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The XX model with uniform couplings represents the most natural choice for quantum state
transfer through spin chains. Given that it has long been established that single-qubit states cannot
be transferred with perfect fidelity in this model, the notion of pretty good state transfer has been
recently introduced as a relaxation of the constraints on fidelity. In this paper, we study the transfer
of multi-qubit entangled and unentangled states through unmodulated spin chains, and we prove
that it is possible to have pretty good state transfer of any multi-particle state. This significantly
generalizes the previous results on single-qubit state transfer, and opens way to using uniformly
coupled spin chains as quantum channels for the transfer of arbitrary states of any dimension. Our
results could be tested with current technology.

I. INTRODUCTION

The transfer of quantum states from one site to an-
other is a key task in quantum information processing.
For example, one would like to have a quantum data bus
between quantum registers and/or processors capable of
transmitting arbitrary quantum states in a reliable way
[1]. A straightforward approach could be to apply a se-
quence of SWAP gates, but that would be too demanding
in terms of control, and very prone to errors [2]. This has
stimulated the proposal of passive quantum networks as
transmission devices which do not require control except
during the preparation and readout. In particular, the
one-dimensional half-integer spin chain has been exten-
sively studied as a quantum wire for the transfer of qubit
states [3–5].

Much attention has been given to the ideal scenario
where we have perfect state transfer (PST), i.e. where
the fidelity of transfer is equal to one. Such unit fidelity
has been investigated in the context of a wide range of
quantum spin networks (see [6] for a review), and it has
been demonstrated that PST cannot be achieved within
spin-1/2 chains with basic nearest-neighbor couplings.
The experimental realization of spin chains with PST
would be possible if the system was engineered accord-
ing to non-natural coupling schemes [7–9], but this would
unfortunately be a highly difficult task in practice. Fur-
thermore, it has been argued that the condition of perfect
transfer is far too demanding in comparison with the level
of fidelity required for the implementation of most quan-
tum information processing tasks [10]. Therefore, it is
important to investigate if a relaxation of the constraints
on the fidelity can lead to better results.

It would be useful to establish that quantum state
transfer can be accomplished in chains with minimal vari-
ation of the coupling strengths. This is so because the
unmodulated chain represents the model of spin chain
whose construction requires less control over the individ-
ual parts [1] and, furthermore, there exist experimental
quantum information transfer platforms whose natural
dynamics are governed by Hamiltonians with uniform
couplings [11, 12]. Motivated by this, several alterna-

tives have been proposed, such as designing weakly vary-
ing coupling configurations which also display the PST
property [13], obtaining high quality ballistic state trans-
fer in chains where the bulk is uniform and the couplings
between the bulk and the boundary qubits are tuned to
optimal values [14–16], and using an iterative measure-
ment procedure to perform state in unmodulated chains
with low probability of failure [17, 18].

In our work, we focus on the notion of pretty good state
transfer (PGST), which has recently been introduced as
a significant alternative to PST [19, 20]. Here, the re-
quirement is that the fidelity of transfer gets arbitrarily
close to unity. By applying this concept to the unmodu-
lated XX-type chain, which represents the model of spin
chain whose construction requires less control over the
individual parts [1], Godsil et al. proved that there is
PGST of single-particle states in such a chain if and only
if the length of the chain is n = p− 1, n = 2p− 1, where
p is prime, or n = 2k−1 [21]. This result means that the
quality of the state transfer protocol depends on condi-
tions which are purely number-theoretic, and shows that
there is a surprising connection between the dynamics of
quantum spin chains and primality.

Since the discovery by Shor of a polynomial time al-
gorithm for prime factorization on a quantum computer
[22], the application of quantum algorithms to problems
in prime number theory has been a topic of special in-
terest. This continues to be an active research direc-
tion: for instance, a recent contribution is that of La-
torre and Sierra, who propose the creation of a single
quantum state made of the superposition of prime num-
bers to study primality problems [23]. In this context,
the result of [21] is of high significance, since it estab-
lishes a nontrivial link between quantum dynamics and
primality which is outside the scope of the traditional
algorithmic applications. It would therefore be desirable
to generalize this result, namely to other protocols with
practical relevance for quantum state transfer.

The work in [21] is restricted to single-particle qubit
states. However, given the practical challenges inherent
to the implementation of quantum systems, the useful-
ness of the experimental realization of the uniformly cou-
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pled XX chain as a quantum channel clearly depends on
whether or not many-particle qubit states, and in par-
ticular entangled states, can also be transferred with ar-
bitrarily high fidelity through a single chain. This topic
has already been addressed for PST protocols [13, 24],
and it has been established that, in the XX model, PST
of arbitrary single-qubit states is a sufficient condition
for PST of multi-qubit states [25]. While completing
this manuscript, we also became aware of an indepen-
dent work in chains with Rabi-like dynamics [26] that
further endorses the relevance of the problem of multi-
particle state transfer through a single chain. However,
to the best of our knowledge, the study of PGST has
never encompassed multi-particle state transfer.

In this paper, we extend the definition of PGST to ar-
bitrary multi-qubit states, and we show that regardless
of the number of qubits of the input state, the fidelity of
the transfer is arbitrarily high if and only if the length of
the chain is n = p− 1, 2p− 1, or 2k − 1. From a strictly
physical point of view, this confirms that the uniformly
coupled quantum spin chain is a versatile channel for the
construction of quantum communication systems. Ad-
ditionally, our work widens the number of protocols for
which PGST is characterized as a function of primality
conditions. This highlights that the link between quan-
tum dynamics and primality goes beyond the established
applications in the field of quantum algorithms.

II. STATE TRANSFER OF m-QUBIT STATES

We consider a model of n qubits interacting within
a one-dimensional spin-1/2 system described by an XX-
type Hamiltonian with isotropic couplings,

H =
1

2

n−1∑
j=1

J
(
σxj σ

x
j+1 + σyj σ

y
j+1

)
, (1)

where σxj , σ
y
j and σzj are the Pauli spin operators at posi-

tion j. Without loss of generality, we will consider J = 1.
By employing the Jordan-Wigner transformation [27],

this system can be mapped to a local fermionic Hamilto-
nian,

H =
1

2

n−1∑
j=1

(
c†jcj+1 + c†j+1cj

)
, (2)

with

cj =

∏
l<j

σzl

 σxj + iσyj
2

, c†j =

∏
l<j

σzl

 σxj − iσ
y
j

2
.

(3)
The total z-spin operator, given by Sztot =

∑n
j=1 σ

z
j , com-

mutes with the Hamiltonian of the system, [H,Sztot] = 0;
therefore, the Hilbert space of the register can be diag-
onalized and decomposed into invariant subspaces con-
sisting of the distinct eigenstates of Sztot. Each of these

subspaces can be characterized by the number of spins
on the excited state, i.e. the number of qubits having bit
value 1. Since the Hamiltonian (2) describes a system of
non-interacting spinless fermions, initial quantum states
that are in each of the individual subspaces of H will
remain there under time evolution.

The state transfer scheme we will consider is a natu-
ral generalization of the usual single-qubit scheme: the
state sender S, located on one end of the chain, wishes
to transmit an m-qubit composite state |ψin〉 (which will
generally consist of an entangled state) to the receiver R,
located on the other end (see Fig. 1). A generic state of
the system is therefore of the form

|Ψ〉 = |ψS〉 ⊗ |ψC〉 ⊗ |ψR〉
= |ψ1ψ2 . . . ψm〉⊗|ψm+1ψm+2 . . . ψn−m〉

⊗|ψn−m+1ψn−m+2 . . . ψn〉,
(4)

where |ψS〉 and |ψR〉 belong to the sender and receiver’s
subspaces respectively, and |ψC〉 belongs to the subspace
which corresponds to the rest of the quantum channel.
After initialization of the n spins to the eigenstate

|0〉 = |010203 . . . 0n−10n〉, (5)

the sender places the state |ψin〉 at the beginning of the
chain, and such state shall be recovered at the end of the
chain by the receiver after a given time τ .

𝜓𝑆(0) = |𝜓𝑖𝑛⟩ 𝜓𝐶(0) = |000⟩ 𝜓𝑅(0) = |00⟩

SENDER RECEIVERCHANNEL

FIG. 1: Diagram of our spin chain state transfer protocol, for
the case of two qubit states (m = 2) and 7 sites (n = 7).

Since he is located on the antipodal site, we assume
that the receiver reads the state of his subsystem in the

opposite order. If we let |Ψ̃〉 = |ψn . . . ψ2ψ1〉 be the mir-
rored state of the whole system, the output state is thus
given by

ρout(τ) = TrC,S

{
|Ψ̃(τ)〉〈Ψ̃(τ)|

}
= TrC,S {|ψn . . . ψ2ψ1(τ)〉〈ψn . . . ψ2ψ1(τ)|} ,

(6)
where the partial trace is over the qubits |ψn−m . . . ψ2ψ1〉.
(As it will be seen later, this reversal enables us to exploit
the symmetry properties of the system.) The figure of
merit for the quality of the state transfer through this
protocol at time τ is thus given by the quantum fidelity
〈ψin|ρout(τ)|ψin〉.
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Single-excitation manifold

We will start by restricting our problem to the
single-excitation subspace, since this represents the sim-
plest scenario for transfer of entangled states. This
subspace is described by the class of states |j〉 =
|0102 . . . 0j−11j0j+1 . . . 0n〉, where only the j-th qubit is
in the excited |1〉 state (j = 1, . . . n). We are thus assum-
ing that the state of the whole system immediately after
the sender places its state on the chain is of the form

|Ψ(0)〉 = |ψin〉|0m+10m+2 . . . 0n〉

= α|0〉+

m∑
j=1

βj |j〉,
(7)

where |α|2 +
∑m
j=1 |βj |

2
= 1.

The two definitions of pretty good state transfer
(PGST) we will adopt in this paper are straightforward
generalizations of the notion introduced by Godsil in [19].
We start by stating the first, which applies to the single-
excitation scenario: we say that there is PGST of the
state |ψin〉 if for any ε > 0, there is a time t > 0 such
that

|〈n+ 1− j|U(t)|j〉| > 1− ε, j = 1, . . . ,m, (8)

where U(t) = eiHt is the time evolution operator. The
effects of the absolute values taken above can be easily
corrected through the application of appropriate phase
gates [8]; therefore, condition (8) implies that our figure
of merit 〈ψin|ρout(t)|ψin〉 can be made arbitrarily close
to 1.

Under the single-excitation framework, the state vec-
tors |j〉 are equivalent to the n vectors of the usual basis
of the space Cn, and the unitary operator U(t) = e−iHt

is equivalent to a n × n continuous-time quantum walk
on the uniformly coupled path graph. This enables us
to undertake a graph-theoretic approach in the study of
PGST, as in [21, 28]. The following theorem is the main
result of [21]:

Theorem 1. Suppose the Hamiltonian of the chain is
given by (1). Then, given an ε > 0, there is a time t > 0
such that

|〈n|U(t)|1〉| > 1− ε (9)

if and only if n = p − 1, 2p − 1 or 2k − 1, where p is a
prime and k ∈ N.

We will now invoke a particular case of a theorem
which was proved by Cameron et al. (see Theorem 3 in
[28]).

Theorem 2. Suppose the Hamiltonian of the chain is
given by (1). Let F denote the n×n permutation matrix
such that F |j〉 = |n+ 1− j〉, for all j = 1, . . . , n. Then,
condition (9) is true if and only if for any given ε > 0
there is a time t > 0 such that

‖U(t)− γF‖ < ε (10)

for some γ lying on the complex unit circle, where ‖·‖
denotes the usual matrix norm.
Corollary 3. If the multi-qubit input state |ψin〉 is

restricted to the single-excitation manifold, then there is
PGST of |ψin〉 if and only if n = p− 1, 2p− 1 or 2k − 1,
where p is a prime and k ∈ N.
Proof. If n = p − 1, 2p − 1 or 2k − 1, then by the-

orem 2, for each ε > 0 there is a time t > 0 such that
‖U(t)− γF‖ < ε. Therefore,

ε > max
‖|ψ〉‖=1

‖(U(t)− γF ) |ψ〉‖

≥ max
|k〉
‖(U(t)− γF ) |k〉‖

= max
|k〉
‖U(t)|k〉 − γ|n+ 1− k〉‖

≥ ‖U(t)|j〉 − γ|n+ 1− j〉‖

(11)

for each j = 1, . . . ,m. This proves that condition (8) is
satisfied. �

This result per se is already quite interesting, but the
fact that we have restricted the analysis to the single-
excitation subspace is a major limitation to its practical
applicability. Hence, we will now turn our attention to
the higher-excitation framework.

Higher-excitation manifolds

The r-excitation subspaces (r = 2, 3, . . . ,m) are
spanned by the set of states |`1, `2, . . . , `r〉 (with 1 ≤ `s ≤
n and pairwise distinct), where the qubits `1, `2, . . . , `r
are in the state |1〉 and the remaining qubits are in the
state |0〉; the dimension of these subspaces is thus given
by the binomial coefficients

(
n
r

)
. For example, |1, 3, 4〉 de-

notes the state |1102131405 . . . 0n〉, which belongs to the
3-excitation manifold.

In this unrestricted case, the sender wishes to trans-
mit a state |ψin〉 which corresponds to a superposition of
states with up to m excitations. Therefore, the state of
the whole system after placement of the input state is

|Ψ(0)〉 = |ψin〉|0m+10m+2 . . . 0n〉

= α|0〉+

m∑
j=1

βj |j〉

+

m∑
r=2

 ∑
`1,`2,...,`r

β`1`2...`r |`1, `2, . . . , `r〉


(12)

where the latter sum ranges over all the combinations of
indices such that 1 ≤ `1 < `2 < . . . < `r ≤ m, and where

|α|2 +
∑m
j=1 |βj |

2
+
∑m
r=2

(∑
`1,`2,...,`r

|β`1`2...`r |
2
)

= 1.

In this context, we must adapt our previous definition
of PGST: we say that there is PGST of |ψin〉 if for any
ε > 0 there is a time t > 0 such that

|〈n+ 1− j|U(t)|j〉| > 1− ε, j = 1, . . . ,m (13)
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and, for each r = 2, 3, . . . ,m and for each combination of
indices `1, `2, . . . , `r,∣∣∣〈 ˜̀1, ˜̀2, . . . , ˜̀r|U(t)|`1, `2, . . . , `r〉

∣∣∣ > 1− ε, (14)

where ˜̀s = n + 1 − `s. This definition reduces to the
former one in the single-excitation case, and it can be
readily checked that it implies that 〈ψin|ρout(t)|ψin〉 can
be made arbitrarily close to one.

Therefore, in this unrestricted framework we also have
to verify conditions (14), which apparently represents a
much harder challenge. However, the physical properties
of the XX spin chain system imply that the evolution of
higher excitation states can be easily determined through
the analysis of the single-excitation manifold, as we will
show.

The key observation is that the XX spin chain is equiv-
alent to a system of noninteracting fermions, since the
Jordan-Wigner transformation allows us to write the

Hamiltonian H in the form (2), where cj and c†j are
fermionic operators. According to the Pauli exclusion
principle, two noninteracting fermions cannot be simulta-
neously in the same quantum state at the same position.
Hence, the r-fermion wave functions can be represented
as an anti-symmetric product of the single-particle wave
functions which can be formally expressed through the
Slater determinant [29, 30].

The considerations above show that the composite
qubits |`1, `2, . . . , `r〉 can be interpreted as states in which
we have r fermions occupying the positions `1, `2, . . . , `r.
Accordingly, the Slater determinant formalism implies
that the amplitudes of transfer for such fermionic states
can be calculated as [31, 32]

〈 ˜̀1, ˜̀2, . . . , ˜̀r|U(t)|`1, `2, . . . , `r〉 =

=

∣∣∣∣∣∣∣∣∣
〈 ˜̀1|U(t)|`1〉 〈 ˜̀2|U(t)|`1〉 · · · 〈 ˜̀r|U(t)|`1〉
〈 ˜̀1|U(t)|`2〉 〈 ˜̀2|U(t)|`2〉 · · · 〈 ˜̀r|U(t)|`2〉

...
...

...

〈 ˜̀1|U(t)|`r〉 〈 ˜̀2|U(t)|`r〉 · · · 〈 ˜̀r|U(t)|`r〉

∣∣∣∣∣∣∣∣∣ .
(15)

We use as a lemma the following result of Ostrowski [33]:
Lemma 4. Let A = [aij ] ∈ Cr×r be a complex matrix

such that |aii| >
∑
j 6=i |aij |. Then,

|detA| ≥
r∏
i=1

|aii| −∑
j 6=i

|aij |

 . (16)

Assume that detA is given by the right hand side of
(15). If condition (10) is true for any given small δ > 0,
then |aii| > 1− δ and∑

j 6=i

|aij | ≤ (r − 1) max
j 6=i
{|aij |}

≤ (r − 1)
√

2δ − δ2

< (r − 1)
√

2δ,

(17)

for all i (recall that, since U(t) is unitary, each of
its rows satisfies the normalization condition, whence
maxj 6=i{|aij |} ≤

√
2δ − δ2). By Lemma 4, we obtain∣∣∣〈 ˜̀1, ˜̀2, . . . , ˜̀r|U(t)|`1, `2, . . . , `r〉

∣∣∣ >
>
(

1− δ − (r − 1)
√

2δ
)r

>
(

1− r
√

2δ
)r
.

(18)

If we choose δ =
(
(1− ε)1/r − 1

)2
/
(
2r2
)
> 0 , we ob-

tain equation (14). Thus, we have proved the following
theorem, our main result:
Theorem 5. Suppose the Hamiltonian of the chain is

given by (1). Let |ψin〉 be an arbitrary composite m-
qubit state. Then, there is PGST of the state |ψin〉 if
and only if n = p− 1, 2p− 1 or 2k− 1, where p is a prime
and k ∈ N.

Note that, since
∣∣∣〈 ˜̀1, ˜̀2, . . . , ˜̀r|e−iHt|`1, `2, . . . , `r〉∣∣∣ are

the amplitudes for the mirror inversion of states in the r-
excitation subspace, our arguments show that the pretty
good mirroring of single-particle states is a sufficient con-
dition for the pretty good mirror inversion of the state of
the register in each excitation subspace. Consequently,
the problem of the PGST of multi-particle states can be
reduced to the analysis in the single-qubit transfer sce-
nario, and this is true not only for the case of the un-
modulated XX Hamiltonian but also for any excitation-
preserving Hamiltonian. These results are consistent
with those reported in [13, 25, 34] for the case of PST.

A numerical plot of the first times for which there
is high fidelity can be found in Fig. 2. The data were
obtained by the graphical technique described in [21],
and we have also chosen ε = 0.01 for comparability. The
plot suggests that the linear behavior noted in [21] is pre-
served when the dimension of the input state is increased.

III. CONCLUSIONS

We have proved that any multi-qubit state can be
transferred with arbitrarily large fidelity through the uni-
form XX quantum spin chain if and only if the length of
the chain is n = p − 1, n = 2p − 1, or n = 2k − 1. This
is a significant generalization of the results of [21] for
single-particle transfer, and shows that the simplest spin
chain model for quantum state transfer can be used as
a data bus for quantum information processing devices.
We have also demonstrated that, for any excitation-
preserving Hamiltonian, the study of the PGST of multi-
qubit states can be reduced to the corresponding single-
qubit problems. This significantly simplifies future re-
search on PGST.

While the application of quantum algorithms to prob-
lems in number theory (and, in particular, primality)
is a long-established and prominent investigation topic
[35], the connection between non-algorithmic quantum
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FIG. 2: Semi-logarithmic plot of tmin, which is the smallest
value of t satisfying equations (13) and (14) for ε = 0.01, as a
function of the number of sites n. The blue, orange and black
lines correspond to the cases of states of m = 1, m = 2 and
m = 3 qubits respectively. We verified that the coincidence
of the values for n = 6, 7, in the cases m = 2 and m = 3, does
not hold in general for all ε.

dynamics and prime numbers has not yet drawn much
attention from researchers. By expanding the scope of
scenarios in which the fidelity of state transfer is charac-
terized as a function of primality constraints, our work

corroborates the viewpoint that quantum spin systems
can potentially be used as a tool for tackling problems in
prime number theory [21].

Finally, our results indicate that the choice of a uni-
form coupling configuration can represent a simple prac-
tical solution for the design and implementation of uni-
versal quantum data buses, capable of transferring arbi-
trary quantum states with very high fidelity. Further-
more, our results could be tested experimentally. In
particular, NMR [11, 36], ultracold atoms in optical lat-
tices [37, 38], photonic waveguide lattices [39, 40] and
atomic nanomagnets [12] are very good candidates for
such purpose, due to the substantial recent accomplish-
ments in the actual experimental realization of quantum
spin chains through such physical platforms.
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[14] A. Wójcik et al., Phys. Rev. A 72, 034303 (2005).
[15] L. Banchi, T.J.G. Apollaro, A. Cuccoli, R. Vaia, P. Ver-

rucchi, New J. Phys. 13, 123006 (2011).
[16] L. Banchi, Eur. Phys. J. Plus 128, 137 (2013).
[17] D. Burgarth, S. Bose, Phys. Rev. A 71, 052315 (2005).
[18] A. Bayat, Preprint arXiv:1403.7833v1.
[19] C. Godsil, Discrete Math. 312, 129 (2012).
[20] L. Vinet and A. Zhedanov, Phys. Rev. A 85, 012323

(2012).
[21] C. Godsil, S. Kirkland, S. Severini, J. Smith, Phys. Rev.

Lett. 109, 050502 (2012).
[22] P.W. Shor, SIAM J. Comput. 26, 1484 (1997).
[23] J. I. Latorre, G. Sierra, Quant. Inf. and Comp.

14, 0577 (2014); J.I. Latorre, G. Sierra, Preprint
arXiv:1403.4765v2.

[24] R. Ronke, T. P. Spiller and I. D’Amico, Phys. Rev. A 83,
012325 (2011).

[25] V. Kostak, G.M. Nikolopoulos, I. Jex, Phys. Rev. A 75,
042319 (2007).

[26] T. J. G. Apollaro et al., Preprint arXiv:1404.7837v1.
[27] J. B. Parkinson, D. J. J. Farnell, An Introduction to

Quantum Spin Systems (Springer, Berlin, 2010).
[28] S. Cameron et al., Preprint arXiv:1310.3885v1.
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