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The transport of a particle in the presence of a potential that changes periodically in space and in time can
be characterized by the amount of work needed to shift a particle by a single spatial period of the potential.
In general, this amount of work, when averaged over a single temporal period of the potential, can take any
value in a continuous fashion. Here, we present a topological effect inducing the quantization of the average
work. We find that this work is equal to the first Chern number calculated in a unit cell of a space-time
lattice. Hence, this quantization of the average work is topologically protected. We illustrate this
phenomenon with the example of an atom whose center of mass motion is coupled to its internal degrees
of freedom by electromagnetic waves.
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Topological phases of matter constitute a new paradigm
in condensed matter physics. Remarkable examples are the
Haldane anomalous insulator [1], an instance of the more
general Chern insulators, and, even more generally, topo-
logical insulators and superconductors [2,3]. The later are
symmetry protected topological phases of free fermions.
Unlike the conventional phases of matter described by the
Landau-Ginzburg theory in terms of a local order parameter
[4], instead, topological insulators and superconductors are
described by topological invariants, such as the holonomy
of a flat connection, like the Zak phase [5,6], or the Chern
number of a vector bundle [7–10] over a two-torus or an
arbitrary Riemann surface, like the Thouless–Kohmoto–
Nightingale–den Nijs (TKNN) invariant [11]. These topo-
logical invariants measure the nontrivial “twisting” of the
wave functions of the bulk, which are usually subject to
certain generic symmetries like time reversal, particle-hole,
or chiral symmetries. Topological insulators and super-
conductors were systematically classified, using K theory
[12], by Kitaev [13], and using homotopy groups and
Anderson localization, by Schnyder, Ryu, Furusaki, and
Ludwig [14,15]. The resulting classification exhibits Bott
periodicity, twofold for the complex case and eightfold for
the real case, and is known as the periodic table of
topological insulators and superconductors. Moreover,
the bulk-to-boundary principle predicts that, when termi-
nating the system to the vacuum, there will appear gapless
modes living in the boundary of the system. These modes
are topologically protected. One can understand the

existence of these gapless modes by anomaly inflow
arguments [16,17].
Topological insulators and superconductors [2,3,18] are

very attractive from the experimental point of view due to
their robustness to perturbations and also due to the many
potential applications to photonics, spintronics, quantum
computing, and, more generally, to the emergent field of
quantum technologies [19,20].
Experimentally, one can study topological insulators and

superconductors in quantum simulators which are versatile
systems that can mimic behavior of other systems difficult
to control in the laboratory. Among the physical platforms
for the quantum simulation of topological matter, ultracold
atoms in optical lattices [21,22] and topological photonics
[23] offer the most promising realizations. Quantum
simulators have allowed for the realization of the topo-
logical insulators in one-dimensional (1D) [24–29], 2D
[30–32], and even 4D space [33,34]—the latter with the
help of a synthetic dimension.
Thirty years ago Thouless proposed the idea of a

topological charge pump where transport of charge,
described by an adiabatically and periodically evolving
Hamiltonian, was quantized and determined by the first
Chern number calculated in the time-momentum space [35].
More concretely, if one has a one-dimensional translation
invariant gapped system of free fermions on a lattice then, by
adiabatically and periodically driving the system, the center
of mass position is shifted, in one period of driving, by an
integer multiple of the lattice constant. This integer is the
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first Chern number of the vector bundle of occupied states in
the instantaneous ground states of the system, defined over
the space of Bloch momenta and time—topologically, a
torus. Direct observation of the Thouless quantum pump
was demonstrated in a quantum simulator where bosonic
ultracold atoms were prepared in theMott insulator phase in
an optical lattice whose tunneling amplitudes were periodi-
cally modulated in time [36,37].
In the present Letter we consider a different phenome-

non. Namely, we consider an atom constrained to move in
1D, with internal degrees of freedom subject to a space-
time periodic potential coupling the internal states. In this
case, it is possible, by preparing the system in a dressed
state, that the atom experiences an effective synthetic
electric field whose average work, in a period of driving
and one wavelength, is quantized in units of the Planck
constant h. The quantization is topological in nature and
robust against deformations of the system preserving the
gap. In the following, we provide an explicit situation
where this topological effect occurs and propose a way to
experimentally realize it. The differences between this
phenomenon and that of Thouless pumping are pointed
out in Table I.
Let us consider an atom where the ground state energy

level is characterized by the total angular momentumF ¼ 1
and in the presence of an external magnetic field the
energies EmF

, mF ¼ þ1; 0;−1 of the magnetic sublevels
are split, ΔE ¼ E1 − E0 ¼ E0 − E−1. We denote the inter-
nal states by j0i≡ jmF ¼ 0i, j1i≡ jmF ¼ þ1i and
j2i ¼ jmF ¼ −1i. If an atom is subjected to two counter-
propagating circularly polarized electromagnetic waves of
the frequency ω, the internal degrees of freedom of an atom
and the electromagnetic fields can be described by the
dressed-atom Hamiltonian which, within the rotating wave
approximation, reads [21],

Mðt; xÞ ¼ δðtÞðj1ih1j − j2ih2jÞ þ Ωðt; xÞj0ih1j
þΩ�ðt; xÞj0ih2j þ H:c:; ð1Þ

where we assume that the detuning is oscillating in time due
to the periodic modulation of the magnetic field, δðtÞ ¼
ΔEðtÞ − ℏω ¼ γ þ ν cosðω̃tÞ, with the frequency ω̃ ≪ ω
and ν; γ ∈ R. The Rabi frequency depends periodically on
time and space, Ωðt; xÞ ¼ α1ðtÞeikx þ α2ðtÞe−ikx, where k
denotes the wave number of the electromagnetic waves
while α1ðtÞ ¼ ðα=2Þ cosðω̃t − π=4Þ and α2ðtÞ ¼
ðα=2Þ cosðω̃tþ π=4Þ describe periodic modulations of
the amplitudes of the waves, with the same frequency as
the frequency of the magnetic field modulation, where α is
proportional to the dipole matrix element. The Hamiltonian
Mðt; xÞ is periodic both in space and in time with the
periods λ ¼ 2π=k and T ¼ 2π=ω̃, respectively, and
can be written in a more compact form, Mðt; xÞ ¼P

3
μ¼1 B

μðt; xÞJμ where J3 ¼ j1ih1j − j2ih2j, J1 − iJ2 ¼ffiffiffi
2

p ðj0ih1j þ j2ih0jÞ and

B1ðt; xÞ ¼ α cosðkxÞ cosðω̃tÞ;
B2ðt; xÞ ¼ α sinðkxÞ sinðω̃tÞ;
B3ðt; xÞ ¼ γ þ ν cosðω̃tÞ: ð2Þ

When the atomic center of mass motion is coupled to its
internal degrees of freedom certain geometric gauge fields
arise [21,38–41]. For simplicity, let us consider that the
atomic motion is restricted to one spatial dimension. The
full Hamiltonian of the system is given by

H ¼ p2

2m
þMðt; xÞ; ð3Þ

where x and p are the atomic center of mass coordinate and
momentum, m is the mass. We can solve the eigenvalue
problem for Mðt; xÞ, yielding the eigenvalues ε1ðt; xÞ ¼
jBðt; xÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
μðBμÞ2

q
, ε2ðt;xÞ¼0, and ε3ðt;xÞ¼−ε1ðt;xÞ

and the corresponding eigenstates (dressed states of an
atom) jηiðt; xÞi. The most general solution of the
Schrödinger equation will be given by a linear combination

TABLE I. Comparison between charge pumping and quantization of work. The σμ’s denote the usual Pauli matrices.

Top. effect

Property Work quantization Thouless pumping

Parameter space topologically a
torus T2

Space-time Bloch momenta and time

Gapped Hamiltonian Mðt; xÞ ¼ P
3
μ¼1 B

μðt; xÞJμ Hðt; kÞ ¼ P
3
μ¼1 d

μðt; kÞσμ (in the simplest
scenario of a two-band system)

Wave functions (sections) Dressed states jηðt; xÞi Bloch states juðt; kÞi
Gauge field −iAðt; xÞ=ℏ ¼ hηðt; xÞjdjηðt; xÞi

acts as an effective external field
Aðt; kÞ ¼ huðt; kÞjdjuðt; kÞi manifests through
coupling to an external field

Field strength Fðt; xÞ ¼ dA Fðt; kÞ ¼ dA
First Chern number Average work performed by Eðt; xÞ

on the unit cell of space-time lattice
Shift of the center of mass of a system
xcm ¼ hxi in one period of driving
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ψðt; xÞ ¼ P
3
i¼1Ψiðt; xÞjηiðt; xÞi. Writing the vector Ψ ¼

ðΨ1;Ψ2;Ψ3ÞT , we get the time-dependent Schrödinger
equation corresponding to the Hamiltonian (3) in the form

�
iℏ

� ∂
∂tþA0

�
þ ℏ2

2m

� ∂
∂xþA1

�
2

−V−E
�
Ψ¼0; ð4Þ

where E ¼ diagðε1; ε2; ε3Þ and the matrices A0 ¼
ðhηij∂tjηjiÞ and A1 ¼ ðhηij∂xjηjiÞ are the components of
the matrix-valued one-form A ¼ ðhηijdjηjiÞ.
For the configuration of the electromagnetic waves and

the detuning we have chosen, the eigenvalues εiðt; xÞ are
separated from each other by gaps for each ðt; xÞ. If we
prepare an atom in, e.g., the positive energy dressed state,

jη1ðt; xÞi ¼
j1i þ ffiffiffi

2
p

zj0i þ z2j2i
1þ jzj2 ;

zðt; xÞ ¼ B1 þ iB2

jBj þ B3
;

ð5Þ

it will follow this state in the time evolution provided its
kinetic energy is much smaller than the gap between the
adjacent dressed state levels. Then, one can perform an
adiabatic Born-Oppenheimer approximation and project
the dynamics onto this state only [21,39–41]. The resulting
effective Schrödinger equation for the center of mass wave
function, ϕðt; xÞ ¼ Ψ1ðt; xÞ, is that of a particle in the
presence of an external gauge field, A0=ℏ ¼ ihη1j∂tjη1i and
A1=ℏ ¼ ihη1j∂xjη1i, and an effective scalar potential Veff ,

iℏ
∂ϕ
∂t ¼

�
1

2m
ðp − A1Þ2 − A0 þ Veff

�
ϕ; ð6Þ

with

Veff ¼
ℏ2

2m
g11ðt; xÞ þ ε1ðt; xÞ; ð7Þ

where g11 ¼
P

j>1 jhη1jð∂M=∂xÞjηjij2=ðεj − ε1Þ2 is the
11th component of the quantum metric [41–43].
Since the atom is constrained to move in a single space

dimension, the only relevant component of the field
strength tensor is the synthetic electric field force acting
on a particle of a unit charge

Eðt; xÞ ¼ ∂A1

∂t −
∂A0

∂x ¼ ℏ
B · ð∂B∂x × ∂B

∂t Þ
jBj3 : ð8Þ

Because B≡ ðB1; B2; B3Þ is space-time periodic, one can
define a Chern number c1 associated to the positive energy
dressed state which will be minus twice the wind-
ing number of the map ðt; xÞ ↦ Bðt; xÞ=jBðt; xÞj ∈ S2,
where S2 denotes the unit sphere in R3, i.e., c1 ¼
ð1=2πℏÞ R T

0

R
λ
0 Eðt; xÞdtdx. In particular, with α=ν ¼ 1,

using Eq. (2), we get a nontrivial Chern number −4 for
−1 < γ=ν < 0 and 4 for 0 < γ=ν < 1 and trivial elsewhere
[44]. A similar result holds for the negative energy dressed
state but with the Chern number being the opposite. The
zero energy dressed state always has a trivial Chern
number.
The quantization of the Chern number, proved in [44],

amounts to having, on the unit cell of the space-time lattice,
a quantized value for the flux

R
Eðt; xÞdtdx in units of

2πℏ≡ h. Now Eðt; xÞdx is, dimensionally, the amount of
work, of the electric field force, under the displacement dx
of a particle with a unit charge. The space-time lattice
involved is simply Λ ¼ fðt; xÞ ¼ ðmT; nλÞ; m; n ∈ Zg.
The interpretation of the quantized value of the Chern
number is the following: the average over a period T of the
work performed by the electric field E in the transport of a
classical particle by a distance of a single space cell, i.e.,
x → xþ λ, is quantized in units of Planck’s constant h. If
we consider the normalized average in time, to have pro-
per units of work, we get ð1=TÞ R T

0

R
λ
0 Eðt; xÞdtdx ¼

ðh=TÞc1 ¼ ðℏω̃Þc1, with c1 ∈ Z the Chern number. We
thus get quantization in units of the driving energy ℏω̃.
A possible way to experimentally observe quantization

of the average work, in the example we consider, can be
done indirectly as follows. Take the time interval ½0; T� and
consider a number N of instants ti, i ¼ 1;…; N. For each
instant ti, prepare an atom in the dressed state band with
energy ε1ðti; xÞ and described, at ðti; xÞ, by jη1ðti; xÞi. We
want the state of the center of mass degree of freedom of an
atom to be strongly localized in a certain point xðtiÞ (i.e.,
much better than the size of a single space cell which is not
a problem if the experiment is performed in the rf range
where the wavelength λ is of the order of the meter), so the
dynamics for time t ∈ ½ti; T� is well described by the
classical equations of motion

m
d2x
dt2

ðtÞ ¼ E(t; xðtÞ) − ∂ε1
∂x (t; xðtÞ) − ℏ2

2m
∂g11
∂x (t; xðtÞ):

ð9Þ

We then measure the position of the atoms in the period
½0; T�. With the resulting trajectories xiðtÞ, t ∈ ½ti; T�,
i ¼ 1;…; N, we can then differentiate with respect to time
twice obtaining the acceleration. With this procedure we
will get a profile of the total force field in the unit cell of Λ
which we can compare to the theoretical predictions.
Because of the localization of the center of mass of an
atom, the observed profile should be the same and
quantization of the time average of work of Eðt; xÞ can
be confirmed. In Fig. 1 we show how the sampling of the
accelerations of trajectories allows us to have the force
profile on the unit cell. Additionally, we show the profile of
Eðt; xÞ on the unit cell. The total force and the profile of
Eðt; xÞ are qualitatively similar. The reason is that all
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contributions to the total force increase with the decrease of
the gap function ε1ðt; xÞ.
We would like to remark that the phenomenon we

describe is at the boundary between classical and quantum
physics. Classical, since we want the states of the atoms to
be strongly localized, so that the dynamics is classical. This
is achieved by staying in the cold atom regime and not in
the ultracold one. Quantum, since the atom will experience
the effect of a synthetic force whose average work on the

unit cell is quantized due to the quantum nature of the wave
function of the internal degrees of freedom of the atom.
This is achieved by having a gap which is larger than the
kinetic energy of the atom.
We stress that the topological effect of work quantization

considered in this Letter and that of Thouless pumping are
physically different, although mathematically similar,
cf. Table I. Explicitly, in our case, it is the topology of
quantum states over space-time and not of quantum states
over Bloch momentum space that is involved. This top-
ology is then reflected in the quantization of the average
work of the synthetic electric field and not the quantization
of the shift of the center of mass of the system.
Finally, we would like to make contact with the very

recent Ref. [45] where a topological energy pump in 1D, in
the context of a driven system was considered. There, a
“work polarization” is quantized. We remark that the
topological invariant there refers to the homotopy class
of a map P, describing the dynamics within each cycle,
from a three-dimensional torus to the unitary group U(2).
The three-dimensional torus is parametrized by variables
ðt; λ; kÞ where t is time, λ is a flux, and k is the one-
dimensional momentum in the first Brillouin zone. As a
consequence, although in both cases there is quantization of
some type of work, just as the Thouless pumping is
significantly different from the phenomenon considered
here, see Table I, so is this one.
In summary, we have presented an effect in which the

transport of a particle in the presence of a space-time
periodic potential is characterized by a quantized average,
over a period of the potential, amount of work needed to
shift a particle by a single spatial period of the potential.
The quantization was understood in terms of the topologi-
cal twist of the vector bundle of dressed states. Moreover,
we have provided an experimental procedure to probe this
phenomenon.
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FIG. 1. Proposal for experimental demonstration of the quan-
tization of the average work performed by the electric field
Eðt; xÞ. The top panel shows acceleration profile in a space-time
unit cell obtained by integration of the classical equations of
motion (9). For each initial condition, the resulting classical
trajectory allows one to calculate the acceleration by differ-
entiation of the trajectory with respect to time twice. In the middle
panel we show the same profile obtained by plotting the total
force acting on an atom. In the bottom panel the contribution from
the electric field force Eðt; xÞ is plotted only. The integration of
Eðt; xÞ over a single space-time cell results in a quantized value
which can be also obtained when one estimates the integral with
the help of the points presented in the top panel. In the latter case,
one has to first subtract the other contributions to the total force
which are known from the theoretical description, cf. Eq. (9).
Here, μ ¼ 0.5 and m ¼ 1. The Chern number is 4. Moreover, we
take ℏ ¼ 1.
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