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Resource-efficient simulation of noisy quantum circuits and
application to network-enabled QRAM optimization
Luís Bugalho 1,2,3,4✉, Emmanuel Zambrini Cruzeiro 5, Kevin C. Chen 6,7, Wenhan Dai7,8, Dirk Englund 6,7 and Yasser Omar1,2,3

Giovannetti, Lloyd, and Maccone (2008) proposed a quantum random access memory (QRAM) architecture to retrieve arbitrary
superpositions of N (quantum) memory cells via quantum switches and OðlogðNÞÞ address qubits. Toward physical QRAM
implementations, Chen et al. (2021) recently showed that QRAM maps natively onto optically connected quantum networks with
OðlogðNÞÞ overhead and built-in error detection. However, modeling QRAM on large networks has been stymied by exponentially
rising classical compute requirements. Here, we address this bottleneck by: (1) introducing a resource-efficient method for
simulating large-scale noisy entanglement, allowing us to evaluate hundreds and even thousands of qubits under various noise
channels; and (2) analyzing Chen et al.’s network-based QRAM as an application at the scale of quantum data centers or near-term
quantum internet; and (3) introducing a modified network-based QRAM architecture to improve quantum fidelity and access rate.
We conclude that network-based QRAM could be built with existing or near-term technologies leveraging photonic integrated
circuits and atomic or atom-like quantum memories.
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INTRODUCTION
A quantum random access memory (QRAM) is an essential
computational primitive for many quantum algorithms. The ability
to perform a QRAM query in logðNÞ time steps, where N= 2n is the
number of memory cells, implies polynomial speed-ups for
applications such as quantum machine learning1, matrix inver-
sion2, quantum imaging3, and quantum searching4. Despite its
clear importance to quantum information processing, a QRAM has
yet to be realized experimentally. Hence, finding a suitable
architecture that can be realized in the near future remains an
active research subject in the theoretical and experimental
domains.
In this article, we present a method to simulate large-scale

entanglement accounting for various sources of noise. We are able
to efficiently simulate circuits with thousands of qubits under
dephasing, amplitude damping, and CNOT errors. Based on our
simulation model, we present a QRAM architecture for photonic
network-based QRAM based on ref. 5. The feasibility assessment is
based on realistic parameters extracted from recent experiments,
which we will refer to throughout the article.
A classical RAM6 consists of a binary tree leading to a final layer

of memory cells, each corresponding to a unique address. The
address is represented as a series of bits, with each bit
corresponding to a layer of the binary tree. Each bit of an address
describes how the bus signal propagates in the layer: to the right
or to the left child node. Hence, the nodes of the binary tree act as
switches for the address. When provided with a n-bit address, the
RAM returns a bit string fk associated with the memory cell labeled
k. This is called the fan-out scheme7.
A QRAM is the quantum analog of the RAM, similarly consisting

of addresses, quantum switches, and memory cells in the form of
qubits. In particular, with a quantum address state, over the set of

address qubits a, given by ψ0
in

�� � ¼ Pn
j¼1 αj jj ia, one can retrieve

data from a superposition of memory cells. A QRAM query is
defined via the following transformation,

ψinj i ¼ ψ0
in

�� � ;j ib�! ψoutj i ¼
XN
j¼1

αj jj ia Dj

�� �
b (1)

where ;j i represents an ancillary state over the bus qubit b, which
transforms into the retrieved data state after querying. In this
article, we will restrict our investigations to classical data, i.e., Dj

�� �
are separable bits. A direct conversion of classical fan-out protocol
to the quantum realm is inefficient since it requires maintaining
quantum coherence over an exponential number of connections7.
Three main schemes have been investigated to date: the fan-

out scheme that was already described, the bucket brigade model,
and the teleportation-based scheme. Important figures of merit
for the QRAM are the fidelity of the above transformation and the
query time. For a detailed study and comparison of the first two
schemes, please refer to ref. 8.
In the bucket brigade (BB) model7,9, the number of qubits of the

device scales as O(2n), as does the number of gates. Moreover, the
original protocol7 includes an additional third state in each node,
called the “wait” state, in order to prevent the exponential scaling
of the amount of decoherence with respect to the memory size.
However, Hann et al.8 have shown that the origin of the noise
resilience of the BB model is the amount of entanglement among
the memory’s components and not the presence of the “wait”
state, as one can devise a BB model without the “wait” state that
still achieves a polynomial scaling of the decoherence with respect
to the number of memory addresses n.
More recently, Chen et al. presented a photonic network-based

QRAM scheme5 that makes use of quantum teleportation of
addresses from a quantum computer to the QRAM binary tree.
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Such a scheme greatly increases the protocol’s efficiency by
teleporting the registers to the layers (initially prepared in GHZ
states) in parallel as opposed to in series, thereby circumventing
the event of a single qubit loss collapsing the entire tree state.
Additionally, the proposed QRAM maps onto quantum networks,
leading to potential applications in distributed quantum comput-
ing and sensing.
However, Chen et al. left as an open challenge the simulation of

the scheme on large-scale networks since the computational
complexity scales exponentially with the number of qubits. In this
work, we bypass this problem resorting to more efficient ways of
modeling the noise in stabilizer states. Moreover, this method
generalizes to other quantum networking tasks with similar
constructions, such as protocols for distributed quantum
computation.
This comes in line with the fact that distributing entanglement

is central in quantum information processing schemes ranging
from quantum computing to sensing to communications10–12.
Simulation of distributed entanglement in a network setting, be it
a long-distance network such as a possible future quantum
internet13 or small-distance quantum local area network (QLAN)14,
is important to assess the limitations imposed by near-term
quantum technologies. The architecture of the QRAM considered
in this paper, building on the photonic network-based QRAM
proposed in ref. 5, involves a series of exponentially growing GHZ
states, with the largest having as many qubits as there are
memory cells. Each GHZ state spans across a physical layer in the
QRAM architecture, and the number of nodes per layer grows
exponentially with the number of memory cells 2n≡ N to be
addressed, as shown in Fig. 1.
Computer simulations of noisy quantum processes in such a

system quickly become computationally intensive15–17 due to the
density matrices growing exponentially in size with the number of
qubits. Even though the entire QRAM protocol definition, i.e., the
retrieval of data given an input address (see Eq. (1)), requires more
than just Clifford operations, creating the routing state over the
QRAM architecture only uses Clifford gates. These operations are
the ones used to create the GHZ states and to teleport the address
state onto the QRAM access layers. Moreover, the operations
required to access the QRAM after the routing state is distributed
over the routing nodes only grow with the logarithm of the
number of qubits of the QRAM, in comparison to the linear
amount of operations required to create the routing state. This is
the reason why noise in the system mostly comes from the GHZ

states before access. In particular, this set of operations to create
the routing state can be classically simulated efficiently16. This
approach enables an explicit and efficient description of all the
intermediary states, up to local unitary corrections. In this article,
we develop efficient methods to simulate large-scale noisy
entanglement by characterizing the impact of noise at all
intermediate steps and apply these tools to simulate a noisy
QRAM.
There are several architectures for a QRAM. Here, we focus on

the optically mediated quantum network-based QRAM architec-
ture introduced in ref. 5, as it offers several key benefits:
implementation in quantum networks compatible with envisioned
quantum internet architecture and quantum data centers, faster
query times and the possibility of executing in a non-local manner
by means of teleportation. Hence, this scheme works under any
network-like architecture, be it locally (e.g., on a chip) or across
large distances (e.g., over a quantum internet). Without loss of
generality, we characterize each node of the architecture as one of
a spin-photon network that could be implemented in photonic
integrated circuits (PIC).
The architecture of the QRAM is similar to previous models,

such as BB and the fan-out models. The main difference concerns
the execution of the protocol and the resources available at each
node. In this architecture, one considers two agents: the quantum
computer, which prepares the addresses, and the QRAM or
quantum access tree (see Fig. 1). The quantum computer must
provide an address state with n ¼ log2N qubits, where N is the
total number of memories (for simplicity assume n 2 N). The
QRAM has a binary tree architecture, with n physical layers, where
the kth layer (k∈ {1, . . . , n− 1}) has 2k−1 quantum nodes. As we
describe next, in each physical layer, all the nodes share a GHZ
state, which is used to teleport the address state onto the QRAM
itself, allowing for an ancilla qubit to access the memories in the
correct superposition.
As for the type of physical implementation chosen, and without

loss of generality, we focus on a QRAM implementation involving
solid-state spin qubits integrated into PICs, an approach that is
promising in terms of scalability. In particular, we consider
diamond nanophotonic cavities coupled with silicon-vacancy
centers18,19 as each QRAM tree node. Each emitter contains an
electronic spin that directly interacts with the photonic address
register qubits and an accompanying nuclear spin acting as a
long-lived memory. By entangling the electronic spin with the
photon via cavity reflection, consecutive reflection of a photon off
two neighboring nodes and subsequent heralding achieves spin-
spin entanglement. This remote entangling strategy is repeatedly
used to generate a GHZ state across each layer. Such operations
are probabilistic (see Fig. 2): the photon has a non-zero probability
of being lost to the environment before reflecting off two cavities
and arriving at the detector. On the other hand, it is possible to
perform close to deterministic two-qubit gates between the
electronic and nuclear spin qubits, albeit with a larger error20,21.
For this reason, we term this architecture teleportation-based
deterministic QRAM or TD-QRAM.
In these types of systems, the main contributors to errors are (1)

spin phase errors (at rate 1/T2), (2) spin-flip errors (at rate 1/T1), and
(3) errors in hyperfine gates between electron and nuclear spins

Quantum
Computer
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Quantum RAM
Access Tree

Memory Cells

Layer 1

Layer 2

Layer 3

D1 D2 D3 D4 D5 D6 D7D0

Fig. 1 Overview of a teleportation-based QRAM architecture. A
quantum RAM in the form of a binary tree comprises GHZ states for
each physical layer. The left-most node of each layer i is entangled
with an ancillary qubit in a remote quantum computer, which hosts
the query address qubits (blue). Bell state measurement in the
quantum computer then teleports the address state onto the access
tree. The elementary operations to constructing GHZ states in a
photonic integrated circuit (PIC) QRAM are identical to the ones
over5.

e1 e2 e1 e2 e1 e2

Xp

Electron Photon Interaction

Fig. 2 Probabilistic CNOT. Execution of a CNOT gate between two
electrons, e1 and e2, mediated by a photon.
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(see Supplementary Table I). We leave out photon-electron interac-
tions, as one could conceive trading off the efficiency η for arbitrarily
high fidelity in the cavity-reflection-based scheme proposed in ref. 22

in the high-cooperativity and over-coupling regime.
Hence, we explore different values for T1, T2 of both electronic

and nuclear spin qubits and pe and pn for the probabilities of error
in electronic and nuclear spin CNOTs. For the remainder of this
article, we set Tn

1 ¼ 100 Te
1 � 100 T1 and Tn2 ¼ 100 Te2 � 100 T2.

Nuclear spins have a higher coherence time as they are much less
coupled to the noisy spin-bath compared to electronic spins.
Reported values of characteristic times go, experimentally, up to
Te1 � 1 s; Te

2 � 10ms23, and there are theoretical predictions of
being able to reach pe, pn= 10−2 ~ 10−424,25. Moreover, we detail
other important physical parameters of this type of system used
for the simulations in Supplementary Table I.

RESULTS
Simulating the effects of decoherence for a TD-QRAM
To simulate the QRAM initialization protocol, we use NetSquid26

under the stabilizer formalism and extract all the parameters of

the noise channels before implementing them in simulations, for
instance: timing parameters for every qubit used throughout the
simulation, all the noisy CNOTs with corresponding error
probabilities, and to which qubits and at which step it is applied.
From here, we compute the fidelity of the final QRAM state by
substituting all these values into the expressions presented in the
“Methods”.
We start by presenting the simulation of a 212-qubit QRAM in

Fig. 3. Here, we detail individually the fidelities of the GHZ state
distributed at each physical layer of the QRAM. The fidelity of the
full state of the QRAM is given by:

FðQRAM Þ ¼ Qn�1

i¼1
F Layeri; GHZj i2i�1þ1

� �
;

where GHZj iq ¼ 1ffiffi
2

p 0j i�q þ 1j i�q� � (2)

i.e., the fidelity of the entire tree (or the QRAM) is defined as the
product of the fidelities of each physical layer (see Supplementary
Methods for more details). We distinguish access fidelity from tree
fidelity, where the former refers to the fidelity of the state
retrieved after accessing the memory cells ( ψoutj i in Eq. (1)), and
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Fig. 3 TD-QRAM Simulations. a TD-QRAM access protocol for 12 layers, with the efficiency of generating a Bell pair swept from η= 50% to
η= 90%. The noise analysis considers only dephasing and damping errors. The final fidelity is calculated according to Eq. (2), with
T1= 20ms, T2= 10ms, and ϵCNOT= 0 for each layer. b Query times with varying sizes from 2 layers to 12 layers, and sweeping the efficiency of
generating a Bell pair from η= 50% to η= 90%. There is an expected logarithmic scaling of the query time with the number of qubits. c TD-
QRAM noise analysis with dephasing errors, T2= 10ms (filled lines) and T2= 100ms (traced lines), with fixed amplitude-damping error
T1= 2 s. We consider different QRAM sizes from 2 layers to 12 layers as well as various efficiencies of generating a Bell pair from η= 50% to
η= 90%. d TD-QRAM noise analysis with noisy CNOTs, pe= pn∈ {0, 10−5, 10−4, 10−3, 10−2}, for a QRAM with the number of layers ranging from
2 to 12. The dephasing time is fixed at T2= 100ms, and the amplitude-damping time is fixed at T1= 2 s. The efficiency of generating a Bell pair
is fixed at η= 90%. The final fidelity mainly depends on the number of noisy CNOTs performed throughout the protocol and has little
dependence on the efficiency. All the error bars over the data correspond to the error of the average value over 100 simulations of the
protocol.
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the latter refers to the multipartite state fidelity of the binary tree
constituting the QRAM. Only the access fidelity depends on the
address and bus qubits.
One observes an exponential decrease of the fidelity with the

number of the layer (notice the logarithmic scaling on the y-axis
corresponding to the fidelity). This agrees with the GHZ state size
increasing exponentially with the number of layers, i.e., scaling 2k.
When one qubit in this multipartite state suffers an error, the
entire state is affected.
One critical figure of merit that we extract from the NetSquid

simulations is the query time. As demonstrated in ref. 5, the query
efficiency scales logarithmically with the number of qubits.
Extracting from multiple queries of the QRAM, we obtain the
query times (apart from a logarithmic factor derived from making
the bus qubit traverse the binary tree) in Fig. 3.

Dephasing and damping errors for TD-QRAM
Considering only the effects of dephasing and amplitude-
damping errors in the spin qubits, we take T2=∞ms for
amplitude-damping errors only, and then T2= 10ms and
T2= 100ms with a fixed T1= 2 s23, see Supplementary Table I.
We also set the CNOT error rate to 0. We present the simulation
results for the TD-QRAM scheme under memory dephasing for
increasing QRAM size, as shown in Fig. 3.
Looking closely at Fig. 3c, one can observe that the effect of

amplitude-damping shows an identical behavior to the one of
dephasing and amplitude-damping combined, i.e., with the same
type of scaling. However, it is residual compared to the effect of
dephasing. This is easily explainable by the time-scales of the
coherence times of the corresponding noises (T1 and T2) in the
memory differ by orders of magnitude, with the first, T1, being
usually much longer than the latter, T2, i.e., T1 ~ 1 s23. For this
reason, its impact can be neglected relative to other sources
of error.

Dephasing, damping and noisy CNOTs for TD-QRAM
The only type of error missing in the analysis is the error derived
from the use of noisy CNOTs. Illustrated in Fig. 3, the dephasing
and damping errors minimally contribute to infidelity. We now
analyze the case for noisy CNOTs on top of fixed T1= 2 s and
T2= 100ms (note we now switch to linear scale in the y-axis for
the fidelity due to the set of values present for the different
simulations). For simplicity, we consider equal CNOT error
probability, ϵCNOT, for both electronic and nuclear CNOTs, and vary
ϵCNOT from 10−5 to 10−2, as shown in Fig. 3:
These simulations show that the CNOT gates dominate the

overall error in the QRAM state fidelity in the TD-QRAM. For
instance, to access a 128-qubit QRAM, one needs fidelities of the
CNOT gates to be somewhere near 99.9% to obtain an access
fidelity exceeding 90%. In this architecture, while the query times
do not increase linearly with the size of the memory, the errors do.
Expectedly, applying an error to a single qubit of a GHZ state
contributes in the same order for the entire state.
The price to pay for performing CNOTs with such large error

rates deterministically could be circumvented by near-perfect yet
probabilistic CNOTs22,27 via cavity-based electron spin-photon
interactions, as opposed to deterministic yet error-prone nuclear-
electron spin coupling. In light of this, we explore a hybrid
teleportation-based QRAM architecture in the following section.

Teleportation-based stochastic QRAM
In the TD-QRAM protocol, the entanglement generation and swap
(Fig. 8) operation are still probabilistic, given the finite chance of
photon loss. Hence, these probabilistic CNOTs are done in parallel
throughout each physical layer to improve efficiency. After an EPR
pair is created between two electron spins, however, transferring

entanglement onto the nuclear spins is a deterministic procedure.
Thereby, the query time grows sub-linearly. As noted before
addressing the TD-QRAM scheme, this deterministic CNOT based
on nuclear-electron spin interaction mainly dominates the
infidelity of the GHZ state, motivating us to contemplate an
alternative solution.
Since the decoherence errors from T1 and T2 contribute much

less to the infidelity relative to electron-nuclear spin CNOT,
replacing some of the noisy deterministic CNOTs with probabilistic
CNOTs helps improve fidelity despite reducing efficiency. As we
will show, this leads to higher QRAM tree state fidelities, albeit
with longer query times. We call this architecture ‘teleportation-
based stochastic QRAM’, or TS-QRAM.
Relying solely on probabilistic CNOTs in every step of the

protocol would be very inefficient since the probability of
generating a GHZ state diminishes exponentially with the number
of nodes. In other words, if one entanglement attempt fails during
the construction of a GHZ state, the entire state collapses. Since
each linking process is heralded, there are ways to circumvent this
by choosing a specified order to perform the CNOTs, similar to
entanglement swapping in a repeater chain28,29. Here, the
probabilistic swapping operations are equivalent to the probabil-
istic CNOTs, and measuring the middle node is analogous to
joining smaller GHZ states to form a larger GHZ state. Abstractly,
they describe the same problem, which allows us to use the
solutions provided by ref. 29. Next, we present an in-depth analysis
of the trade-off between fidelity and query rate as a function of
error rates and physical implements.

Increasing T1 and T2
To decrease the number of employed deterministic CNOTs, and
taking into account that these always happen when the electronic
spins interact with the nuclear spins, it is natural to consider
dropping the nuclear spins altogether. This is motivated by the
fact that we can perform CNOTs, albeit probabilistically, between
the electron spins. The downside is that electron spins suffer from
having shorter coherence times than their nuclear counterparts.
Still, it is advantageous to consider such schemes to avoid the use
of noisier deterministic CNOTs.
To minimize the consequently increased decoherence, one

could conceive schemes for increasing the T1 and T2 times for the
electrons since these are the ones now causing the fidelity
bottleneck, together with the required time to query the memory.
Presently, the SiV’s electronic spin’s T1 time is shown to be

longer than 1 s23, thereby posing no concern over depolarization.
On the other hand, its T2 coherence time is limited to tens of
milliseconds23, even under dynamical decoupling. The main
dephasing mechanism is attributed to the surrounding nuclear
spin bath, which is weakly coupled to the electronic spin of
interest via hyperfine interaction30. A potential avenue to
improving the electronic spin’s T2 is therefore to “purify” its
environment by materials engineering31. By producing SiV in a
carbon-13 free matrix, for example, the coherence time may be
further extended.
Nevertheless, our numerical analyses of the hybrid scheme

show fidelities still exceeding 60% for a reasonable CNOT error
rate of 10−3 and 1024 memory cells, using a T2 of 100ms. For such
a result, a probability of success of about 70% for the CNOT is
required.

The teleportation-based stochastic QRAM protocol
In the TD-QRAM protocol, there are two steps occurring in parallel
across each layer in the QRAM: one for generating EPR pairs across
every other node and another for linking all the states into a larger
GHZ state via sharing EPR pairs in-between nodes holding the
previously shared EPR pairs (see Fig. 8). This could be made in
parallel because the linking operations are deterministic.
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In the TS-QRAM protocol, however, we must now consider an
order for the linking step that depends on the node’s position,
similar to the quantum repeater chain problem26,29,32. If a linking
process fails, the subset of qubits that would have become
entangled must be reset. The optimal strategy is then performing
the linking process in a binary-tree-like approach29. This binary-
tree order for the linking processes means that now a heralding
signal for a successful link must be exchanged within the tree.
Each parenting node will have two children, the right-child and
the left-child. Each node only attempts entanglement if it receives
heralding signals from both children nodes that have been
successfully entangled themselves. Figure 4 illustrates this
procedure and defines the order.
Moreover, as mentioned before, the advantage of the TS-QRAM

protocol is that probabilistic CNOTs are used to minimize state
infidelity. One might consider the optimal placements for the
deterministic CNOTs to maximize the GHZ state fidelity across
each physical layer. We further introduce having an additional
distribution layer. This is the layer of the order binary-tree at which
a linking step is attempted, as shown in Fig. 4. These abstract
layers are only needed to describe the order of the linking steps
and help illustrate the optimal placements for the deterministic
CNOTs.
For this reason, we present two possible options to solve the

placement of deterministic nodes problem: the first is randomly
choosing a set of nodes to be deterministic, regardless of their
distribution layer. The second option is choosing the nodes that
attempt to link entanglement at the higher steps since if those
attempts are unsuccessful, they take the biggest toll on the
protocol requiring re-attempting every preceded step. We
illustrate these two possible options in Fig. 4.
As we will verify later, we need a much smaller number of

deterministic nodes if we place them in higher-level distribution
layers. We first present simulation results for both cases.

Simulating the effects of decoherence for a TS-QRAM
Using the aforementioned results, we compare the TD-QRAM
protocol with the TS-QRAM, which includes both probabilistic EPR
pair generation and deterministic linking. For comparison
purposes, we start by assuming all probabilistic CNOTs (Prob (node
being deterministic)≡ Pd= 0%) have unit efficiency in the latter
scheme. If the deterministic and the probabilistic CNOTs are of the
same order in gate time, then the binary-tree approach is bound
to be more time-consuming, considering its greater number of
entanglement attempts. However, the probabilistic CNOT based
on cavity reflection is typically several orders of magnitude faster
than the deterministic CNOT (101 ns vs. 105 ns). We therefore
present both the QRAM’s query time and its fidelity for both
schemes in Fig. 5, assuming perfect deterministic CNOTs. We also
consider the case where the CNOT efficiency is less than unity for
comparison.
Before moving on to the noise simulations, we delve into the

query times. It is not obvious that now the query times scale
logarithmically (or even poly-logarithmically) since the efficiency
of the distributed CNOTs can increase the query times depending
on the order of the linking steps. In fact, Fig. 5 already shows a
non-logarithmic behavior when considering a completely prob-
abilistic protocol. If one were to choose sequential linking steps,
the query times would increase exponentially with the efficiency.
By choosing the scheme demonstrated in Fig. 4, we are able to
reduce this to polynomial scaling26. However, depending on the
noise parameters, this increase in time, compared to the initial
two-step scheme, might not be wanted, as we will verify next. In
Fig. 5, we present the query times for different efficiencies of the
distributed CNOT, under the two possible hybrid schemes, with
different numbers of deterministic CNOTs placed strategically (see
Fig. 4).
We start by verifying that, for a random placement of the

deterministic nodes, there is no clear dependence on the number
of deterministic CNOTs. The reason is that, when choosing random
placements for the deterministic nodes, the best order for the
linking steps immediately changes and is no longer a binary tree.
There already exist algorithms29 that use linear programming to
solve an identical problem of finding the best order to attempt
entanglement swapping along a chain, which is virtually identical
to our problem. However, the polynomial scaling of these
algorithms in terms of the number of nodes of the chain makes
it unsuitable for exponentially growing chains. For the intuitive
placement of the deterministic nodes, this is not the case, as
choosing only the top layers of the linking tree does not change
the best order to do the linking. We also consider varying the
efficiency of the distribution of the Bell pairs, as shown in
Supplementary Fig. 1.

Dephasing and damping errors for a TS-QRAM
We start by considering the case where there are no deterministic
CNOTs and vary the dephasing and damping parameters, T2 and
T1, respectively. Note that, as expected, the query times have
increased by orders of magnitude (see in greater detail in
Supplementary Fig. 2), hence the extent of decoherence in the
memories. Moreover, to overcome the necessity of performing
noisy deterministic CNOTs, the qubits used are now the electronic
spin qubits, whose dephasing and damping times are much
smaller than their nuclear counterparts, thereby limiting the
fidelity of the QRAM tree state. For this reason, we analyzed a wide
range of possible values for Te

1 and Te
2: {20 ms, 200ms, 2 s, 20 s}

and {10 ms, 100 ms, 1 s, 10 s}, respectively. In this scenario of
having only probabilistic distributed CNOTs, we analyze for
multiple CNOT efficiencies η and T2 values, fixing T1= 2 s, as its
contribution to the error is negligible compared to the T2. In Fig. 6,
we observe infidelity values scaling exponentially with the number
of qubits for a completely probabilistic execution of the hybrid

Probabilistic CNOT NodesProbabilistic CNOT Nodes Deterministic CNOT NodesDeterministic CNOT Nodes
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Fig. 4 Binary-tree-like approach of linking nodes and possible
placement of deterministic CNOTs. a The arrows represent
heralding signals for the subsequent step, and the dark nodes
represent the selected nodes for attempting entanglement at each
time step. b Randomly distributed deterministic nodes across the
logN distribution layers. c Intuitively distributed deterministic nodes
with D deterministic distribution layers.
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protocol. Only for memory coherence times on the second
timescale, i.e., T2= 1 s, does the fidelity reach around 80% under a
CNOT efficiency of η= 0.5. For other combinations of parameters,
we refer to Supplementary Figs. 3–5.

Dephasing, damping and noisy CNOTs for TS-QRAM
Here, we explore adding some noisy deterministic CNOTs to
counteract the effect of the decoherence for longer periods of
time. As seen previously, the better location for these determinis-
tic CNOTs are the nodes that perform the linking step at higher
levels of the linking tree. In our simulations, we evaluate different
values of the first deterministic layer log2ðNÞ � D 2 f2; 3; 4; 5; 6g.
The results are presented in Fig. 7.
Depending on the CNOT error, the TS-QRAM scheme can

surpass the fidelities of access of the TD-QRAM scheme under high
enough T2 times in the order of seconds. For other possible sets of
parameters, we refer again to Supplementary Figs. 3–5.

DISCUSSION
In this article, we introduce a method to simulate large quantum
networks in an open system model. Specifically, this approach

enables us to model networks comprising hundreds of stationary
qubits by modeling decoherence processes as noisy channels with
spin-dephasing errors, spin-flip errors, and noisy CNOT gates.
When applied to the challenging but important problem of
network-based QRAM, we find that the qubit depth of memory
calls in the recently proposed TD-QRAM architecture becomes
limited by CNOT errors. To overcome this bottleneck, we propose
a modified network-enabled QRAM in which the noisy determi-
nistic gates of ref. 20 are replaced by heralded probabilistic CNOT
gates, which can sharply reduce gate errors. This scheme, TS-
QRAM, trades increased query time for improved memory access
fidelity and/or memory depth. The TS-QRAM protocol makes use
of already demonstrated elements (see Supplementary Table I),
suggesting the viability of near-term demonstrations in platforms
of solid-state color centers as well as potentially other atomic
memory modalities.
An outstanding problem relates to the compounding loss of

photonic qubits with increasing memory depth. Since
teleportation-based QRAM5 has shown that distributed quantum
computers naturally map onto quantum networks, error correction
schemes proposed for the former may be applied to address the
issue of photon loss for the latter. Approaches include (1) photonic
forward error correction using, for example, 2D photonic cluster
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Fig. 5 TS-QRAM simulations for protocol comparison. a Query times for accessing a QRAM and b Fidelity of access of a QRAM for a
completely probabilistic hybrid scheme (Pd= 0%) and comparison under identical efficiencies of the distribution of Bell pairs for the TD-QRAM
(two-step) scheme. T1= 2 s, T2= 100ms, and ϵCNOT= 0. c Query time scaling for randomly distributed deterministic nodes under the regular
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strategies for distributing the GHZ states in the TS-QRAM scheme (see Fig. 4). Notice that for the non-random placement strategy, the ratio of
deterministic nodes Pd is approximately given by Pd � 2�ðlog2ðNÞ�DÞ�1. In both cases, the efficiency of the distribution of a Bell pair was set at
η= 0.5. All the error bars over the data correspond to the error of the average value over 100 simulations of the protocol.
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states33–38 and (2) error-corrected cluster states39–41. We leave the
exploration of error correction schemes in the context of QRAM
for future studies.

METHODS
Discrete-time-event-based simulations with NetSquid
Given the complexity of a quantum network and its formulations,
a tool such as NetSquid28 is essential to simulating a QRAM.
NetSquid is capable of defining intricate discrete-time-event-
based protocols, with a number of steps and operations that are
executed conditioned on the signaling and heralding of prior
processes. Furthermore, NetSquid can simulate quantum circuits,
providing methods for (1) stabilizer circuits, with simpler and
faster execution, of complexity O m2ð Þ, where m is the number of
qubits; (2) graph states formalism, with possibly even faster
execution, in O d2

� �
, where logm<d <m and m is again the

number of qubits; (3) density matrix formalism, which is slower in

execution, in O 23m
� �

; (4) sparse density matrix formalism that
relies on sparse matrix codes to speed up the execution.
Instead of using the density matrix formalism from NetSquid,

we begin by retrieving all the noise information in each step of the
protocol from a noiseless discrete-time event simulation, resorting
to the stabilizer formalism in polynomial time. The noise
information is constituted by the time qubits spent decohering,
together with the information about the channels of decoherence
that would have been applied in real noisy simulations, both for
waiting times and gate errors. We then incorporate the extracted
information to estimate the effects of decoherence at each step a
posteriori. With this information at hand, we have access to the
time-evolved state of the QRAM tree at all steps of the protocol,
which allows us to reconstruct the noise that would have been
applied in the system in a noisy simulation. To reconstruct the
density matrix, we find the analytical expressions for the density
matrices of smaller parts of the system and how they evolve after
the required operations under a set of noise channels. We express
these as fundamental building blocks in terms of noise
parameters, namely the probability of error and time of
decoherence. This is what allows us to postpone the noise
calculations to the end of the simulation without losing the effects
of the natural stochastic behavior of the protocol. In a way, this
can be understood as pre-compiling the error effect on the
intermediary states of the protocol to shortcome the exponential
complexity of calculating the density matrix at each time step
using a quantum simulator.
In the rest of the “Methods” section, we formalize these

elementary building blocks for the operations required to create
these GHZ states across each physical layer in the QRAM and
explain how different types of noise affect each of the
intermediate steps, allowing for a reconstruction of the density
matrix. We analyzed dephasing, damping and depolarizing
channels, and we believe other noise models could be added in
a similar manner. The result is an explicit description of the final
state of the QRAM access tree state prior to the execution of the
teleportation protocol. The error in the state of the access tree
encompasses the majority of all the errors of accessing the QRAM,
as the number of steps and operations made after creating the
GHZ state grows with the total number of memory addresses
logarithmically, whereas the process of generating the GHZ state
requires a number of operations linear with the number of
memories.

Elementary building blocks for TD-QRAM
The protocol for generating GHZ states across each layer consists
of two steps (see Fig. 8):
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1. Generating entanglement between the odd-indexed links.
This entails first distributing photon-mediated heralded
entanglement between the electrons, with a certain
efficiency η, followed by electronic CNOTs being applied
with the electron qubit acting as the control and the nuclear
qubits as the target. Finally, a measurement of the electron
spin in the X basis, with posterior corrections sent to the
nuclear qubits.

2. The second step links the entangled pairs, creating a larger
GHZ state distributed across each layer. This starts off by
generating heralded entanglement, with the same efficiency
η, between the even-indexed links, followed by applying
nuclear CNOTs, where now the control is the nuclear qubit
and the target is the electronic qubit. We then make
consequent measurements on the Z basis on both electro-
nic qubits, followed by appropriate Pauli corrections.

After the aforementioned steps, each physical layer hosts a GHZ
state shared among all the nodes. Subsequently, each physical
layer extends its (2k−1)-GHZ state into a (2k−1+ 1)-GHZ state by
sharing an additional entangled pair between an outermost node
in the QRAM layer and the quantum computer, which holds the
address state. After performing a Bell state measurement and
corresponding corrections, the address state is teleported to the
QRAM. Lastly, the memories can be accessed in superposition to
complete the QRAM protocol.

EPR pair creation and transferring for TD-QRAM
The first step to creating a GHZ state across each layer is to share
entanglement between neighboring nodes. EPR pairs are created
by performing a distributed CNOT gate between these nodes’

electronic spin qubits, mediated by a photon. Despite the process
being probabilistic with an efficiency dependent on the experi-
mental implementation, it is a heralded entanglement. Hence, the
presence (absence) of photon detection informs the success
(failure) of the entangling attempt. After this CNOT is applied
between the electronic spins, an EPR pair is created and
transferred to the nuclear spins in each node via a deterministic
electronic CNOT.
Given the different operations and various types of qubits

involved, we introduce noise sources in the system to estimate
the protocol’s fidelity. We consider amplitude damping,
dephasing, and CNOT gate errors for both electronic and
nuclear spin qubits.
In this step, illustrated in Fig. 8, the following takes place:

1. eL and eR decohere for a duration of time teL and teR,
respectively;

2. An electronic CNOT is applied between eL and nL, with an
error probability of pe,

3. An electronic CNOT is applied between eR and nR with an
error probability of pe,

4. nL and nR decohere for a duration of time tnL and tnR,
respectively.

Hence, these parameters, plus the parameters associated with
the physical systems, namely the T1 and T2 times, govern the final
form of the entangled pairs. Using the notation ϵ(σ)= 1− e−σ and
ϵðσÞ ¼ 1� ϵðσÞ ¼ e�σ for parameters that are functions of other
physical parameters, namely the elapsed times and coherence
times. We will use ϵ for parameters that go to zero in the absence
of noise, as is the case for ϵ(⋅) and pn. We also further assume
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Fig. 8 Building blocks for creating the GHZ state for a chain of 6-qubits excluding the final step of entangling with the quantum
computer. a Creating an EPR pair between two electrons, then transferring the entanglement to the nuclear spin qubits. b Linking two GHZ
states through an entangled pair and a set of operations and measurements. c EPR pair creation along the odd-indexed links and transfer
followed by linking of pairs by pre-sharing an EPR along the even-indexed links. Note the index of a link is with respect to the left node
numbering.
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ϵ≪ 1. We then apply the following sequence of noise channels
(check Supplementary Methods for details on the parameters):

1. Apply a Dephasing channel with probability ϵðteL=Te
2Þ � ϵð2ÞeL

and ϵðteR=Te
2Þ � ϵð2ÞeR to electronic spin qubits eL and eR,

respectively;
2. Apply an Amplitude-damping channel with probability

ϵðteL=Te
1Þ � ϵð1ÞeL and ϵðteR=Te

1Þ � ϵð1ÞeR to electronic spin
qubits eL and eR, respectively;

3. Apply Depolarizing channels with probability pe to all qubits
after applying CNOTs (modeling a noisy CNOT);

4. Apply a Dephasing channel with probability ϵðtnL=Tn
2Þ � ϵð2ÞnL

and ϵðtnR=Tn
2Þ � ϵð2ÞnR to nuclear spin qubits nL and nR,

respectively;
5. Apply an Amplitude-damping channel with probability

ϵðtnL=Tn
1Þ � ϵð1ÞnL and ϵðtnR=Tn

1Þ � ϵð1ÞnR to nuclear spin qubits
nL and nR, respectively;

The final state for each entangled pair becomes:

1
2

1� μ 0 0 ν

0 μ 0 0

0 0 μ 0

ν 0 0 1� μ

0
BBB@

1
CCCA (3)

where

μ ¼
1� f ϵð1ÞeL ; ϵ

ð1Þ
eR

� �
ð1� peÞ2g ϵð1ÞnL ; ϵ

ð1Þ
nR

� �
� ϵð1ÞnL ϵ

ð1Þ
nR

2
; (4)

ν ¼ ϵð2ÞeL � ϵð2ÞeR � ϵð2ÞnL � ϵð2ÞnR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1ÞeL � ϵð1ÞeR � ϵð1ÞnL � ϵð1ÞnR

q
� ð1� peÞ4 (5)

and

f ðϵ1; ϵ2Þ ¼ 1� ϵ1 � ϵ2 þ 2ϵ1ϵ2;

gðϵ1; ϵ2Þ ¼ ð1� ϵ1Þð1� ϵ2Þ
(6)

For intuition regarding the ϵ function, consider the following two
limits: (1) σ→ 0 in the noiseless regime where the memory
coherence time goes to infinity (no decoherence) and (2) σ→∞
where there only exists noise and all the information is scrambled.
In these limits, we retrieve: limσ!0 ϵðσÞ ¼ 0; limσ!1 ϵðσÞ ¼
1; limσ!0 ϵðσÞ ¼ 1 and limσ!1 ϵðσÞ ¼ 0.

Linking of Bell pairs for TD-QRAM
The following step is crucial to extending entanglement from
bipartite to GHZ states across the entire physical layer of the
QRAM. It relies on using an entangled pair to combine two GHZ
states of smaller sizes into a larger GHZ state, whose number of
qubits equals the sum of each of the elementary GHZ states
(i.e., n1-GHZ linked with a n2-GHZ becomes a (n1 + n2)-GHZ
state).
In this step, we account for decoherence before applying

CNOTs, therefore entering the previous expressions for the form
of each pair. The decoherence to be analyzed in this step stems
from:

1. A nuclear CNOT gate on eL and nL with probability of error
pn;

2. A nuclear CNOT gate on eR and nR with probability of error
pn;

3. Nuclear qubits nL and nR decohere after a CNOT for t0.

Additionally, for each block, we analyze the impact of
decoherence by applying the following noise channels:

1. Apply depolarizing channels with probability pn to all qubits
(eL, eR, nL, nR) after applying CNOTs (modeling a
noisy CNOT);

2. Apply a dephasing channel with probability ϵðt0nL=Tn
2Þ � ϵ0ð2ÞnR

and ϵðt0nR=Tn
2Þ � ϵ0ð2ÞnL to nuclear spin qubits nL and nR,

respectively;
3. Apply an amplitude-damping channel with probability

ϵðt0nL=Tn
1Þ � ϵ0ð1ÞnR and ϵðt0nR=Tn

1Þ � ϵ0ð1ÞnL to nuclear spin qubits
nL and nR, respectively;

Note that all the following calculations are now lower bounds
for the fidelity, as the calculation of the full analytical expressions
grows exponentially with the number of qubits. Because of this,
we keep only the terms up to O ϵð Þ. In Supplementary Methods,
we detail and test the validity of our approximations.
The final GHZ state in each layer is described by a matrix with

the following form:

1
2

ρ00 0 ¼ 0 ρ01

0 ϵ ¼ 0 0

..

.
0 . .

.
0 ..

.

0 0 ¼ ϵ 0

ρ10 0 ¼ 0 ρ11

0
BBBBBB@

1
CCCCCCA

(7)

where all ϵ terms are of at least order OðϵÞ and do not contribute
to infidelity, as they are orthogonal to the GHZ state.
The diagonal elements that we consider are only the first and

the last, as the remaining ones have at least O ϵð Þ and, when
expanding to a larger GHZ state, contribute in O ϵ2ð Þ or higher
orders, hence negligibly affecting the fidelity.
Let us first consider the form of the state after executing the

linking protocol in a noiseless manner, with previously noisy
states, as the ones that result from the entangling step given by
Eq. (3). Starting with the simple case of a 4-qubit GHZ state built
from three states of the form of Eq. (3), with parameters
(μj, νj), j= 1, 2, 3 respectively, the final matrix is:

1
2

μ1μ2μ3 0 ¼ 0 ν1ν2ν3

0 μ1μ2μ3 ¼ 0 0

..

.
0 . .

.
0 ..

.

0 0 ¼ μ1μ2μ3 0

ν1ν2ν3 0 ¼ 0 μ1μ2μ3

0
BBBBBBB@

1
CCCCCCCA

(8)

where we, again, denote a bar over a variable as 1 minus itself,
μi � 1� μi . Note that each of the μi comes from one of the pairs
used to create the GHZ state, as these pairs are solely described by
two numbers (μi, νi) (see Eq. (3)). There exists a rule for each entry
in the diagonal, which we detail in Supplementary Methods, and
the same rule holds for any number of qubits of the final state. The
GHZ diagonal entries then become:

ρ00 ¼ ρ11 ¼ μ1μ2μ3 (9)

Now, adding the effect of the noisy CNOTs on the state, we
calculate the diagonal terms that are shown to be identical, given by:

ρ000 ¼ ρ011 ¼ 1� pn
2

� �2ð1� μ1Þð1� μ2Þð1� μ3Þ
� pn 1� pn

2

� �ð1� μ1 � pn
2 Þð1� μ2 � pn

2 Þð1� 2μ3Þ
þO ϵ3ð Þ

¼ 1� pn
2

� �2 � pn 1� pn
2

� �h i
ð1� μ1Þð1� μ2Þð1� μ3Þ

þO ϵ2ð Þ
� hðpnÞð1� μ1Þð1� μ2Þð1� μ3Þ þ O ϵ2ð Þ

(10)

where we recall that every term with pn, μi≪ 1 converges to zero
in the noiseless limit. For the other diagonal entries, we multiply
them by h(pn).
Finally, incorporating memory decoherence after CNOTs, we

perform another approximation. For the diagonal terms, only the
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damping channel plays a role. The first and last entries of the
diagonal become:

ρ0000 ¼ hðpnÞ μ1μ2μ3 þ ϵ0ð1ÞnL μ1μ2μ3 þ ϵ0ð1ÞnR μ1μ2μ3

� �
þO ϵ4ð Þ

ρ0011 ¼ ρ11 1� ϵ0ð1ÞnL

� �
1� ϵ0ð1ÞnR

� � (11)

In this approximation, the extra terms that appear for the first
entry are already of order O ϵ3ð Þ and could be neglected.
Lastly, we compute the off-diagonal terms by multiplying every

contribution from each noise channel applied in the correct
manner. The expression is given by:

ρ0001 ¼ ρ0010 ¼ ν1ν2ν3 � ϵ0ð2ÞnL ϵ0ð2ÞnR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0ð2ÞnL ϵ0ð2ÞnR

q
� ð1� pnÞ2f ðpn; pnÞ (12)

When extending the linking protocol to a larger number of
qubits, the expressions maintain their form. We only need to add
all the terms in a similar manner as in the case of the 4-GHZ
state. The complete analysis is detailed in Supplementary
Methods.
Thus far, we show how three types of noise (one for the two-

qubit operations and two for individual memories) influence the
final state of the GHZ states generated across each physical layer
of the QRAM access tree. Note that we always present the full
expressions accounting for all the noise channels. In fact, if we
include a specific noise channel or a subset of what we have
considered, we may simply set the parameters corresponding to
other noises to zero. For example, it is straightforward to verify
that setting pe and pn to zero and T1 to infinity recovers the case
for only having dephasing, thus affecting only the off-diagonal
terms. The same is valid for all the other noises.

Modified protocol and building blocks for TS-QRAM
We now consider an alternative architecture that enables different
subsets of each layer to create GHZ states independently. As
illustrated in Fig. 9, this architecture assumes two electron spins
and one nuclear spin (instead of each node of the QRAM having
an electronic spin and a nuclear spin assumed for the TD-QRAM).
As we will show, this architecture still retains similar building
blocks as the aforementioned TD-QRAM protocol.

EPR creation for TS-QRAM
As in the non-hybrid version of the protocol, the first step to
creating an EPR pair between two physically separated electronic
spins is sending a photon that interacts with them sequentially. A
subsequent measurement heralds the successful production of a
spin-spin EPR pair. Notably, there are no deterministic CNOTs
applied to transfer the qubit states onto the nuclear spins, as we
only work with the electron spins at this stage.
The final state shared between the electronic spins is the one of

Eq. (3) in the limit of the absence of electronic CNOT error (pe→ 0)
and altering the memory decoherence noise from nuclear to
electronic (ϵnL ! ϵ0eL and ϵnR ! ϵ0eR):

1
2

1� μ 0 0 ν

0 μ 0 0

0 0 μ 0

ν 0 0 1� μ

0
BBB@

1
CCCA (13)

where

μ ¼
1� f ϵð1ÞeL ; ϵ

ð1Þ
eR

� �
g ϵ0ð1ÞeL ; ϵ0ð1ÞeR

� �
þ ϵ0ð1ÞeL ϵ0ð1ÞeR

2
; (14)

ν ¼ ϵð2ÞeL � ϵð2ÞeR � ϵ0ð2ÞeL � ϵ0ð2ÞeR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1ÞeL � ϵð1ÞeR � ϵ0ð1ÞeL � ϵ0ð1ÞeR

q
(15)

and again,

f ðϵ1; ϵ2Þ ¼ 1� ϵ1 � ϵ2 þ 2ϵ1ϵ2;

gðϵ1; ϵ2Þ ¼ ð1� ϵ1Þð1� ϵ2Þ
; (16)

where we use the same abbreviation ϵðσÞ ¼ 1� ϵðσÞ ¼ e�σ .

Linking pairs in the probabilistic scenario for a TS-QRAM
TS-QRAM differs from TD-QRAM in that the operation of linking
pairs has a non-unity probability of succeeding—let us call this
probability pCNOT. Moreover, it is executed in a similar way as that
of creating an EPR pair:

1. Interact photon γ with the left electronic spin qubit eL,
executing a local CNOT,

2. Send the single photon γ to the right cavity,
3. Interact the photon γ with the right electronic spin qubit eR,

executing a local CNOT,

Electronic CNOT Nuclear CNOTElectron Nuclear

n

eReL

... ... CNOTCNOT

PhotonPhoton

n

eReL

... ...

n

eReL

... ...

n

eReL

... ...XeLeL

n

eReL

... ...ZeReR

n

eReL

... ...

CNOT Mediated by Photon

XeReR

a

b

Fig. 9 Possible protocols for linking smaller GHZ states into a larger GHZ state both probabilistically and deterministically. a Probabilistic
CNOT Protocol mediated by a photon. b Deterministic CNOT Protocol, consisting of a nuclear CNOT between the nuclear spin ancilla and the
left electronic spin qubit.
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4. Measure the photon γ,
5. Measure the right (or left) electronic spin in X.

Importantly, both cavities belong to the same node in this step.
This results in a controlled gate applied between the right and left
electronic spin qubits. Unlike before, it is still necessary to
measure one of the nodes’ electronic spin qubits, as the state has
twice the number of qubits as the final state (we chose to
measure the right electron, but one could choose to keep the
right and measure the left instead; the choice is arbitrary and
translates to the same practical outcome). This measurement
should be on the X basis in order to not destroy the entanglement
shared among all the qubits and rendering the state useless.
Moreover, a correction must be made depending on the outcome
of the measurement of the electronic spin qubit and the
photonic qubit.
Afterward, the GHZ states shared between the left and right

nodes are linked into a larger GHZ state via an intermediary node.
Inside this intermediary node, its left electronic spin merges into
the larger GHZ state. We again take into account the previous
calculations for detailing the density matrix of the final state. The
decoherence sources are now only provenient from the memories
of where each qubit is being held (which we chose to be the left
cavity of the node). As we used near-perfect probabilistic CNOTs
mediated by a photon, only its memory affects the state fidelity.
Thus, for the remainder of the protocol, we:

1. Apply a dephasing channel with probability ϵðt00eL=Te
2Þ �

ϵ00ð2ÞeL to electronic spin qubit eL;
2. Apply an amplitude-damping channel with probability

ϵðt00eL=Te
1Þ � ϵ00ð1ÞeL to electronic spin qubit eL.

Importantly, the following calculations are again lower-bound
approximations for fidelity. Performing the calculations for a
simple link of two entangled pairs described by Eq. (13), with
parameters (μj, νj), j= 1, 2, the final density matrix of the 3-GHZ
state, prior to any memory decoherence, is:

1
2

μ1μ2 0 ¼ 0 ν1ν2

0 μ1μ2 ¼ 0 0

..

.
0 . .

.
0 ..

.

0 0 ¼ μ1μ2 0

ν1ν2 0 ¼ 0 μ1μ2

0
BBBBBBB@

1
CCCCCCCA

(17)

Adding the memory decoherence accounting for both dephas-
ing and amplitude-damping leads to a matrix similar in form to
one shown in Eq. (7), except with entries changing to:

ρ000 ¼ μ1μ2 þ ϵ00ð1ÞeL μ1μ2 þO ϵ4ð Þ
ρ011 ¼ μ1μ2 1� ϵ00ð1ÞeL

� �

ρ010 ¼ ρ001 ¼ ν1ν2ϵ
00ð2Þ
eL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ϵ00ð1ÞeL

q (18)

Linking pairs in the deterministic scenario for TS-QRAM
We next describe a scheme for deterministic CNOT gates. Since
the composition of each node is now different, the operations one
needs to execute to deterministically link smaller GHZ states into
larger GHZ states changes as well:

1. Apply a deterministic electronic CNOT controlled by the left
electronic spin qubit eL and targeted at the nuclear spin
qubit n,

2. Measure the left electronic spin qubit eL in X,
3. Apply a deterministic nuclear CNOT controlled by the nuclear

spin qubit n and targeted at the right electronic spin qubit eR,
4. Measure the right electronic spin qubit eR in Z.

Measurement-conditioned corrections result in a GHZ state
consisting of the nuclear spin and the remaining electronic spin
qubits. Notice that by not involving the photon-mediated CNOT,
this has been done in a deterministic fashion. In this case, we must
consider additional errors, namely those that arise from using
deterministic electronic and nuclear CNOTs. The sequence of noise
channels becomes:

1. Apply depolarizing channels with probability pe to the
electronic spin qubit eL and to the nuclear spin qubit n,

2. Apply depolarizing channels with probability pn to the
nuclear spin qubit n and to the electronic spin qubit eR,

3. Apply a dephasing channel with probability ϵðt0n=Tn
2Þ � ϵ0ð2Þn

to nuclear spin qubit n,
4. Apply an amplitude-damping channel with probability

ϵðt0n=Tn
1Þ � ϵ0ð1Þn to nuclear spin qubit n.

From here, we calculate the final state’s density matrix.
Performing the calculations for the same simple link of two
entangled pairs described by Eq. (13), with parameters (μj, νj), j=
1, 2, the final density matrix of the 3-GHZ state, prior to any
memory decoherence and without any CNOT errors is the same as
Eq. (17). Adding the effect of the CNOTs leads to:

ρ000 ¼ ρ011 ¼ ð1� pÞ2μ1μ2 þ p
2 1� p

2

� �

ρ010 ¼ ρ001 ¼ ν1ν2ð1� pÞ3 1� p
2

� � (19)

where we set pe= pn≡ p. In fact, all diagonal entries can be
decomposed into terms of the form
ð1� pÞ2 diag ðρÞ þ 1p=2ð1� p=2Þ. Using this fact, we incorporate
the posterior amplitude-damping noise channels:

ρ0000 ¼ ~hðpÞ � μ1μ2 þ ϵ0ð1ÞeL μ1μ2

� �
þO ϵ3ð Þ

ρ0011 ¼ ~hðpÞ � μ1μ2 1� ϵ0ð1ÞeL

� �
þO ϵ3ð Þ

ρ0010 ¼ ρ0001 ¼ ν1ν2ð1� pÞ3 1� p
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ϵ0ð1ÞeL

q
(20)

where ~hðpÞ ¼ ð1� pÞ2 þ p=2ð1� p=2Þ. In the Supplementary
Methods, we present the derivation for a chain of an arbitrary
number of channels, as well as proof of the validity of our
approximations.

Validity of the results
In this section, we discuss our methods and provide empirical
proof for our noise analysis robustness. In our work, we have
considered an analysis of a discrete protocol, where each gate
takes a fixed amount of time, and qubits stay in memory waiting
for instructions from the protocol. Given the discreteness of the
problem, solving the master equations in each of the specific time
periods where the noise actually happens is equivalent to
applying the corresponding noise channels.
To support our claims and demonstrate the equivalence of

using the full density matrix and our methods of postponing
the noise analysis to the end of the protocol simulation, we
present one additional figure. This figure shows the compar-
ison of the fidelity of the GHZ states distributed at each of the
layers of the QRAM for a small QRAM (5 layers, ~36 qubits)
obtained from our simulation methods and those derived
using the density matrix formalism. We present the comparison
for simulations for the TD-QRAM, as for TS-QRAM, we use the
same methods, just under different assumptions over which
noise channels are applied. Let FDM be the fidelity calculated
using the full density matrix and FS be the one from our
simulation methods. The figure showcases how the difference
of the fidelities calculated using the density matrix and our
methods evolve for different layers (with increasing amounts of
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qubits), weighted by the overall error (or infidelity of the state),
i.e., ∣FDM − FS∣/(1− FDM).
One can observe in Fig. 10 that the error is always less than 1%,

showing a trend of either maintaining or decreasing as the size of
the system increases. This provides empirical proof of the power
of our methods across the different scenarios.
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