,

the key idea is to uniformly tile AdS space with pentagons.
This tiling defines a network with perfect tensors at each
vertex; see Fig. 2. This tensor network describes an
isometric tensor from the bulk (the inputs of the tensor
network) to the boundary (its output) and can be seen as a
quantum error-correcting code that maps the logical qubits
in the bulk to the physical qubits on the boundary.
Interestingly, in this network the lattice RT formula holds
[see (3.12)]. Furthermore, the representation of bulk logical
operators on different regions of the boundary is analogous
to the reconstruction of bulk operators from CFT operators
on the boundary. In consequence, this model captures these
important features of the AdS/CFT correspondence.

III. CLASSICAL HOLOGRAPHIC CODES

In this section, we introduce classical holographic
codes. These are constructed similarly to the holographic

quantum error-correcting codes considered in [24].
Spacetime with non-negative curvature is uniformly tiled.
Connecting neighboring tiles we define a network of
probabilistic maps. Furthermore, we impose certain con-
straints on these, as described in Sec. III B. We mainly
focus our attention to a network with pentagon symmetry
and use bits as bulk and boundary degrees of freedom.
However, there are many different constructions possible
using, for example, different tilings or trits instead of bits. It
is possible to think about the whole network as a classical
error-correcting code. However, we do not refer to our
construction as an error-correcting code.5 Besides intro-
ducing classical holographic codes, we also discuss their
features and find some similarities with expectations from
AdS/CFT. In particular, we elaborate on close similarities
with quantum error-correcting codes that have recently
been considered as toy models for AdS/CFT [23–26].

A. Classical trit example

To start our discussion on classical holographic codes,
we introduce a classical probabilistic code that resembles
key features of the quantum case discussed in II A. Similar
to this case, we consider an encoding of a logical trit into
three physical ones. Furthermore, we require that the
information about the logical trit is zero in each of the
individual physical trits, while the knowledge of two of
the physical trits provides us with full knowledge about
the logical one. One particular code satisfying these
constraints is

~0 → pð000Þ ¼ pð111Þ ¼ pð222Þ ¼ 1

3
;

~1 → pð012Þ ¼ pð120Þ ¼ pð201Þ ¼ 1

3
;

~2 → pð021Þ ¼ pð102Þ ¼ pð210Þ ¼ 1

3
; ð3:1Þ

where pðX1X2X3Þ denotes the probability that the trit string
X1X2X3 (Xi ∈ f0; 1; 2g) appears. In the encoding (3.1),
each of the strings has the same probability, given by 1

3
. That

is, we encode one logical trit in three physical trits in such a
way that the logical one is mapped to three different strings
of three trits with equal probability. One can convince
oneself that the knowledge of one physical trit does not
give any information about the logical one, while by
knowing any two physical trits we can obtain the logical
one with certainty. Labeling the physical trits by A, B, and
C, as above, implies that the logical trit can be obtained

FIG. 2. Holographic pentagon code. The pentagon tiling of
AdS defines a network of negative curvature. Each vertex
represents a perfect tensor (indicated by blue disks) in the bulk
that takes one qubit as input (represented as black dots). The
boundary contains the outputs of the network (represented by
white dots). The network of perfect tensors establishes an
isometry from the bulk Hilbert space to the boundary Hilbert
space and provides a toy model for the AdS/CFT correspondence.

5There are probabilistic codes used for error correction
especially in telecommunication. The most prominent examples
are low-density-parity-check codes [35] and turbo codes [36].
However, there is no straightforward connection between these
and the classical holographic codes as we define them here.
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from AB, AC, or BC, but not from A, B, or C alone.6 That
establishes a subregion duality analogous to the one in the
quantum case.
These properties are also reflected in the Shannon

entropy SS. For any of the physical trits I, the entropy is
given by

SSðIÞ ¼ −
X
i

pi logðpiÞ ¼ logð3Þ; ð3:2Þ

where I ¼ A, B, C and the pi are given by the respective
marginal probability distributions. That implies that there is
no information about the logical trit in any of the physical
ones, as we stated above. Considering any of the sets AB,
AC, or BC, we find

SSðIJÞ ¼ −
X
ij

pi ~pj logðpi ~pjÞ

¼ logð3Þ þ SSð~IÞ; ð3:3Þ

where I; J ¼ A, B, C, the pi are the probabilities appearing
in (3.1), and the ~pj give the probabilities for the logical trit ~I

to be ~X ( ~X ∈ f~0; ~1; ~2g); we usedPi pi ¼ 1 ¼ P
j ~pj. First,

we notice that these results are formally the same as in the
quantum case discussed in II A. That is, a RT formula—at
least formally—holds. However, the RT formula is con-
cerned with entanglement entropy, while here we consid-
ered the Shannon entropy. To connect both, we move to the
mutual information that, for pure states, is equal to 2 times
the entanglement entropy. We find that the mutual infor-
mation Icl between one physical trit A and the remaining
two is given by

IclðA; BCÞ ¼ SSðAÞ þ SSðBCÞ − SSðABCÞ ¼ logð3Þ;
ð3:4Þ

where we used SSðBCÞ ¼ SSðABCÞ ¼ logð3Þ þ SSð~IÞ.
Because of the symmetry of the encoding the same state-
ment also holds for the other two trits B and C. That is, the
classical mutual information is smaller than the one in the
quantum case, (2.7), by a factor of 1

2
. However, it also is

proportional to the “area” of the minimal cut.
Let us next investigate whether we can implement logical

operations in the bulk (i.e., on the logical trit) by acting on a
subset of the boundary degrees of freedom (the physical
trits); see Fig. 1. First, let us implement an operation that
implements addition by⊕ 1 by solely acting on the physical
trits B and C.7 The operation that succeeds in this task is to
apply ⊕ 1 to B and ⊕ 2 to C. The same operation can be

implemented onA andB by applying⊕ 1 toA and⊕ 2 toB.
Finally, to implement it onA andC, one has to apply⊕ 2 toA
and⊕ 1 toC. To perform the logical operation⊕ 2 by acting
on two of the physical trits, one has to act with⊕ 2 onB and
⊕ 1 onC, with⊕ 2 onA and⊕ 1 onB, or with⊕ 1 onA and
⊕ 2 on C. Therefore, operators acting on the logical trit
can be reconstructed on AB, AC, or BC, but not on A, B, or
C alone.
In summary, the classical code we considered shares

essential features with the quantum code that we reviewed
in Sec. II A.
Furthermore, it is interesting to note that the encoding

(3.1) can be obtained from (2.1) by imposing complete
decoherence.8 Mapping the classical logical trit given by ~i
(~i ∈ f~0; ~1; ~2g) to the logical qutrit state j~ii and subsequent
encoding according to (2.1), we obtain

ρ~i ¼ j~iih~ij ¼ 1

3

0
BBBBB@

1 1 1 01×6

1 1 1 01×6

1 1 1 01×6

06×1 06×1 06×1 06×6

1
CCCCCA

ð3:5Þ

in a basis containing the qutrit states appearing in (2.1),
where we denote the basis by fjvjigj¼1;…;9, and the

ordering depends on ~i. Removing the coherences in ρ~i,
for example, by a randomly selected projective measure-
ment with projectors Pj ¼ jvjihvjj, we arrive at a mixed

state ρðdecÞ~i
¼ 1

3

P
3
j¼1 jvjihvjj. This is a statistical mixture of

pure states jvjihvjj that appear with probability pðvjÞ ¼ 1
3
.

Therefore, by reinterpreting the qutrits as classical trits, we
obtain the encoding (3.1).
At this point, we would like to insert another brief

comment. There is the question how the randomness in the
description of the system can be justified physically. In our
opinion, there are (at least) three possible ways. One is that
there is a lack of knowledge about the details of the system
that forces a probabilistic description, as in thermodynam-
ics (cf. Sec. IV). Another way to justify the randomness in
the code is to imagine an agent at each vertex that generates
the randomness that is necessary for the functioning of the
code, for example, by sending individual photons to a beam
splitter and subsequently collapsing the quantum super-
position of the photons. In this way the agent can create the
required random numbers. Similarly, one could think of
strong local decoherence at each of the vertices that kills the
coherences and leaves us with a probabilistic mixture, as

6Therefore, codes like the one given by (3.1) can be used for
secret sharing, as we discuss in more detail in Sec. III C 3.

7Here and in the remainder of this section, ⊕ n for some
integer n denotes the addition by n mod3.

8Note that the classical encoding (3.1) does not have to be
obtained in this way nor does it have to be interpreted in this way.
Also, already at this point, we want to mention that the classical
codes on extended networks, which we introduce in the next
section, cannot be obtained by decoherence of the boundary state
of, e.g., the holographic pentagon code.

CLASSICAL HOLOGRAPHIC CODES PHYSICAL REVIEW D 96, 066005 (2017)

066005-5



described above. However, in our opinion, it also is enough
to just state that the codes we consider are intrinsically
random.

B. Classical codes on hyperbolic space

We study classical probabilistic codes on a uniform
pentagon tiling of AdS space that feature some of the key
properties of tensor-network-based quantum codes [23–26]

under which there are the Ryu-Takayanagi formula and
important bulk reconstruction properties. The tiling gives
rise to a network that we also refer to as graph, as, e.g.,
visible in Fig. 3. Via the network, we define a (probabi-
listic) mapping from the bits sitting on the vertices in the
interior to those on the open edges at the boundary. The
mapping is defined as follows: We order the network into
layers of vertices defined by the graph distance from the
center. From the negative curvature of the graph it follows
that each vertex shares at most two edges with vertices of
the previous layer. We now declare each node to a map
n → m, where n is the number of inputs given by the bit at
the vertex and edges from the previous layer, and m is the
number of output bits. There are three possible mappings
appearing in this pentagon tiling, shown in Fig. 3, that are
3 → 3, 2 → 4, and, in the center, 1 → 5.
Inspired by the quantum codes of [24], where the

mapping from the bulk to the boundary is due to the
insertion of one and the same perfect six-tensor at each
vertex, we demand that each mapping originates from a
single set of strings of six bits,S ¼ fsiji ¼ 1;…; Ng, with
the number of strings, N, not yet fixed. We define the
mapping as follows: The first bits in the strings define the
input, where we always take the very first bit in the strings
as the bulk input (see Fig. 4). We now assume a discrete
uniform probability distribution on the set S; i.e., all
probabilities pðsiÞ ¼ 1=N are equal. The probability den-
sity of the outcome of the mappings for a given input string
sin is then defined by the conditional probabilities

poutðsoutjsinÞ; ð3:6Þ

where sin∪sout ∈ S. The domain of the 3 → 3 mapping
should contain all possible strings of three bits. This gives a
first condition on S and tells us that jSj ¼ N ≥ 8.
As we discussed in Sec. II B, a perfect tensor gives rise to

an absolutely maximally entangled state. In [24], this
particular entanglement structure was used to show the
desired features. Here, we demand rather similar conditions

FIG. 3. Network to realize a classical holographic code. Each
vertex in the interior of the graph represents a tile with a specific
fixed volume in AdS space. Furthermore, each of these vertices
takes one bit as input (the input bits are then interpreted as bulk
degrees of freedom) and (probabilistically) maps the input
together with the input from the ingoing edges to the outgoing
edges. The final output of the code is then given by the bits sitting
at the boundary of the network. These are interpreted as boundary
degrees of freedom. In this way a map from bulk degrees of
freedom to boundary degrees of freedom is established that gives
rise to a duality between bulk and boundary.

FIG. 4. The set S ¼ fsig of strings si of bits in generates the (probabilistic) mappings. Here, we display from the left to the right the
mappings: 1 → 5, 2 → 4, and 3 → 3. Each dot represents one bit, where the one in the center, i1, is the bulk input and the remaining ones
are edge input (green) and outputs (red). The probability distribution of the outputs is obtained via the conditional probabilities
poutðsoutjsinÞ, where sin denotes the string of inputs and sout is the string of outputs.
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forS, where we use the mutual information as a measure of
correlations. As it turns out, it is not possible to find a setS
of bit strings of length six, where any bipartition of the
strings has maximal mutual information, which in a sense
would be the classical analogue to perfect tensors. These
analogues exist only for some special combinations of the
length of the strings and the “dimension” d of the d its
involved. It is not clear whether such a set of strings of
length six exists. Therefore, in the following, we prefer to
use milder conditions on the set S that still will be
sufficient to obtain the results of Sec. III C. The same
properties then follow automatically for sets of maximally
correlated strings. We demand that any bipartition into
substrings of nonequal size is maximally correlated, and
that any bipartition into strings of length three is maximally
correlated if one of the two substrings contains only
neighboring bits. Here, the term neighboring bits refers
either to bits that are next to each other in the full (cyclic)

six-string or to bits where the edges that are allocated to
these are next to each other (see Fig. 4 for the allocation).
Therefore, the order in which the bits appear in the string
and whether a particular bit acts as edge in- or outputs
matter. As illustrated in Fig. 4, we choose the bits to be
arranged counterclockwise.
As we show in Appendix A, from the above properties, it

follows that jSj ¼ 8 and that
(I) the knowledge of three neighboring edge bits gives

full information about the three complementary bits;
(II) no information about any other single bit can be

obtained by the knowledge of one particular bit.
Furthermore, two neighboring edge bits never reveal
information about bits next to them, and in general two
bits can at most give one other a bit with certainty.
After this more general discussion, we give an explicit

example of a set of strings that fulfills the above properties.
It is given by

S ¼ f000000; 001111; 010110; 011001; 100101; 101010; 110011; 111100g; ð3:7Þ

with the probability distribution pðsi ∈ SÞ ¼ 1
8
. In consequence, the 1 → 5 mapping is given by

~0 → pð00000Þ ¼ pð01111Þ ¼ pð10110Þ ¼ pð11001Þ ¼ 1

4
;

~1 → pð11100Þ ¼ pð10011Þ ¼ pð00101Þ ¼ pð01010Þ ¼ 1

4
; ð3:8Þ

where here and in the following the tilde indicates the
bulk input and pðX1X2X3X4X5Þ denotes the probability
of the output X1X2X3X4X5 (Xi ∈ f0; 1g). Unfortunately,
the mapping breaks the pentagon symmetry of the
network. This is because the central bulk bit can be
reconstructed with the knowledge of the second and fifth

or the third and fourth output bits but not with the
knowledge of any other two bits. Therefore these
bits are distinguished. All sets S give rise to 1 → 5
mappings that break the symmetry in a similar way.
However, this does not spoil the desired property for the
full network.

For 2 → 4 we obtain

~00e → pð0000Þ ¼ pð1111Þ ¼ 1

2
; ~10e → pð0101Þ ¼ pð1010Þ ¼ 1

2
;

~01e → pð0110Þ ¼ pð1001Þ ¼ 1

2
; ~11e → pð1100Þ ¼ pð0011Þ ¼ 1

2
; ð3:9Þ

where the subscript e indicates the edge input from the previous layer. Finally, the 3 → 3 map deduced from the set (3.7) is
given by

~00e10e2 → 000; ~00e11e2 → 111; ~10e10e2 → 101; ~10e11e2 → 010;

~01e10e2 → 110; ~01e11e2 → 001; ~11e10e2 → 011; ~11e11e2 → 100; ð3:10Þ

where e1 and e2 denote the bits of the incoming edges.
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In the following, we show that a map from the bulk to the
boundary induced by a set with the outlined properties—
and in particular the specific example (3.7)—together
with the geometric structure of the network inherit the
above mentioned features. For that reason, we call them
classical holographic codes. In particular, the properties
we demand on S are sufficient to obtain the results of the
next section.
The above approach is a generic way to construct codes

on a hyperbolic space that give rise to the features we show
in the following section. However, there are many more
possible probabilistic codes that work, too. One can, e.g.,
define each individual map by a different set that fulfills the
above property of maximal mutual information. This does
not alter any property we study in Sec. III C. One can also
consider the situation where the maximally correlated set
that defines the mapping is random at each vertex. In this
case the classical version of the RT formula still holds.9

This establishes a similarity with the random tensor net-
works considered in [26].
In particular, we emphasize that, in contrast with the

simple example of Sec. III A, the classical codes introduced
in this section cannot be obtained by simple decoherence of
the boundary. That is, decoherence of the output of a
quantum code, as, e.g., the one considered in Sec. II B,
does lead to a different probability distribution. In particu-
lar, it is not at all clear why the resulting system should
possess any special properties. In general, that is surely not
the case.

C. Features of classical holographic codes

In this section, we investigate to what extent classical
probabilistic codes defined by a network on AdS produce
properties similar to those of quantum error-correcting
codes. As we find, classical holographic codes possess
several interesting properties that are analogous to proper-
ties of QECC and, in particular, AdS/CFT.

1. Ryu-Takayanagi formula

Consider a CFT with a gravitational dual, where at least
for every static state at low energies there exists a geometric
bulk description. In these states, the Ryu-Takayanagi (RT)
formula10 relates the entanglement entropy SA of a boun-
dary region A at fixed time to the area of the minimal
surface γA in the bulk, whose boundary coincides with the
boundary of A

SA ¼ AreaðγAÞ
4G

; ð3:11Þ

where G is Newton’s constant [4,5].
An analogous relation holds for the quantum error-

correcting codes considered in [24,25]. Considering a
so-called holographic state—that is, a boundary state of
a tensor network of perfect tensors with a graph of non-
positive curvature—then measured in units of logð2Þ the
entanglement entropy of any connected region A on the
boundary equals the length of the shortest cut11 γA through
the network whose boundary matches that of A

SA ¼ jγAj: ð3:12Þ

That is, for these tensor networks, the lattice RT formula
holds.
Interestingly, in the case of a classical holographic code a

very similar statement is true. Of course, the concept of
entanglement entropy does not exist in classical systems. In
particular, there is no quantum entanglement. However, if
we interpret this quantity not only as a measure of quantum
entanglement but of correlations, or even more abstract as a
measure of joint information between two subsystems, then
there is a classical analogue, namely the mutual information
Icl. It can formally be defined in the same way for both
classical and quantum theories

Iqu=clðA;BÞ ¼ SðAÞ þ SðBÞ − SðA; BÞ; ð3:13Þ

where A and B denote two subsystems and the subscripts
qu and cl specify the quantum mutual information Iqu,
defined in terms of von Neumann entropies, and the
classical mutual information Icl, defined in terms of
Shannon entropies. In a quantum theory, SðAÞ and SðBÞ
are the von Neumann entropies of the respective reduced
density matrices of subsystems A and B. SðA;BÞ denotes in
this case the von Neumann entropy of the union of A and B.
For a bipartition of a system in a pure state into A and
B ¼ Ac, the total entanglement entropy vanishes and the
two partitions show equal entropy, SðAÞ ¼ SðBÞ≡ SA,
such that

IquðA; AcÞ ¼ 2SA: ð3:14Þ

In a classical system Sð·Þ≡ SSð·Þ denotes the Shannon (or
marginal) entropy of the system inside the bracket. As in
the quantum case, the mutual information measures the
joint information of the two subsystems A and B. However,
for classical systems, the mutual information is solely due
to classical correlations between subsystems.

9A reconstruction of the bulk degrees of freedom is no longer
possible, as for this task the knowledge of the mapping at each
vertex is required. For fixed (and therefore known) mappings at
each vertex that are obtained by sampling from some probability
distribution, however, all properties we obtain in III C still hold.

10Here and in the following, we do not consider contributions
from bulk entropy.

11A cut is a path through the network that separates it into two
disjoint sets of vertices, and the length of the cut is given by the
number of edges it crosses.
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The considerations above lead us to the conclusion that
the mutual information is the natural candidate to quantify
classical correlations between distinct parts of the classical
system of interest. Further motivation to single it out as the
measure of correlations in the present work is provided by
its close relation to the entanglement entropy for pure states
given in (3.14). Therefore, in what follows we formulate
and proof a formula in terms of the mutual information that
shows the same behavior as the lattice version of the RT
formula for QECCs. The intuition behind this formula is
that it establishes a duality between a geometric quantity
in the bulk—namely the length of the minimal cut—and
classical correlations, as measured by the mutual informa-
tion, on the boundary. This is closely analogous to the RT
formula in AdS/CFT, where, for pure boundary states, the
statement is that the entanglement entropy given by half of
the mutual information is proportional to the area of a
minimal surface in the bulk.
A version of the RT formula for classical holographic

codes.—For an arbitrary but fixed bulk input, the classical
mutual information between a (connected) subregion A on
the boundary and its complement Ac is given by the length
of the minimal cut γA through the network, whose boundary
matches that of A,

IclðA; AcÞ ¼ jγAj: ð3:15Þ

Therefore, a version of the RT formula holds for these
classical systems. The length of the minimal cut equals
classical correlations on the boundary.12

The proof of (3.15) that we give in Appendix B proceeds
along the following steps. First, we argue that the length of
any cut dividing the network into two parts provides an
upper bound for the mutual information. Therefore, it is
clear that the minimal cut γA gives the smallest upper
bound. Subsequently, we complete the proof by showing
that the edges that are crossed by the cut are uncorrelated.
From that, it follows that the bound is saturated and, thus,
(3.15) holds.

2. Bulk and operator reconstruction

In AdS/CFT, a gravitational theory on (dþ 1)-
dimensional asymptotically AdS space (bulk) is related
to a d-dimensional conformal field theory on the boundary.
That immediately raises the question how, given some
configuration of the boundary, the bulk can be recon-
structed. This is, in particular, complicated by the emergent
spatial dimension. The information required to reconstruct
some region of the bulk is contained in a boundary region if

its entanglement wedge contains this region of the bulk
[37]; see Fig. 5. Here, in the classical case, we argue that
the relevant wedge is the correlation wedge CðAÞ that is
defined as the region bounded by the minimal cut. It is
therefore very similar to entanglement wedge recon-
struction. In the following, we demonstrate the possibility
of bulk reconstruction in the correlationwedge of a region of
the boundary. Furthermore, we address the issue of operator
reconstruction and show that—in our case—classical oper-
ations, like bit flips, on bulk degrees of freedom contained in
the correlation wedge of some boundary region A can be
performedby acting (nonlocally) on the boundary degrees of
freedom in A.
Let us assume A is connected and the minimal cut γA is

unique, and then we can reconstruct every bulk input bit in
CðAÞ. This is evident by considering the algorithm for
constructing the minimal cut as described in Appendix B.
In every step, it crosses three neighboring edges that allow
one to reconstruct all the other bits, including the bulk input
of the vertex it jumps over—due to property (I).
Most bulk inputs in the complement of CðAÞ cannot be

reconstructed with some exceptions. These occur when the
minimal cut crosses two neighboring bits from a vertex
outside of the correlation wedge. Then the conditions we
demand for the code allow that, for example, these two
edge bits are maximally correlated with the respective bulk
input and, hence, it can be reconstructed. This is visible in
our explicit example and is most evident if we consider the
2 → 4 mapping given in (3.9). If the minimal cut crosses
the second and third outputs, their knowledge immediately
allows one to reconstruct the bulk input. Besides these
cases that only allow one to reconstruct inputs directly

FIG. 5. Subregion duality. The operator ϕðyÞ can be repre-
sented on the boundary region A, but not on the complementary
region Ac ¼ BC. The operator ϕðxÞ, however, cannot be repre-
sented on any region A, B, or C. But, still, it can be represented on
the union of any two of these regions, i.e., on AB, AC, and BC.
That is referred to as subregion duality.

12Note that the lattice RT formula (3.12) that was proven for
holographic quantum error-correcting codes can, for pure boun-
dary states, be written in terms of the mutual information, as
IquðA; AcÞ ¼ 2jγAj. Thus, it is evident that for quantum codes the
mutual information is twice the classical one.
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behind the minimal cut, no other bulk inputs in the
complement of CðAÞ can be reconstructed. We do not
consider the exceptions as a crucial problem, as in the limit
of large networks; i.e., where the number of bulk inputs
goes to infinity, this effect is negligible.
Next, we consider the reconstruction of bulk opera-

tions.13 Assuming a connected boundary region A, all bit
flip operationsO on vertices in the bulk region CðAÞ can be
represented as multiple bit flips in A. The reason for this is
the following. From the algorithm to construct the minimal
cut as given in Appendix B it follows that any vertex in
region CðAÞ has at least three neighboring edges that are
contained in CðAÞ and go in the direction of A; see Fig. 6.
Solely flipping some of these bits cannot affect bits in the
complement of A. Therefore, degrees of freedom in A are
sufficient to reconstruct operations in CðAÞ. Consider now
the action of an operation O on a vertex in CðAÞ. Then it is
possible to successively modify the edge bits in CðAÞ until
we reach the boundary region A. Obviously, no edge bit
leaving CðAÞ is touched by this procedure. Therefore the
operation O on any bulk bit in CðAÞ can be reconstructed
by flipping the respective subset in A that was flipped by
the above procedure. This is, in general, not possible for bit
flips on vertices in the complement of CðAÞ.
Another question arising is whether the operations on the

boundary region that realize a specific bit flip in the bulk
depend on the configuration of the boundary bits. For the
example given in (3.8), (3.9), and (3.10) this is not the case.
This becomes evident if we look at the individual map-
pings. Flipping some inputs in a specific way always leads
to the same possible flips in the output, independent of the
actual values of the bits. For example, flipping the bulk
input in the 3 → 3 map always flips the first and third
output bits, or solely changing the edge input in the 2 → 4
mapping can always be realized by changing the second
and third outputs. It never depends on the actual value of
the bits. This holds for any mapping in the network, so in
total it holds for the entire network. Therefore, the
boundary realization of a bit flip operation on some bulk
bit does not depend on the boundary configuration.
However, it is in general not unique. For a flip operation
on one of the inputs, the 1 → 5 and the 2 → 4 mappings
allow different realizations on the output. In our example in
(3.9), a bulk input flip can be realized by flipping the first
and third outputs or by flipping the second and fourth
outputs. In general, a flip in the bulk has more representa-
tions on the boundary the deeper in the bulk it is located.
Subregion duality.—The so-called subregion duality in

AdS/CFT states that operators in the bulk can, in general,
be represented on different subregions of the boundary; see
Fig. 5. In [23], the toy model we reviewed in Sec. II Awas
suggested to capture essential features of this duality. Also

in more elaborate tensor network models based on quantum
error-correcting codes, it was shown to hold [24]. Here, we
show that also in the classical network we introduced, there
is a notion of subregion duality. Indeed, it immediately
follows from the fact that an operation O on any bulk input
I can be represented on a boundary region Ai if I ∈ CðAiÞ,
as we have shown above; also see Fig. 6. Therefore, all
representations of O on each of the Ai’s are dual to each
other. This establishes a notion of subregion duality for
classical holographic codes.
Black holes.—A naive picture of asymptotically AdS

spacetimes containing black holes is to describe these
configurations by “cutting out” some region of the network
[24]. The microstates of black holes are then described by
the edge bits crossed by the horizon that function as inputs
for the remaining network. In consequence, the black hole
has a nonvanishing entropy that scales as the number of
edges crossed by the horizon; i.e., it scales as the area of the
black hole. Interestingly, this behavior is only expected in
the semiclassical approach [38,39] and should not appear at
the classical level. However, we emphasize that this picture
of black holes is very naive.

3. Secret sharing

Finally, we insert a brief discussion of the secret sharing
property of classical holographic codes. The fact that these
codes possess this property provides further motivation for
their construction beyond the holographic interpretation.
Secret sharing codes are characterized by the fact that there
is secret information (some string of bits)—or secret for
short—that is distributed amongst several parties such that
each party individually has no access to the secret. If,
however, a sufficient number of parties collaborate, they
can gain access to the secret [40,41].

FIG. 6. Representing bulk operations. The action of an oper-
ationO on one of the bulk bits, bit I, can definitely be represented
on a boundary region Ai if I is contained in CðAÞ. Here, we show
one particular example and marked the edges and vertices blue
that can be affected by the operation on the green vertex. Here,
CðA1;2;3Þ contain the bit I and hence the bit flip O can be realized
on these boundary regions. A4 is an example that does not allow
one to reconstruct O.

13Note that in a classical code the “bit flit operator” O is the
only nontrivial operation.
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Let us start the discussion by showing that the simple trit
example that we introduced in Sec. III A falls into the class
of secret sharing codes. In this example, we view the input
trit as the secret. The probabilistic code (3.1) distributes the
secret amongst three parties such that each party gets
exactly one trit. Since the Shannon entropy of each of the
three trits is maximal, SS ¼ logð3Þ, an individual party has
no information about the secret. However, as soon as two
arbitrary parties collaborate and share their trits, they obtain
full information about the secret. Thus, the code (3.1) is a
ðn ¼ 3; t ¼ 2Þ-threshold scheme, where n denotes the
number of parties and t denotes the threshold of parties
that is necessary to obtain the secret.
As we argue next, classical holographic codes also

belong to the class of secret sharing codes. To see this,
we interpret the bulk inputs as the secret to be shared.
Imagine now that each party is in possession of one of the
boundary bits.14 Then, individually, each party has no
chance to learn about any of the bulk inputs. However, by
collaborating, i.e., by sharing their knowledge of their
respective boundary bits, a team (a set of parties) can learn
(part) of the bulk inputs (part of the secret). An illustrative
example is the setting in which all bulk inputs are publicly
known, except for the one in the center. We refer to the
center bit as the secret. In this case, once a sufficient
number of parties15 team up they can reveal the secret,
while the remaining ones obtain no knowledge at all about
the secret. Therefore, classical holographic codes are secret
sharing codes.

IV. ON A POSSIBLE PHYSICAL
INTERPRETATION

While so far we have discussed classical holographic
codes and their properties in a rather abstract way, in this
section, we give a possible physical interpretation of these.
In particular, we focus on the radial spacelike direction and
connect it to coarse graining in phase space, where the main
idea is to interpret the additional bulk direction as a
parameter for an effective description of the boundary.
This is similar to the interpretation of the radial direction in
AdS as geometrizing the renormalization group flow of the
dual CFT (see, e.g., [42,43]).
In our case, we interpret the boundary degrees of

freedom/code subspace as the micro-states of a classical
statistical system characterized by a probability distribution
in a discretized phase space. To simplify the following
considerations, but without loss of generality, we assume
the probability distribution to be uniform within its support

in phase space. Then the discretization is such that the
region of phase space that supports the probability dis-
tribution is tiled with tiles of equal volume. It is the bulk
inputs in the layer next to the boundary that dictate the
support of the distribution; i.e., each bulk input corresponds
to the location of one of the tiles in phase space.
Then each step in the radial direction, i.e., considering

the network with one reduced layer, corresponds to join-
ing16 neighboring tiles and, therefore, by going deeper into
the bulk, a more and more coarse grained description of
the system is obtained. In terms of bulk inputs, moving
inward for one layer of the graph means that the number
of bulk inputs in this layer is strictly smaller than the one
in the previous layer. The same is true for the number of
boundary degrees of freedom. This number also decreases
with each step. Therefore, coarse graining naturally
emerges; see Fig. 7.

FIG. 7. The bulk direction is interpreted as a coarse graining
parameter for an effective description of the boundary. It
interpolates between the microscopic description at the boundary
of AdS and the macroscopic description in the center of AdS,
while both are connected by coarse graining phase space.

14Of course, it does not have to be exactly one of the boundary
bits per party, but also larger fractions of the boundary bits can
be in possession of each party. However, for the sake of clarity
and simplicity, let us assume that situation.

15Here, a team of roughly more than 50% of the parties is
sufficient.

16In general, the coarse graining does not necessarily require
one to join tiles pairwise. In principle, any constant number k of
tiles can be joined in each step. k depends on the structure of the
underlying graph defined by the classical holographic code.
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Thus, we interpret the bulk direction as a coarse graining
parameter for an effective description of the boundary. It
interpolates between the microscopic description at the
boundary of AdS and the macroscopic, i.e., thermody-
namic, description in the center of AdS, while both are
connected by coarse graining phase space. From these
considerations, the analogy to the renormalization group
flow on the CFT side of AdS/CFT becomes apparent. In
AdS/CFT the radial direction can be thought of as a
geometric manifestation of the renormalization group flow
from the UV to the IR fix point.
To illustrate the idea, consider the microcanonical

description of a free gas. The probability density ρðx; pÞ,
where x and p denote the position and momentum of the
particles, has support only in the close vicinity to the sphere
characterized by E ¼ P

i
mi
2
jpij2 in phase space, where E is

the total energy and mi is the mass of particle i. We denote
the sphere by SE. Then, macroscopically, the system is
completely characterized by one (macroscopic) variable,
the total energy E. In phase space, this can be viewed as
maximally ignorant description (in our language, a com-
pletely course grained description), where one only cares
about the fact that the underlying microscopic state of the
system actually is described by an arbitrary point in SE.
In case of classical networks, this is the description
in the center of the bulk. Let us now consider a more fine
grained description, for example, by dividing SE in k
(k ∈ N; k > 1) patches of equal volume. Physically, the
more fine grained description is due to some additional
knowledge. For example, one might for some reason be
able to distinguish the microstate of the actual configura-
tion to a precision characterized by the volume of the
patches. Going to this more fine grained description of the
system corresponds to proceeding in the radial direction in
the bulk. Finally, a completely fine grained (microscopic)
description corresponds to the boundary. That is, the
number of bulk inputs in each layer of the network counts
the information about the system. This number increases in
the radial direction and interpolates between the macro-
scopic and the microscopic description.
In this picture, for a black hole in the center of AdS,

coarse graining has to terminate, when the horizon of the
black hole is reached. Therefore, not all patches can be
joined and a nonvanishing (coarse grained) entropy
emerges.

V. CONCLUSIONS AND OUTLOOK

In this work, we introduced classical holographic codes
and analyzed their properties. Interpreting the input of the
codes as the bulk degrees of freedom and its output as the
boundary degrees of freedom, a classical holographic code
establishes a map between these. One of the main features
of the codes is that a version of the Ryu-Takayanagi
formula holds; the mutual information between a connected
region A on the boundary and its complement Ac is given

by the length of the minimal cut γA that ends on the
boundary of A. We defined the bulk region that is enclosed
between γA and the boundary region A as the correlation
wedge CðAÞ of A. We have shown that the bulk inputs
contained in CðAÞ can be reconstructed from the data in A.
Furthermore, we have shown that a (bit flip) operation O,
acting on any bulk input contained in CðAÞ, can be
represented by multiple bit flips in the boundary region.
We also established a notion of subregion duality. That is,
we have shown that any operation O acting on some input
in the bulk can be represented in any boundary region A
that possesses a respective correlation wedge CðAÞ such
that the bulk input is contained in it. Finally, the additional
bulk dimension can be interpreted as a coarse graining
parameter that interpolates between the microscopic
description at the boundary of AdS and the macroscopic
description in the center of AdS.
We did not intend to construct a purely classical toy

model for the AdS/CFT correspondence. However, inter-
estingly, all the features we described above are to be
expected from AdS/CFT. Furthermore, these are the fea-
tures that are modeled by quantum error-correcting codes,
such as the ones in [23,24]. Of course, there is the obvious
caveat that the boundary theory is purely classical and by
no means can approximate a quantum CFT. In particular,
the entanglement structure of a quantum CFT is completely
absent. Another shortcoming of the classical code is that
bulk and boundary operations (bit flips) are rather simple
compared to general operators appearing in a CFT. Finally,
in our particular example, the center vertex has some
shortcomings, as we described. However, especially in
the limit of large networks, the center vertex should not
cause serious problems.
Even so there are these shortcomings in the construction,

it is interesting to note that, by starting from a purely
classical code, one can obtain all the AdS/CFT-like
features, we outlined above. This shows that, given the
geometric structure of the network, the scaling of the
mutual information, i.e., a version of the RT formula,
and important bulk and operator reconstruction properties
are due to the “correlation structure” and can exist even
classically in the absence of quantum correlations, such as
entanglement.
For the future, it would be interesting to generalize the

bulk-to-boundary mappings of this work. In particular, it is
an open question, whether suitable random networks could
possess properties similar to the ones of classical holo-
graphic codes. Recently, for random tensor networks,
this was shown to be true [26]. Furthermore, it might be
worthwhile to see whether classical analogs of the Witten-
like diagrams introduced in [28] could be found for
classical holographic codes. A further direction that might
be worth following is to relate classical holographic codes
to the reconstruction of Abelian subalgebras [25]. In this
context, more elaborate codes might certainly be helpful.

ENRICO M. BREHM and BENEDIKT RICHTER PHYSICAL REVIEW D 96, 066005 (2017)

066005-12



Another interesting project would be to find a connection
between classical holographic codes and existing probabi-
listic codes used for error correction that, e.g., can be
related to spin glass models [44].
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APPENDIX A: SOME PROPERTIES OF S

In this appendix, we discuss some of the properties of the
set S that we use in Sec. III B. First we consider
bipartitions into substrings of length three. We require that
the bipartitions are maximally correlated as quantified by
the mutual information. The maximal possible value for the
mutual information is, in this case, 3 logð2Þ which also is
the maximal possible Shannon entropy of a string of three
bits. Consider, for example, the bipartition into input and
output bits of the 3 → 3mapping, i.e., into the strings sin ¼
i1i2i3 and sout ¼ i4i5i6, where in is the nth bit in the full
strings. We require SSðsinÞ ¼ 3 logð2Þ, such that

0 ¼ SSðsoutÞ − SSðSÞ: ðA1Þ

Since SSðsoutÞ ≤ 3 logð2Þ and SSðSÞ ≥ 3 logð2Þ, condition
(A1) can be satisfied only if SSðsoutÞ ¼ 3 logð2Þ ¼ SSðSÞ.
It follows that jSj ¼ N ¼ eSSðSÞ ¼ 23 ¼ 8 and the 3 → 3
map is bijective. In general, it is true that

(I) the knowledge of three neighboring edge bits gives
full information about the three complementary bits.

Let us next consider bipartitions into a single bit and the
remaining five bits. The maximal possible mutual infor-
mation between these bipartitions is logð2Þ. Since we
already know that the Shannon entropy of the set S is
3 logð2Þ, we can conclude that the entropy of any single bit
must be logð2Þ and that of any substring of five bits has to
be 3 logð2Þ. From the latter it follows that no two substrings
of length five can be the same. One can also show that no
two single bits iA and iB inS can be correlated by deriving
their mutual information

Icl:ðiA; iBÞ ¼ SSðiAÞ þ SSðiBÞ − SSðiA∪iBÞ
¼ logð2Þ þ logð2Þ − 2 logð2Þ ¼ 0: ðA2Þ

As a consequence of the fact that the mutual information,
IclðiA; iBÞ, vanishes,
(II) no information about any other single bit can be

obtained by the knowledge of one particular bit.
Finally, we consider the case of bipartitions into strings of

length two and their complement. In this case, the maximal
value for the mutual information is 2 logð2Þ. As before, one
can show that the Shannon entropy of two bits is always
2 logð2Þ [we already used this in (A2)] and the entropy of
four bits has to equal 3 logð2Þ, such that any two substrings
of length four have to be different. The mutual information
between two bits and a third bit vanishes if their union or
their complement contains only neighboring bits. In par-
ticular, it follows that two neighboring edge bits never reveal
information about bits next to them and, in general, two bits
can at most give one other bit with certainty.
A further consequence of demanding that any bipartition

of S into substrings of nonequal size is maximally
correlated is that the tripartite information I3ðA;B;CÞ that
is defined as

I3ðA; B;CÞ ¼ SSðAÞ þ SSðBÞ þ SSðCÞ − SSðABÞ
− SSðACÞ − SSðBCÞ þ SSðABCÞ; ðA3Þ

where A, B, C denote arbitrary subsets of neighboring bits,
is nonpositive, I3ðA; B;CÞ ≤ 0. For all cases except for
jAj ¼ jBj ¼ jCj ¼ 2, this can be shown using the upper
bound I3ðA;B;CÞ ≤ minfIclðA;BÞ; IclðB;CÞ; IclðA;CÞg
that was obtained, e.g., in [45]. In the special case
of a split in three sets of equal cardinality with
jAj ¼ jBj ¼ jCj ¼ 2, it follows from the fact that
I3ðA;B;CÞ¼ IclðA;BÞþ IclðA;CÞ−SðAÞ¼ 0. The physical
interpretation of I3ðA; B;CÞ ≤ 0 is that the mutual infor-
mation between any pair of subsets A, B, and C increases
once the other random variable is known. Interestingly, it
was shown that, for boundary regions A, B, and C,
I3ðA; B;CÞ ≤ 0 holds in AdS/CFT [9].

APPENDIX B: PROOF OF A VERSION OF
THE RT FORMULA FOR CLASSICAL

HOLOGRAPHIC CODES

In this appendix, we prove a version of the RT for-
mula (3.15) for classical holographic codes. Therefore, we
first argue that the mutual information of a connected
region A and its complement is bounded from above by the
length of the minimal cut γA, i.e.,

IclðA; AcÞ ≤ jγAj: ðB1Þ

It is evident that all correlations in the system must be
generated in the interior of the bulk and are transported by
the network to the boundary. If we consider an arbitrary cut
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through the network whose ends coincide with the boun-
dary of the interval, then all correlations between regions A
and Ac are transmitted through the edges that are crossed by
the cut. Of course, that is also true for the minimal cut γA
and, since every edge can at most transfer one bit of
information, the amount of correlation (or shared informa-
tion) is bounded from above by the length of this cut.
Therefore, bound (B1) holds.
In the case of classical holographic codes, the upper

bound (B1) for the mutual information is saturated, as we
show next. The general idea of the proof is that any of the
bits that are transferred through an edge crossed by the
minimal cut γA can be reconstructed with certainty from
either side. Furthermore, there is no correlation between the
edge bits crossed by γA. Then each of the bits has to carry
one bit of shared information and hence contribute to the
mutual information by one. In consequence, the mutual
information is given by the length of the minimal cut γA and
the version of the RT formula (3.15) holds.
One can convince oneself that this statement is true by

considering an algorithm for constructing the minimal cut
that was also presented in [24]. Given some connected
region of the boundary, the algorithm starts with the cut that
crosses all open edges at the boundary. The algorithm then
proceeds in the following way: It lets the cut jump over a
vertex if at least three edges of one vertex are crossed by the
cut. After the jump it crosses all the edges of the vertex that
were not crossed before. Then, given the new cut, it starts
again. The algorithm stops when the cut is minimal;
cf. Fig. 8. From that it is clear that each bit flowing

through any edge crossed by a cut constructed in this way
can be reconstructed from the bits of the boundary region it
starts from. This directly follows by applying property (I) in
every step of the algorithm.
In most cases the minimal surface constructed from a

connected region A on the boundary and the one from its
complement coincide. However, as also mentioned in [24],
there is the possibility that these do not coincide. If the
minimal cut is unique, we certainly can construct its edge
from both boundary regions.
Next, we argue that the edge bits that are crossed by a

unique minimal cut cannot be correlated. Therefore, we
show that no information about an edge bit can be obtained
by the knowledge of any subset of the remaining edge bits.
First, let us assume the contrary; i.e., one can obtain

information about a crossed edge bit E from the knowledge
of other crossed edge bits. In Fig. 9, which illustrates our
proof, this is the green edge. Now fix the vertex V from
which one assumes to get information about E. Edges at
that vertex that point “deeper into the bulk,” and hence
away from the minimal cut, cannot carry information about
any other leg crossed by the minimal cut simply because
their distance through the network to them is too large. In
Fig. 9, these are the gray edges. Now there are two
possibilities: either one of the two neighboring edges also
crosses the minimal cut and the other edge goes parallel to
it or both neighboring edges go parallel to it, where
the latter is shown in Fig. 9. In both cases we need the
knowledge of at least one edge going parallel to the
minimal cut, because property (II) tells us that we need
at least two bits to reconstruct a third one. Let us focus on
this parallel edge and ask how to obtain the bit associated
with it. Again because of property (II) we need to know at
least two edge bits from the other vertex it is connected to,
and again there are two possibilities: either there are two
edges crossing the minimal cut or we have one edge
crossing the minimal cut and another one going parallel
to it. As before, we can get no information from edges
pointing deeper into the bulk. We can conclude that one
requires the knowledge from another parallel edge if there

FIG. 8. Visualization of the algorithm that constructs the
minimal cut (red curve) for a boundary region. The algorithm
starts from a cut that divides the bits in that boundary region from
the remaining system (initial cut). Then, for each vertex, it
evaluates how many edges belonging to the vertex are crossed by
this cut. If this number is larger than or equal to three, the cut is
moved across the vertex such that it cuts all edges of this vertex
that have previously not been crossed (in the first iteration that
results in the blue cut). Subsequently, it takes the new cut as a
starting point. The algorithm terminates when the cut is minimal
(red cut).

FIG. 9. Illustration of the reasoning about the correlation of
crossed edge bits. We assume the green edge bit through the red
minimal cut can be constructed. The black edges are needed to
gather information about the green one. The grey edges are
pointing away from the minimal cut and can give no information.
The blue cut is the minimal cut constructed—using the algorithm
illustrated in Fig. 8—from the complementary boundary. The two
minimal cuts do not coincide. Hence, if we assume some bits are
correlated, the minimal cut cannot be unique.
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are not two known and necessarily neighboring edge bits
crossed by the minimal cut.
This logic stays true for any parallel edge bit and, hence,

if we assume that we can reconstruct E, then there need to
be two neighboring edge bits crossed by the minimal cut
before we reach the boundary in both directions (which
includes the possibility that E itself is one of these bits). If
not, then wewould need a parallel edge at the boundary that
by requirement is not known. This is also shown in Fig. 9:
to construct E one needs to know all the (black) crossed
edge bits to construct the (black) parallel edge bits, where
finally the two parallel edge bits next to E are needed to
construct E itself. In summary, we need a “chain” of
parallel edges, where the chain ends in both directions with
two neighboring crossed edges.
The crucial caveat is that the minimal cut cannot be

unique in the above situations. Simply consider the
minimal cut whose construction started at the boundary
in the direction of the parallel edges. This cut cannot jump
over the vertices that are connected to the previously
considered parallel edges, because there are always fewer
than three edges pointing in the direction of the boundary.

This is, in particular, the case at the two ends of the above
“chain.” This is also shown in Fig. 9, where the blue cut can
only cross the gray legs. It cannot jump over the vertices to
finally coincide with the red minimal cut. This now shows
that the edges of a unique minimal cut cannot be con-
structed from the knowledge of any subset of other crossed
edges and, hence, none of them can be correlated. Together
with the fact that each edge crossed by the minimal cut can
be reconstructed from either side, this finishes the proof of
the RT formula (3.15). □

Note that there are still the cases left, where the minimal
surface is not unique. From the argumentation above it
becomes clear that for those the mutual information is
smaller than the length of the minimal cut.
All these results are supported by numerical checks up to

the fourth layer of the network.17
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