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We study the behavior of the Uhlmann connection in systems of fermions undergoing phase transitions.
In particular, we analyze some of the paradigmatic cases of topological insulators and superconductors in
one dimension, as well as the BCS theory of superconductivity in three dimensions. We show that the
Uhlmann connection signals phase transitions in which the eigenbasis of the state of the system changes.
Moreover, using the established fidelity approach and the study of the edge states, we show the absence of
thermally driven phase transitions in the case of topological insulators and superconductors. We clarify
what is the relevant parameter space associated with the Uhlmann connection so that it signals the existence
of order in mixed states. In addition, the study of Majorana modes at finite temperature opens the possibility
of applications in realistic stable quantum memories. Finally, the analysis of the different behavior of the
BCS model and the Kitaev chain, with respect to the Uhlmann connection, suggested that in realistic
scenarios the gap of topological superconductors could also, generically, be temperature dependent.
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Introduction.—Topological phases of matter have been a
subject of active research during the last decades, as they
constitute a whole new paradigm in condensed matter
physics. In contrast to the well-studied standard quantum
phases ofmatter, describedby local order parameters (see, for
example, Anderson’s classification [1]), the ground states of
topological systems areglobally characterizedby topological
invariants [2–5]. Hamiltonians of gapped systems with
different topological orders cannot be smoothly transformed
from one into the other unless passing through a gap-
vanishing region of criticality. In particular, insulators and
superconductors with an energy gap exhibit topological
orders and are classified according to the symmetries that
their Hamiltonians possess [6,7], namely, time reversal,
particle hole, and chiral symmetry. As opposed to the
standard Landau symmetry breaking theory of quantum
phase transitions (PTs), in topological PTs the symmetries
of the Hamiltonian are not violated. For a topological PT to
occur, that is a gapped state of the system to be deformed in
another gapped state in a different topological class, the
energy gap has to close. In other words, the quantum state of
the system undergoing a topological PT is gapless. A
manifestation of the topological order of a system is the
presence of robust symmetry-protected edge states on the
boundary between two distinct topological phases, as pre-
dicted by the bulk-to-boundary principle [8].
A question that naturally arises iswhether there is any kind

of topological order at finite temperatures, and different
approaches have been used to tackle this problem [9,10].One
of the most promising approaches is based on the work of
Uhlmann [11], who extended the notion of geometrical
phases from pure states to density matrices. The concept of

the Uhlmann holonomy, and the quantities that can be
derived from it, were used to infer PTs at finite temperatures
[12–17]. Nevertheless, the physical meaning of these quan-
tities and their relevance to the observable properties of the
corresponding systems stay as an interesting open question
[18–20]. There exist several proposals for the observation of
the Uhlmann geometric phase [21–23] and an experimental
realization has been reported in Ref. [24].
Information-theoretic quantities such as entanglement

measures [25–27] and the fidelity, a measure of distinguish-
ability between two quantum states [28–32], were exten-
sively used in the study of PTs. Whenever there is a PT, the
density matrix of a system changes significantly and,
therefore, a sudden drop of the fidelity Fðρ; σÞ≡
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp
signals out this change. The fidelity, is closely

related to the Uhlmann connection, through the Bures
metric [33]. Therefore, they can both be used to infer the
possibility of PTs, as in Ref. [16] (for the pure-state case of
the Berry phase, see Refs. [34,35]).
We analyze the behavior of the fidelity and the Uhlmann

connection associated to thermal states in fermionic systems.
We consider the space consisting of the parameters of the
Hamiltonian and the temperature, as it provides a physically
sensible base space for the principal bundle, describing the
amplitudes of the density operator. We study paradigmatic
models of 1D topological insulators (TIs) (Creutz Ladder
[36,37] and Su-Schrieffer-Heeger [38] models) and super-
conductors (TSCs) (Kitaev chain [39]) with chiral symmetry.
We conclude that the effective temperature only smears out
the topological features exhibited at zero temperature, with-
out causing a thermal PT.We also analyze the BCSmodel of
superconductivity [40], previously studied in Ref. [16], by
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further identifying the significance of thermal and purely
quantum contributions to PTs, using the fidelity and the
Uhlmann connection. In contrast to the aforementioned
nontrivial topological systems, both quantities indicate the
existence of thermal PTs.
This Letter is organized as follows: first, we elaborate on

the relationship between the fidelity and the Uhlmann
connection and motivate their use in inferring PTs, both at
zero and finite temperatures. In the following section, we
present our results on the fidelity and the Uhlmann
connection for the aforementioned systems and discuss
the possibility of temperature driven PTs. In the last section
we summarize our conclusions and point out possible
directions of future work.
Fidelity and the Uhlmann parallel transport.—Given a

Hilbert space, one can consider the set of density matrices
with full rank (e.g., thermal states) and the associated set of
amplitudes (generalization to the case of the sets of singular
density matrices with fixed rank is straightforward). For a
state ρ, an associated amplitude w satisfies ρ ¼ ww†. Thus,
there exists a unitary (gauge) freedom in the choice of the
amplitude, since both w and w0 ¼ wU, with U being an
arbitrary unitary, are associated to the same ρ. Two ampli-
tudes w1 and w2, corresponding to states ρ1 and ρ2,
respectively, are said to be parallel in the Uhlmann sense
if and only if they minimize the Hilbert-Schmidt distance
∥w1 − w2∥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðw1 − w2Þ†ðw1 − w2Þ�

p
, induced by the

inner product hw1; w2i ¼ Trðw†
1w2Þ. The condition of par-

allelism turns out to be equivalent tomaximizingRehw1; w2i,
since ∥w1 − w2∥2 ¼ 2ð1 − Rehw1; w2iÞ. By writing wi ¼ffiffiffi
ρ

p
iUi, i ¼ 1, 2, where theUi’s are unitary matrices, we get

Rehw1;w2i≤ jhw1;w2ij¼ jTrðw†
2w1Þj

¼ jTrðU†
2

ffiffiffiffiffi
ρ2

p ffiffiffiffiffi
ρ1

p
U1Þj

¼ jTrðj ffiffiffiffiffi
ρ2

p ffiffiffiffiffi
ρ1

p jUU1U
†
2Þj

≤Trðj ffiffiffiffiffi
ρ2

p ffiffiffiffiffi
ρ1

p jÞ
¼Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

pq
¼Fðρ1;ρ2Þ; ð1Þ

whereU is the unitary associated to the polar decomposition
of

ffiffiffiffiffi
ρ2

p ffiffiffiffiffi
ρ1

p
, and the penultimate step is theCauchy-Schwartz

inequality. Hence, the equality holds if and only if
UðU1U

†
2Þ ¼ I. Note that in this case, also the first equality

holds, and we have Rehw1; w2i ¼ hw1; w2i ∈ Rþ, which
provides yet another interpretation of the Uhlmann parallel
transport condition as a generalization of theBerry pure-state
connection: the phase, given byΦU ¼ arghw1; w2i, is trivial,
i.e., zero.
Given a curve of density matrices γ∶½0; 1�∋t ↦ ρðtÞ and

the initial amplitude wð0Þ of ρð0Þ, the Uhlmann parallel
transport gives a unique curve of amplitudes wðtÞ with the
property that wðtÞ is parallel to wðtþ δtÞ for an infinitesi-
mal δt (the horizontal lift of γ). The length of this curve of

amplitudes, according to the metric induced by the
Frobenius inner product, is equal to the length, according
to the Bures metric (which is the infinitesimal version of the
Bures distance DBðρ1; ρ2Þ2 ¼ 2½1 − Fðρ1; ρ2Þ�), of the
corresponding curve γ of the density matrices. This shows
the relation between the Uhlmann connection and the
fidelity (for details, see, for example, Refs. [11,41]).
We see that the “Uhlmann factor” U, given by the polar

decomposition
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtþ δtÞp ffiffiffiffiffiffiffiffi

ρðtÞp ¼ j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtþ δtÞp ffiffiffiffiffiffiffiffi

ρðtÞp jU,
characterizes the Uhlmann parallel transport. For two close
points t and tþ δt, if the two states ρðtÞ and ρðtþ δtÞ belong
to the same phase, one expects them to almost commute,
resulting in the Uhlmann factor being approximately equal to
the identity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtþ δtÞp ffiffiffiffiffiffiffiffi

ρðtÞp
≈ j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðtþ δtÞp ffiffiffiffiffiffiffiffi
ρðtÞp j. On the

other hand, if the two states belong to two different phases,
one expects them to be drastically different (confirmed
by the fidelity approach), both in terms of their eigenvalues
and/or eigenvectors, potentially leading to nontrivial U ≠ I
(see the previous study on the Uhlmann factor and the
finite-temperature PTs for the case of the BCS superconduc-
tivity [16]). To quantify the difference between the
Uhlmann factor and the identity, and thus the nontriviality
of the Uhlmann connection, we consider the following
quantity:

Δ(ρðtÞ; ρðtþ δtÞ) ≔ F(ρðtÞ; ρðtþ δtÞ)
− Tr

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtþ δtÞ

p ffiffiffiffiffiffiffiffi
ρðtÞ

p i
: ð2Þ

Note that Δ ¼ Tr½j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtþ δtÞp ffiffiffiffiffiffiffiffi

ρðtÞp jðI −UÞ�. When the
two states are from the same phasewe have ρðtÞ ≈ ρðtþ δtÞ,
and thusΔ ≈ 0.Otherwise, if the two states belong to different
phases, and the Uhlmann factor is nontrivial, we haveΔ ≠ 0.
Thus, sudden departure of Δ from zero (for δt ≪ 1) signals
the points of PTs. Since both the Uhlmann parallel transport
and the fidelity give rise to the samemetric (theBuresmetric),
the nonanalyticity ofΔ is accompanied by the same behavior
of the fidelity. Note that the other way around is not
necessarily true: in case the states commute with each other
and differ only in their eigenvalues, the Uhlmann connection
is trivial, and thus Δ ¼ 0.
In order for the Uhlmann connection and the fidelity to

be in tune, they must be taken over the same base space. In
previous studies [13], an Uhlmann connection in 1D
translationally invariant systems was considered. The base
space considered is the momentum space and the density
matrices are of the form fρk ≔ e−βHðkÞ=Z∶k ∈ Bg, where
HðkÞ ¼ EðkÞn⃗ðkÞ · σ⃗=2 and B is the first Brillouin zone.
Since we are in one dimension, there exists no curvature
and hence the holonomy along the momentum space cycle
becomes a topological invariant (depends only on the
homotopy class of the path). It was found that the
Uhlmann geometric phase ΦUðγcÞ along the closed curve
given by γcðkÞ ¼ ρk, changes abruptly from π to 0 after
some “critical” temperature TU. Namely, the Uhlmann
phase is given by
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ΦUðγcÞ ¼ arg Trfwð−πÞ†wðπÞg
¼ arg TrfρπUðγcÞg; ð3Þ

where wðkÞ is the horizontal lift of the loop of density
matrices ρk, and UðγcÞ is the Uhlmann holonomy along the
first Brillouin zone. This temperature, though, is not
necessarily related to a physical quantity that characterizes
a system’s phase. It might be the case that the Uhlmann
phase is trivial, ΦUðγcÞ ¼ 0, while the corresponding
holonomy is not, UðγcÞ ≠ I. For the systems studied in
Ref. [13], the Uhlmann holonomy is a smooth function of
the temperature and is given, in the basis in which the chiral
symmetry operator is diagonal, by

UðγcÞ ¼ exp

�
−
i
2

Z
π

−π

�
1 − sech

�
EðkÞ
2T

�� ∂φ
∂k dkσz

�
; ð4Þ

where φðkÞ is the polar angle coordinate of the vector n⃗ðkÞ
lying on the equator of the Bloch sphere. Note that
limT→0UðγcÞ ¼ e−iνπσz , with the Berry phase being
ΦB ¼ limT→0ΦU ¼ νπ, and ν the winding number.
While in this case the Uhlmann phase suffers from an
abrupt change (steplike behavior), the Uhlmann holonomy
is smooth and there is no PT-like behavior.
In the paradigmatic case of the quantum Hall effect, at

T ¼ 0, the Hall conductivity is quantized in multiples of the
first Chern number of a vector bundle in momentum space
through several methods. For example, one can use linear
response theory or integrate the fermions to obtain the
effective action of an external U(1) gauge field. The
topology of the bands appears, thus, in the response of
the system to an external field. It is unclear, though, that the
former mathematical object, the Uhlmann geometric phase
along the cycle of the 1D momentum space, has an
interpretation in terms of the response of the system. In
order to measure this Uhlmann geometric phase, one would
have to be able to change the quasimomentum of a state in
an adiabatic way. In realistic setups, the states at finite
temperatures are statistical mixtures over all momenta, such
as the thermal states considered, and realizing closed curves
of states ρk with precise momenta changing in an adiabatic
way seems a tricky task. The fidelity computed in our Letter
though, refers to the change of the system’s overall
state, with respect to its parameters (controlled in the
laboratory much like an external gauge field),
and is related to an, a priori, physically relevant geometric
quantity, the Uhlmann factor U. The quantity Δ ¼
Tr½j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðtþ δtÞp ffiffiffiffiffiffiffiffi
ρðtÞp jðI − UÞ� contains information con-

cerning the Uhlmann factor, since U ¼ Uðtþ δtÞU†ðtÞ,
where UðtÞ ¼ T exp f− R

t
0 Aðdρ=dsÞdsg is the parallel

transport operator and A is the Uhlmann connection
differential 1-form (for details, see Ref. [42]).
Results.—In our analysis we probe the fidelity and Δ

with respect to the parameters of the Hamiltonian describ-
ing the system and the temperature, independently. We

perform this analysis for paradigmatic models of TIs (SSH
and Creutz ladder) and TSCs (Kitaev Chain) in one
dimension. We analytically calculate the expressions for
the fidelity and Δ, for thermal states ρ ¼ e−βH=Z, where β
is the inverse temperature (see the Supplemental Material,
SM1 [43] for the details of the derivation). We use natural
units: ℏ ¼ kB ¼ 1.
Here we focus on the Creutz ladder model, while the

results for SSH and the Kitaev chain are presented in the
Supplemental Material, SM2 [43], since they are qualita-
tively the same. The Hamiltonian for the Creutz ladder
model [36,37] is given by

H ¼ −
X
i∈Z

Kðe−iϕa†iþ1ai þ eiϕb†iþ1biÞ

þ Kðb†iþ1ai þ a†iþ1biÞ þMa†i bi þ H:c:; ð5Þ

where ai, bi, with i ∈ Z, are fermion annihilation oper-
ators, K and M are hopping amplitudes (horizontal or
diagonal and vertical, respectively) and eiϕ is a phase factor
associated with a discrete gauge field. We take 2K ¼ 1,
ϕ ¼ π=2. Under these conditions, the system is topologi-
cally nontrivial when M < 1 and trivial when M > 1.
Given two close points ðM;TÞ and ðM0; T 0Þ ¼
ðM þ δM;T þ δTÞ, we compute Fðρ; ρ0Þ and Δðρ; ρ0Þ
between the states ρ ¼ ρðM;TÞ and ρ0 ¼ ρðM0; T 0Þ. To
distinguish the contributions due to the change of the
Hamiltonian’s parameter and the temperature, we consider
the cases δT ¼ 0 and δM ¼ 0, respectively; see Fig. 1.
We see that for T ¼ 0 both fidelities exhibit a sudden

drop in the neighborhood of the gap-closing point M ¼ 1,
signaling the topological quantum PT. As temperature
increases, the drops of both fidelities at the quantum critical
point are rapidly smoothened towards the F ¼ 1 value.
This shows the absence of both finite-temperature param-
eter-driven, as well as temperature-driven (i.e., thermal)
PTs. The plot for Δ, for the case δT ¼ 0, shows a behavior
similar to that of the fidelity, while for δM ¼ 0 we obtain
no information, as Δ is identically equal to zero, due to the
triviality of the Uhlmann connection associated with the
mutually commuting states (a consequence of the
Hamiltonian’s independence on the temperature). Δ is
sensitive to PTs for which the state change is accompanied
by a change of the eigenbasis (in contrast to fidelity, which
is sensitive to both changes of eigenvalues and eigenvec-
tors). For TIs and TSCs, this corresponds to parameter-
driven transitions only.
We further study a topologically trivial superconducting

system,givenbytheBCStheory,withtheeffectiveHamiltonian

H ¼
X
k

ðεk − μÞc†kck − Δkc
†
kc

†
−k þ H:c:; ð6Þ

where εk is the energy spectrum,μ is the chemical potential,Δk
is the superconducting gap, ck ≡ ck↑ and c−k ≡ c−k↓ are
operators annihilating, respectively, an electron with
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momentum k and spin-up and an electronwithmomentum−k
and spin-down. The gap parameter is determined in the above
mean-field Hamiltonian through a self-consistent mass gap
equation and it depends on the originalHamiltonian’s coupling
associated with the lattice-mediated pairing interaction V,
absorbed in Δk (for more details, see Ref. [16]). The solution
oftheequationrendersthegaptemperaturedependent. InFig.2,
we show the quantitative results for the fidelity and Δ. We
observe that both quantities show the existence of thermally
driven PTs, as their abrupt change in the point of criticality at
T ¼ 0, survive and drift, as temperature increases. Unlike
TSCs, in thismodel the temperature does not only appear in the
thermal state, but it is also a parameter of the effective
Hamiltonian, resulting in the change of the system’s eigenbasis
and, consequently, nontrivial Uhlmann connection. For a
detailedanalysis and theexplanationof thedifferencesbetween
the two, see the Supplemental Material, SM4 [43].
Finally, we also studied the behavior of the edge states for

the TIs and the Majorana modes for the Kitaev chain, on
open chains of 500 and 300 sites, respectively. In the case of
TIs, we showed that the edge states localized at the
boundary between two distinct topological phases, present
at zero temperature, are gradually smeared out with the
temperature increase, confirming the absence of temper-
ature-driven PTs (see the Supplemental Material, SM3.1
[43] for detailed quantitative results and technical analysis).
Our results on the edge states, obtained for systems in
thermal equilibrium, agree with those concerning open
systems treated within the Lindbladian approach [10]

(and, consequently, due to considerable computational
hardness, obtained for an open chain of 8 sites).
Similarly, we showed that the Majorana modes exhibit an
abrupt change at the zero-temperature point of the quantum
PT, while the finite-temperature behavior is smooth, con-
firming the results obtained through the fidelity and the
Uhlmann connection analysis (see the Supplemental
Material, SM3.2 [43]). In the case of zero-temperature,
Majorana modes of the Kitaev model are known to be good
candidates for encoding qubit states in stable quantum
memories, see Refs. [50,51] and references therein. The
presence of robust Majorana modes at low, but finite,
temperatures is a significant property which could be used
in designing stable quantum memories in realistic setups.
Conclusions and outlook.—We studied the relationship

between the fidelity and the Uhlmann connection over the
system’s parameter space (including parameters of the
system’s Hamiltonian and temperature) and found that their
behaviors are consistent whenever the variations of the
parameters producevariations in the eigenbasis of the density
matrix. By means of this analysis, we showed the absence of
temperature-driven PTs in 1D TIs and TSCs. We clarified
that the Uhlmann geometric phase considered in momentum
space is not adequate to infer such PTs, since it is only a part
of the information contained in the Uhlmann holonomy.
Indeed, this holonomy, as a function of temperature, is
smooth [Eq. (4)]; hence, noPT-like phenomenon is expected.
Furthermore, we performed the same analysis in the case of
BCS superconductivity, where, in contrast to the former

FIG. 1. The fidelity for thermal states ρ, when probing the parameter of the Hamiltonian that drives the topological PT δM ¼
M0 −M ¼ 0.01 (left), and the temperature δT ¼ T 0 − T ¼ 0.01 (center), and the Uhlmann connection, when probing the parameter of
the Hamiltonian M (right), for the Creutz ladder model (representative of the symmetry class AIII). The plot for Δ when deforming the
thermal state along T is omitted since it is equal to zero everywhere.

FIG. 2. The fidelity for thermal states ρwhen probing the parameter of the Hamiltonian δV ¼ V 0 − V ¼ 10−3 (left) and the temperature
δT ¼ T 0 − T ¼ 10−3 (center left), and the Uhlmann connection (center right and right, respectively), for BCS superconductivity.
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systems, thermally drivenPTs occur and are captured byboth
the fidelity and the Uhlmann connection. This shows that,
when changing the temperature, the density operator is
changing both at the level of its spectrum and its eigenvec-
tors. We analyzed in detail the origin of the differences
between the BCS and the Kitaev chain and suggested that in
realistic scenarios the gap of topological superconductors
could also, generically, be temperature dependent.
Finally, we would like to point out possible future lines

of research. The study of Majorana modes at finite temper-
ature suggests that they can be used in achieving realistic
quantum memories. This provides a relevant path for future
research. Another related subject is to perform the same
analysis using an open system approach where the system
interacts with a bath and eventually thermalizes. There the
parameter space would also include the parameters asso-
ciated with the system-bath interaction.
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