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A quantum computing approach 
for minimum loss problems 
in electrical distribution networks
Filipe F. C. Silva 1,2,3*, Pedro M. S. Carvalho 1,3 & Luís A. F. M. Ferreira 1,3

This paper presents an application of a novel quadratic unconstrained binary optimization (QUBO) 
formulation to the minimum loss problem in distribution networks. The proposed QUBO formulation 
was conceived to be employed in quantum annealing—a quantum computing paradigm useful for 
solving combinatorial optimization problems. Quantum annealing is expected to provide better 
and/or faster solutions to optimization problems when compared to the ones provided by classical 
computers. With the problem at stake, better solutions result in lower energy losses, and faster 
solutions contribute to the same outcome given the future need for frequent reconfiguration of 
distribution networks to accommodate highly volatile demand, as anticipated by recent low-carbon 
solutions. The paper presents the results obtained through a hybrid quantum-classical solver for a 
standard 33-node test network and compares them with the ones obtained from classical solvers. 
Our main conclusion is that quantum annealing has potential to show advantage in the near future in 
terms of solution quality and time-to-solution, as quantum annealers and hybrid solvers continue to 
improve their performance.

Given the paradigm shift towards a reduced carbon footprint, electrical distribution networks are facing the 
challenge of handling increased levels of net load volatility introduced by the integration of low-carbon technolo-
gies such as distributed generation and electric vehicle charging while operating with minimum energy losses. 
Therefore, a network must quickly adapt itself through reconfiguration to its ever changing net load profile (actual 
and forecast) in order to be energy  efficient1. In the reconfiguration process, the new network configuration is 
the optimal solution of the minimum loss problem for the new net load profile. To achieve the best possible net-
work efficiency in terms of energy losses, it is crucial that an optimal or near-optimal solution of the minimum 
loss problem is possible to be found in the shortest amount of time, in order to be able to change the network 
configuration after the arrival of any update to the known net load profile.

Literature is rich in optimization approaches to the reconfiguration problem. The first report of such a prob-
lem for losses minimization dates back to 1975. Since then, hundreds of works have addressed different versions 
of the problem, tackling different objectives and constraints with a variety of heuristic solution approaches, such 
as using genetic  algorithms2,3, particle swarm  optimization4 and bacteria foraging  optimization5. Also promising 
are the very recent methods for network reconfiguration based in machine  learning6–8. A comprehensive survey 
of reconfiguration problems and solution approaches can be found in the  literature9.

Quantum  annealing10 is a quantum computing technology specially useful to solve combinatorial optimiza-
tion problems like the minimum loss problem with the perspective of achieving better and/or faster solutions 
than the ones obtained with classical methods. In order to be handled by quantum annealing, the problem must 
be formulated as a quadratic unconstrained binary optimization (QUBO) model. There are not in the current 
literature any known methods for the reconfiguration problem which could be used in quantum annealing.

In our previous  work11, we proposed a novel QUBO formulation for the minimum loss problem, paving the 
way to the application of quantum annealing to this kind of problems. The present paper contributes by dem-
onstrating the feasibility of the quantum annealing solutions to those problems and by comparing the solutions 
quality and time against those returned by classical solvers for the QUBO model. The comparisons are carried 
out for the well known standard 33-node electrical distribution  network12.

This paper is organized as follows. Quantum annealing is introduced next, ending this “Introduction” section. 
In the “Methods” section, our approach is described in more detail—the optimization problem is mathemati-
cally formulated and the building process of the QUBO model is introduced. The “Results” section presents the 
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numerical results obtained for the solution of the QUBO model using several solvers. Finally, the “Conclusion” 
section summarizes our main results and describes the directions for our future work.

Quantum annealing. Quantum annealing is one of the two main paradigms of quantum computing (the 
other being the gate model or circuit model). It can be employed to find the solution of discrete optimization 
problems. Compared with classical computers, quantum computing has the potential to provide an exponential 
speedup on problem solving, depending on the type of problem being solved. This speedup lies on the unique 
phenomena of quantum superposition and quantum entanglement which enables the computation paralleliza-
tion with an exponential scaling with the quantum hardware size (i.e., the number of qubits—quantum bits) as 
opposed to the linear scaling with the number of cores of classical computing.

While the quantum gate model is able to handle more general computational problems (e.g., Shor’s algo-
rithm for integer  factorization13), quantum annealing is better suited to optimization problems like the one we 
are addressing. Although the gate model can deal with optimization problems through the quantum approxi-
mate optimization algorithm (QAOA)14, it suffers from the need to add quantum error correction to overcome 
qubit noise from nowadays Noisy Intermediate Scale Quantum (NISQ) implementations of gate-based quantum 
 computers15. This error correction means that several physical qubits must be grouped together to represent a 
single logical qubit, thus limiting the number of logical qubits available to represent the problem variables. Also, 
these gate model implementations fall behind current annealers in terms of number of qubits and number of 
qubit couplings—the largest annealer currently available (from D-Wave) has more than 5600  qubits16 while the 
largest gate model quantum computer to date (from IBM) has 433  qubits17.

The energy of a quantum system is a function of the quantum state of this system. This function is called the 
Hamiltonian. The ground state of the system is defined as the state with the minimum possible energy as given 
by its instantaneous Hamiltonian. Thus, the ground state depends on that Hamiltonian. If a quantum system is 
in its ground state and if the Hamiltonian starts to be changed smoothly and slowly enough, then the quantum 
state of the system also changes such that it remains in the ground state of the changing Hamiltonian. This process 
is called an adiabatic evolution.

The adiabatic quantum computing  theory18 shows how adiabatic evolution can be used to solve minimiza-
tion problems, as follows. The quantum system starts with a simple Hamiltonian having a ground state that is 
easy to construct. Then, the Hamiltonian is adiabatically changed by the control system such that, at the end 
of the evolution, the Hamiltonian is a physical representation of the minimization problem cost function. This 
representation is such that the quantum system state and energy correspond to a problem solution and its cost, 
respectively. Given that the system evolved adiabatically, it will be in the ground state of the final Hamiltonian and 
thus representing the problem solution with the minimum energy, i.e., the optimal solution. The final quantum 
state is then measured and returned as a binary string representing the problem solution.

Quantum annealing is a real-world approximation to the theoretical adiabatic quantum computing. The 
undesirable thermal interactions between the quantum system and the surrounding environment make the 
quantum evolution deviate from the ideal case, resulting in a possible degradation of the solution quality. Other 
factors such as the accuracy of the physical implementation of the Hamiltonian representing the optimization 
problem may also affect the solution. These non-idealities, together with the probabilistic nature of quantum 
mechanics, make the quantum annealer a statistical sampler rather than a deterministic solver. The solution 
samples returned by the quantum annealer follow approximately a Boltzmann distribution, thus assigning a 
higher probability to solutions with lower cost. An optimal or near-optimal solution can be found with a given 
probability on a certain number of solution samples returned from the quantum annealer. This number depends 
on problem size and structure and it is usually found empirically since the exact solution distribution cannot be 
easily determined for a given problem.

The quantum annealer is able to implement Hamiltonians for minimization problems formulated in the 
QUBO  model19. This model implements a pseudo-Boolean  function20 representing the problem cost as a func-
tion of a binary string (a problem solution).

Methods
Problem description. Given the network connectivity graph G = (V ,E) , the minimum loss problem con-
sists of finding the spanning tree of G which minimizes the total ohmic losses on the network links, assuming 
that any link in E can be individually disconnected. More formally, the optimal spanning tree T∗ = (V ,E∗) , 
where E∗ � E , is given by

where ST(G) is the set of all spanning trees of G, E(T) is the set of all links on T, Ruv is the resistance on link 
(u, v) and Iuv(T) is the complex phasor of the current on the same link with tree T. Since the network model 
defines no transversal link susceptance, the link current is simply the sum of the nodal load currents downward 
of the link, as given by

where Duv(T , v0) is the set of all nodes downward of link (u, v) across T, i.e., the nodes with a path to the root 
node v0 ∈ V  (the substation) along T which includes the link (u, v), and ILn (T) is the complex phasor of the cur-
rent drawn in node n’s load. The set Duv(T , v0) includes one of the nodes u or v depending on T.

(1)T
∗ = argmin

T∈ST(G)

∑

(u,v)∈E(T)

Ruv|Iuv(T)|
2

(2)Iuv(T) =
∑

n∈Duv(T ,v0)

ILn (T)
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The network model used in this work defines the loads as PQ (i.e., constant active and reactive power)12, 
which is the typical case in power systems modeling. The nodal current ILn (T) is given by

where Sn is the complex power consumed by the load (given as a problem input), Vn(T) is the complex phasor of 
the nodal voltage for configuration tree T and c is the complex conjugate of c. The nodal voltage Vn(T) is calcu-
lated from the voltage drop through the link connecting n to its parent node p ≡ pn(T) , as given by

where Zpn is the complex impedance of link (p, n). The voltage of the substation ( Vv0 ) is fixed and typically equal 
to the network nominal voltage, i.e., 1 pu (per-unit). Equations (2), (3) and (4) define the radial power-flow for 
a network configuration T. This calculation must be performed iteratively since no closed-form expression from 
the power-flow solution can be derived.

PQ‑load model. Given that Iuv(T) cannot be expressed in closed form for PQ loads, the same applies to the 
problem objective function given in (1). In our previous  work11, we proposed a QUBO formulation for this 
problem which models the network loads as constant current instead of constant power, which is equivalent to 
assume in (3) that Vn(T) = 1 pu (with a null angle) for all loads. This step was necessary in order to express the 
objective function in a closed form suitable to a QUBO formulation.

In the present work, we are proposing an iterative method to solve the original PQ-load problem using our 
QUBO formulation for constant-current loads. This method can be described in the following steps: 

1. Build the QUBO model assuming constant-current loads, i.e., assume Vn(T) = 1 pu for all loads in (3).
2. Solve the QUBO model, extract the optimal configuration T∗ from the solution and add it to the list of visited 

configurations.
3. Calculate the voltage profile for the optimal configuration ( Vn(T

∗) for all loads) using a classical power-flow 
method for PQ loads.

4. Update the QUBO model with the constant-current loads adjusted for the voltage profile obtained in previ-
ous step, i.e., recompute (3) using the values of Vn(T

∗) in the place of Vn(T) for all loads.
5. Solve the updated QUBO model and extract the new optimal configuration T∗ from the solution.
6. If new T∗ is not in the list of visited configurations, add it to the list and go to Step 3.
7. Compute the power losses for all configurations in the list of visited configurations using a classical power-

flow method for PQ loads and return the configuration with minimal losses.

This paper is mainly focused in the constant-current load model problem (i.e., Steps 1 and 2 above). In the end 
of “Results” section, the application of our proposed approach for PQ loads is presented for several standard 
distribution network models.

Voltage and current constraints. Although the proposed formulation does not include constraints related to 
voltage and current limits, these constraints tend to be fulfilled in a configuration optimized for minimal losses. 
Considering that constraint violations in the optimal configuration are possible but infrequent, penalty terms 
could iteratively modify the QUBO model to prevent violations from appearing. The evolution of the present 
work will include this approach to handle constraint violations in the QUBO model.

The proposed formulation. The formulation we developed consists of creating a QUBO model represent-
ing a minimum loss problem for any given network topology, electrical parameters and net loads. The optimal 
solution of this QUBO problem contains the operational spanning tree which minimizes the QUBO cost func-
tion, i.e., the network energy losses in the constant-current load model.

Our formulation is described in detail from a mathematical point of view in our previous  work11. The present 
paper is focused on the numerical results of the solutions obtained through several solvers for the minimum loss 
problem with our formulation applied to a standard 33-node test network. This network  model12, represented in 
Fig. 1, is widely used to benchmark network optimization  algorithms9. In this work we used the network model 
data from the Matpower software  package21.

(3)ILn (T) =
Sn

Vn(T)

(4)Vn(T) = Vp(T)− ZpnIpn(T)

Figure 1.  The 33-node test network; the substation is node 0.
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QUBO model. A QUBO model formulates a pseudo-Boolean cost function f : Bn → R as a quadratic polyno-
mial over n binary variables xi ∈ B , where i = 1 . . . n and B = {0, 1}:

where ai and bij are the real-valued linear and quadratic coefficients, respectively, and c is a constant term. Solving 
a QUBO problem consists of finding the binary string x∗ which minimizes f:

While the constant term c has no influence on x∗ , it’s inclusion on f makes this function more general in order 
to provide meaningful cost values for the optimization problem at stake.

For our optimization problem, the solution x∗ contains the model variables that we introduced in our previous 
 work11. Thus, each of these variables is assigned to a given variable index i in (5). Each model variable is either 
a decision variable or an auxiliary variable. The decision variables represent the solution—in our problem they 
define which network links are in the edge set E∗ of the optimal spanning tree T∗ . The auxiliary variables, whose 
values depend on the decision variable values, are needed to implement the problem constraints and objective 
function (i.e., the energy losses function) with the binary quadratic terms of the QUBO model. For our test 
network, the QUBO model has 47 decision variables (the e and p variables in our previous  work11) and 1027 
auxiliary variables, for a total of 1074 binary variables.

Since the QUBO formulation is, by definition, unconstrained, the problem constraints must be added to the 
cost function as penalty terms. These constraints include the topology constraints needed to restrict the solu-
tion space to valid spanning trees. Any solution which would violate some constraint has a penalty cost higher 
than the objective function, such that the solution is avoided in the total cost minimization even if there would 
be some possible benefit on the objective function. An extreme example of such case is a solution representing 
a completely disconnected network with null energy losses. The minimum penalty cost value per constraint 
violation is defined as 2.0. This is the default value of the tool we used to convert the constraint satisfaction 
problem into a QUBO model—the stitch function from the dwavebinarycsp Python package of the 
D-Wave Ocean  SDK22.

Before being added to the total cost function of the QUBO model, the energy losses function is scaled by a 
constant factor such that the scaled losses value expected for the optimal solution (or for the best known valid 
solution) lies below the minimum penalty cost of 2.0. Nevertheless, the scaling factor cannot be too low, oth-
erwise the model may be solved with some loss of numerical precision, yielding a sub-optimal solution. This 
issue is specially relevant for quantum annealers since there are limits on the range and precision of the physical 
implementation of the QUBO coefficients ai and bij23. We chose as the network starting configuration, i.e., the 
configuration which the solvers’ solutions will be compared with in terms of losses reduction, the valid and 
non-optimal network configuration with all five tie lines open—(7,20), (8,14), (11,21), (17,32) and (24,28). This 
configuration has energy losses of 165.4 kW. Thus, if we define the scaling factor as 0.01 for the energy losses 
expressed in kW, this configuration has a QUBO cost value of 1.654, below the minimum penalty cost of 2.0. 
Given that, for this network, the QUBO value of any configuration better than the starting configuration is still 
below this threshold, we fixed the scaling factor for this network as 0.01.

Figure 2 summarizes the process of building the QUBO model.

Results
In order to find the optimal solution for a QUBO model, several solvers can be used. Three approaches were 
studied with our model—classical solvers, quantum solver (quantum annealing) and hybrid quantum-classical 
solver. To benchmark the solvers results, the optimal solution for the constant-current load model was found by 
exhaustive search over the complete 50,571 spanning trees space of the 33-node test network. This solution is 
represented by the set of open links {(6,7), (8,9), (13,14), (31,32), (24,28)} with energy losses of 116.4 kW, thus 
corresponding to a QUBO cost value of 1.164.

(5)f (x) =

n∑

i=1

aixi +
∑

i<j

bijxixj + c

(6)x
∗ = argmin

x∈Bn

f (x).

Figure 2.  The building process of the QUBO model.
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Classical solvers. Table 1 summarizes the results obtained from classical state-of-the-art QUBO and mixed 
integer quadratic programming (MIQP) solvers. Given the stochastic nature of these solvers, the results vary 
between distinct runs but they keep the same order of magnitude for both the incumbent solution value at a 
given moment of the run time, and for the time-to-solution (TTS) if an optimal solution is found. The FICO 
Xpress, CPLEX and SCIP solvers were the only ones to find the optimal solution, being FICO Xpress the fastest 
solver with a TTS of 48 s. The NEOS Server  platform24–26 limits each optimization job to four threads, while the 
Amazon EC2 t2.micro  instance27 runs with a single virtual core. It would be expected that the MIQP solvers 
would be able to find the optimal solution within a smaller TTS with a mixed integer constrained formulation 
for this optimization problem instead of a QUBO formulation. Nevertheless, the focus of this paper is the com-
parison of the results from several solvers with the same QUBO formulation.

Solving with an initial feasible solution. In order to improve the solution and/or the TTS, an initial feasible 
solution was given to the solvers being able to accept it: CPLEX and Gurobi. This solution corresponds to the 
valid and non-optimal network configuration with all five tie lines open which, as previously mentioned, has a 
QUBO cost value of 1.654. The value for the 1074 solution variables was directly assigned from the network con-
figuration. Table 2 summarizes the results obtained from these two solvers. CPLEX was able to find the optimal 
solution in about half of the time it took to find the same solution without an initial solution. Gurobi was still not 
able to find the optimal solution, showing only a small improvement after about 3 h of run time.

Quantum annealing. We had access to the D-Wave Advantage quantum  annealer16. This system is cur-
rently the largest quantum annealer with more than 5600 qubits and 40,000 qubit couplings although it has a 
limited connectivity between the qubits, with a maximum of 15 couplings per qubit. Each qubit represents a 
binary variable xi from a physical QUBO model and each qubit coupling implements a qubit product term xixj 
from the same model. Both the qubits and the qubit couplings are programmed with their QUBO coefficients ai 
and bij , respectively.

Table 1.  Solution results obtained from classical solvers. a Optimal solution value. b The results of AlphaQUBO 
are from distinct runs with different time limits. The solution cost value for 30 min run is higher than the one 
for 15 min given the stochastic nature of the solver while it cannot improve the solution any further within the 
given time frame. The results of the other solvers are from a single run on each solver. c The results of MQLib 
are from the GLOVER2010  heuristic34, which is the best performing heuristic from the 39 MQLib heuristics 
tested with our model. d The dots represent a time interval were the incumbent solution value was stationary.

Solver Platform Solution value Run time ([h:]mm:ss)

FICO  Xpress28 NEOS Server
1.984 00:30

 1.164a 00:48

CPLEX29 NEOS Server
2.630 05:00

 1.164a 05:16

SCIP30 NEOS Server
4.164 05:00

 1.164a 22:46

AlphaQUBOb31 Amazon EC2 t2.micro

4.203 00:30

4.179 01:00

2.340 05:00

2.321 15:00

2.629 30:00

MQLibc32 Amazon EC2 t2.micro
4.556 00:35

2.364 04:00...15:00d

Gurobi33 NEOS Server

6.151 00:30

4.171 1:00:00

2.958 2:30:00...8:00:00d

Table 2.  Solution results obtained from classical solvers with an initial feasible solution. a Optimal solution 
value. b The dots represent a time interval were the incumbent solution value was stationary.

Solver Platform Solution value Run time ([h:]mm:ss)

CPLEX NEOS Server
1.654 00:00...02:37b

 1.164a 02:50

Gurobi NEOS Server
1.654 0:00:00...2:39:20b

1.412 3:00:00...8:00:00b
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Given the limited connectivity of the physical qubit couplings, the QUBO model variables of an optimization 
problem may not have a one-to-one correspondence with the annealer qubits. In this case, the graph represent-
ing the QUBO model (where the nodes are the model variables and the edges are the product terms) must be 
embedded in the annealer connectivity graph—the Pegasus  graph35. Since the former graph must be a minor of 
the latter graph, this procedure is a minor embedding where each model variable corresponds to one or more 
annealer  qubits36.

Although our model’s 1074 variables and 10,166 product terms are well below the annealer limits, no embed-
ding is currently possible given the high connectivity of most of our model variables. A future quantum annealer 
with more qubits and/or qubit couplings will eventually make the minor embedding possible for our QUBO 
model.

Hybrid solver. The D-Wave Hybrid Solver  Service37 aims to overcome the quantum annealer limitations on 
size and connectivity while still taking advantage of the acceleration provided by quantum annealing. No minor 
embedding is needed for the QUBO model supplied to this solver. This service runs several classical heuristics 
in parallel. Each of these heuristics makes queries to the quantum annealer with subproblems which fit on the 
annealer. Since this solver is proprietary, we do not have access to its implementation details. However, from 
the timing information returned in the solver solutions we conclude that about 1/60 of the hybrid run time is 
allocated to quantum annealing runs. Figure 3 and Table 3 summarize the results obtained from this solver. The 
solutions were obtained by defining a time limit to each run. After reaching this limit, the solver returns the best 
solution found in that period. Given the stochastic nature of this solver, several runs were made for each chosen 
run time limit in order to obtain statistic information about the solution values.

All solutions with a value below 2 are feasible since a constraint violation would add a cost of at least 2. Still, 
the feasibility of each solution was checked directly against the problem constraints. All solutions returned for 
a run time of 30 s or longer and 40% of the 5 s solutions were shown to be feasible.

As expected, the solution values generally decrease as the run time increases. The standard deviation for each 
time limit shows the same evolution. It worth mentioning that the value of the best solution found for a run time 
of 1 min has a difference to the optimal value of just 0.00486 (i.e., a difference of 486 W in total power losses) and 
with a single difference from the optimal set of open links shown in the beginning of the Results section. This 
solution is better than all solutions found for the longer run time of 3 min. This exceptional situation is justified 
by the stochastic nature of this solver and by the fewer runs made for the longer run time.

Considering the already mentioned non-optimal network configuration with the tie lines open (with a QUBO 
cost value of 1.654) as the starting point, the solutions returned from the hybrid solver yield on average 48% of 

Figure 3.  Solution results obtained from the D-Wave hybrid solver. The box plots and the line represent the 
statistics and the average, respectively, of the solution values for the each of the chosen run time limits.

Table 3.  Solution results obtained from the D-Wave hybrid solver.

Run tim (mm:ss)

Solution value

Feasibility ratio (%) RunsMin Average Max

00:05 1.418 2.394 3.442 40 10

00:30 1.295 1.418 1.647 100 10

01:00 1.169 1.300 1.428 100 10

03:00 1.242 1.258 1.283 100 5
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the maximum possible reduction in losses for a run time of 30 s. The best solutions returned for a run time of 5 
s and for a run time of 30 s showed a losses reductions of 48% and 73%, respectively.

All the solutions returned by the hybrid solver showed no improvement after being post-processed with a 
classical greedy steepest descent solver provided by D-Wave38. The greedy solver operates by flipping one variable 
at a time to try to improve the solution. Since no improvement was observed, one can conclude that solutions 
returned by the hybrid solver are locally optimal for a neighborhood defined as a Hamming distance of one.

PQ-load model. The results previously presented were obtained for the constant-current load model. In 
order to solve the original PQ-load problem, the iterative method we proposed in Methods section was applied 
not only to the 33-node network already employed, but also to 70-node39 and 118-node40 test networks. As with 
the 33-node network, the source of the model data for the larger networks was also the Matpower software 
 package21.

Since the focus of this subsection is to illustrate the application of the proposed PQ-load method for several 
test networks, we are not concerned here on how the QUBO model is solved within the proposed method. Thus, 
the QUBO model was replaced by an equivalent MIQP model more suitable to classical solvers which provide a 
guarantee of optimality. This MIQP model represents the same optimization problem as the QUBO model. The 
main difference is the representation of link currents as continuous variables, enabling a simple formulation of 
the network losses as a quadratic function of these variables. This observation does not remove the merits of the 
QUBO model since this is the only model that a quantum annealer can directly accept.

Table 4 summarizes the results obtained for the validation of the proposed PQ-load method using the Gurobi 
solver. This table shows that the method converged in the first iteration for all tested networks, i.e., the optimal 
configuration for PQ-load model (Step 5 of the method) is the same as the optimal configuration for the constant-
current load model (Step 2) in the first iteration. Although there is no guarantee that the method converges at 
the first iteration for any possible network, we strongly believe that the method converges at most within a small 
number of iterations.

Conclusion
This paper proposed an application of a QUBO formulation of the minimum loss problem in distribution net-
works to a quantum-classical hybrid solver. The results of this application were compared against state-of-the-art 
classical solvers for the standard 33-node test network. The D-Wave hybrid solver found good solutions within 
a reasonable run time. Although the exact optimal was never found, a solution very close to the optimal was 
found with a run time of 1 min. The worst solution returned by this solver for a run time of 30 s was still better 
than any solution returned by other solvers in the same run time (including the classical solvers with an initial 
feasible solution). Several classical solvers were able to find the optimal solution, being the FICO Xpress solver 
the fastest one with a time-to-solution of 48 s.

Since our QUBO formulation applies to constant-current load models only, we proposed an iterative method 
to optimize PQ-load models using the QUBO optimization as an inner step. This method showed an immediate 
convergence with three standard network models between 33 and 118 nodes.

Other methods may currently provide better or faster solutions to the minimum loss problem. Neverthe-
less, as quantum annealers and hybrid solvers will continue to improve their performance, we expect that the 
proposed QUBO formulation will enable the practical use of quantum annealing or quantum-classical solvers 
for handling reconfiguration problems on real-world electrical networks with advantage over classical solvers 
in terms of solution quality and time-to-solution.

The evolution of the present work will include the addition of voltage and current constraints to the QUBO 
formulation. This evolution will also target a new QUBO formulation with a better scaling of the model size 
with respect to the network dimension.

Data availability
The network models data used in this study is included in the Matpower software package (https:// matpo wer. 
org/). The QUBO and MIQP models generated during this study and the solution data obtained from the solvers 
are available from the corresponding author upon reasonable request.
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Table 4.  Results obtained from the proposed method for PQ-load model.

Network size (nodes) Iterations

Optimal losses (kW)

Const. I PQ-load

33 1 116.4 127.7

70 1 263.5 301.1

118 1 789.0 865.0

https://matpower.org/
https://matpower.org/
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