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Robustness of noisy quantum networks
Bruno Coelho Coutinho 1✉, William John Munro2,3, Kae Nemoto 3 & Yasser Omar1,4,5

Quantum networks allow us to harness networked quantum technologies and to develop a

quantum internet. But how robust is a quantum network when its links and nodes start

failing? We show that quantum complex networks based on typical noisy quantum-repeater

nodes are prone to discontinuous phase transitions with respect to the random loss of

operating links and nodes, abruptly compromising the connectivity of the network, and thus

significantly limiting the reach of its operation. Furthermore, we determine the critical

quantum-repeater efficiency necessary to avoid this catastrophic loss of connectivity as a

function of the network topology, the network size, and the distribution of entanglement in

the network. From all the network topologies tested, a scale-free network topology shows the

best promise for a robust large-scale quantum internet.
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Quantum networks are a paradigm of networks where the
links and nodes obey the laws of quantum physics1–3.
Namely, the quantum links can be quantum correlations4,

quantum couplings or dynamics5,6, or even quantum causal
relations7. Quantum nodes can be any system with quantum
degrees of freedom. The nascent field of complex quantum
networks4,8–16 is motivated both by the fundamental interest in
understanding the nature and the properties of this object, as well
as by the applied perspective of developing networked quantum
technologies to fully harness their potential and their reach. The
latter could be named for quantum-secure communications17,18,
quantum-accelerated computation19–21, quantum-enhanced sen-
sing and metrology22–24, and the development of a future quan-
tum Internet1. However, quantum systems and states are
vulnerable to noise in general. But how does this translate to the
network realm, i.e., how robust are noisy quantum networks, and
how is that robustness affected by the underlying graph? And how
does it compare to the robustness of classical networks, which
typically evolve, to non-trivial network topologies25–27, such as
scale-free properties, topologies that are known to maintain their
functionality against random failures28,29?

Networks are a set of nodes and links, where each link connects
a pair of nodes. This naturally includes complex networks25,30

such as the current classical Internet31, a snapshot of which is
presented in Fig. 1a. With the goal of investigating a quantum
Internet, we consider quantum networks where the links corre-
spond to entangled pairs of qubits, each lying in a different node.
Now, imagine we want to realize a quantum operation, e.g.,
computing, communication, or metrology, between two distant
nodes of a quantum network: how can they establish entangle-
ment between them, with a certain target fidelity Ftarget, given the
existing quantum correlations in the quantum network?

In our work, we consider an entanglement distribution net-
work based on noisy quantum-repeater nodes, corresponding to

the currently envisaged implementation of realistic long-distance
quantum networks, distinctly from noiseless, pure-state, quantum
networks4,12, and from networks based on quantum channels'
upper-bound capacities9–12,14–16. Let us consider the general
scenario where there are Nij noisy Bell pairs with fidelity Finitial
connecting nodes vi and vj. If necessary, these noisy Bell pairs can
be purified to yield nij=Nij/Nft pairs exceeding a given target
fidelity Ftarget (where Nft is the number of initial pairs necessary to
generate one Ftarget pair)32. Next, entanglement swapping
between link vi and vj and link vj and vk consumes those Bell pairs
to create a longer-range entangled pair between nodes vi and vk
with fidelity F2

target
33. That drop in fidelity means multiple pairs

need to be available for entanglement purification to return the
target fidelity Ftarget (again consuming more pairs). These
entanglement swapping and purification operations continue at
longer distances until we have connected the nodes/users who
want to communicate in the network34. A critical question that
arises is the resource consumption in such an approach. For-
tunately, it is well known that resources required for the first-
generation quantum-repeater network scale polynomially with
the number of links l needed to connect the source node Alice
and Bob35. To the leading order in this polynomial, we can
define35,

RðlÞ ¼ lαþ1 ¼ rðlÞl ð1Þ
as being the number of entangled qubit pairs in the entire chain
necessary to create the connected entangled qubit pair with the
desired fidelity Ftarget, and r(l)= lα is the number of entangled
qubit pairs necessary to create the connected entangled qubit pair
with the desired fidelity Ftarget per link. Above α represents the
efficiency of the protocol which of course depends heavily on the
experimental apparatus used for the repeater scheme and the noise
present in it but values in the range [1, 2] are not uncommon (see
Supplementary Note 1, Figs. S1 and S2 for further details).

Fig. 1 Complex quantum networks. Depicted in a is a snapshot of the structure of Internet (at the level of autonomous systems using the dataset from31)
clearly showing the scale-free properties of this complex network. This snapshot could in principle belong to a future quantum internet1, 48 which will,
however, operate on different network principles. These differences can be seen even at the small scale. In b a small scale quantum-repeater network is
shown, indicating how the connected components can intersect each other, in stark contrast to what is observed in a classical network. Here each node is
represented by a black dot and the links by black lines. nij represents the number of entangled pairs associated with each link eij, which is chosen for this
illustration to scale as r(l)= l. Two nodes vi and vj are connected at a distance l if there is a path between them such that for all links in that path satisfy the
condition nij≥ l, with l being the distance between node i and j. In c, d different connected components are displayed by blue green and red circle.
c Illustrates a quantum network where one can only connect two nodes if nij≥ l. The connected components clearly intersect each other. In contrast
d illustrates a classical network where links can only be used to connect two nodes if nij≥ 3. In this case the connected components do not intersect
each other.
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In this work we will show that large-scale quantum networks
based on noisy quantum-repeater nodes connected by noisy
channels are prone to discontinuous phase transitions and that
such transitions can be suppressed if the efficiency of the
quantum-repeater protocol is above a certain threshold.

Results
The exploration of the connectivity of a quantum-repeater net-
work requires the introduction of two types of connection
between nodes, which we are going to call functional and struc-
tural connectivity. Functional connectivity in the quantum regime
is the situation where a connection between the two nodes can be
established with the required fidelity Ftarget. Structural con-
nectivity on the other hand refers to the situation where a con-
nection can be made since there is a path connecting the two
nodes, but not necessary with fidelity Ftarget. We will illustrate
these two concepts in Fig. 1b, c, d where the nodes v1 and v3 (and
v3 and v5) can individually establish connections with sufficient
fidelity Ftarget (functionally connected), but v1 and v5, while
connected, can not (structurally connected). This means v1 does
not belong to the same “functionally” connected component as v5
making it impossible to establish a connection between them with
the required fidelity.

Standard Bernoulli percolation, a widely used technique to
explore the robustness of classical networks25,36, can not be used
in these quantum scenarios due to the quality of service Ftarget
requirement (except in the limit α= 0). Although in Bernoulli-
percolation theory, finding the largest connected component of a
network is a computationally easy problem to solve25, finding the
largest functional component of these networks is an NP-hard
problem and can be related to the maximum clique-problem37

(see supplementary Note 2 for details). Our model is more
manageable if one considers the case where all links operate with
the same amount of purification and therefore using the same
number of entangled qubit pairs in each link, nop. Let us call this
quantity the operational number of entangled qubit pairs. The
operational number of entangled qubit pairs is a free variable that
one can tune in order to maximize network connectivity. It is also
associated with an operational distance lop ¼ nopð Þ1=α, meaning
each link can be functionally used in paths of length lop or less.

Our concept of a quantum functional connection naturally
suggests that we should choose the operational number of
entangled qubit pairs nop as large as possible in order to increase
the operational distance lop and therefore allow for nodes further
away from each other to distribute Bell pairs with our required
fidelity Ftarget. However, increasing the operational number of
entangled qubit pairs reduces the probability of a given link
having the required number of entangled pairs. Thus there is an
important trade-off to consider. If the number of pairs distributed
between nodes can be expressed as a function g(n), then the
probability that a given link has the required operational number
of entangled qubit pairs or more is given by,

popðlopÞ ¼
Z þ1

nop¼ lopð Þα
gðnÞdn ¼

Z þ1

lopð Þα
gðnÞdn ð2Þ

which indicates that for nop larger than a certain value, most links
are removed from the network and there is no giant component.
Instead one needs to find the smallest value of nop, such that the
operational distance is larger or equal to the diameter of the
network d, (lop ≤ d). The diameter of the network is defined as the
largest distance between any two nodes in the connected
component25, therefore any two nodes (associated with the
connected component) are able to establish a functional con-
nection (see Fig. 2). This set of nodes is termed the backbone and
serves two purposes, first, it can be used as a measure of the

connectivity of the network, and second for large networks, they
will behave similarly to classical communication networks.
Routing developed for classical networks38,39 should be sufficient
(although not necessarily optimal) to find a good path to connect
two nodes with fidelity Ftarget. In such a situation our method
guarantees the existence of at least one path connecting any two
nodes in the backbone, but given the possible existence of several
paths connecting two nodes, if the backbone is large, one could
also use a multi-path routing approach to generate multiple
entangled qubit pairs between them, using different routes, a
strategy already proposed in relation to quantum networks9,10.

One should vary the operational distances lop for any change in
the network (like the removal of nodes and links) in order to
maximize the size of the backbone. One wants to establish the
repeater network with just enough resources to reach the dia-
meter of the largest connected network component (lop= d ide-
ally), but the question arises how the diameter of the network d
and the operational distance lop change when now one considers
that links can fail randomly with pext. The diameter of the net-
work will depend on the probability that a link both has sufficient
pairs to create our link (pop) and that there has not been any
random failure in that link is given pext. The total probability that
a link is both operational and not removed is therefore p=
poppext, and for a given network one can write the diameter as
d poppext
� �

. The operational distance on the other hand can be
written solely as a function of the operational portability pop by
inverting Eq. (2). This leads us to the equation,

lopðpop0 Þ ¼ d pop0 pext
� � ð3Þ

At this point pop0 we have the minimal number of resources
required to reach the diameter of the network’s largest connected
component. After we find pop0 , the size of the backbone can be
easily computed as the number of nodes in the largest connected
component of the network composed of only links with sufficient
pairs to create the link, and the link was not removed due to
random failures. In the example of Fig. 2, since there are no
random failures the size of the backbone is 6. Adding random
failures just means that we are starting with a network with some
of the links already removed. Our approach is slightly simplistic
in that we have only considered links (loss of nodes can also be
incorporated). We are now at the stage where we can explore
actual networks.

Quantum Erdős-Rényi networks. There are of course many well-
knownnetworkmodelswecouldexaminewiththeErdős-Rényimodel
networkprobablybeing thesimplest25,40. In theErdős-Rényimodel,N
nodes are randomly connected to each other using L= cN/2 links,
wherec istheaveragenumberoflinksincidenttoeachnode.Thismodel
hasbeenwell explored incomplexnetwork theory25,40andassuch, it is
a good starting point, especially as one can compute l(pop) and
D(poppext) analytically41 when the number of nodes N→∞ (asymp-
totic limit). Considering only bond percolation (loss of links)we show
inFig. 3 that thequantumbackbone for a largeErdős-Rényinetwork is
prone to an abrupt phase transition. We observe that the size of the
quantum backbone actually drops abruptly as the probability of links
not failingpextdropsbetweenacriticalprobabilitypextc .As it isusual ina
first-order phase transitionweobservehysteresis, therefore the critical
probabilitypextc isnotwelldefinedandthephase transitionmightoccur
in a range of probabilities between pextc1 < pext < pextc2 , with popc1 ; ðpopc2 Þ
corresponding to the largest, (smallest) probability of links not failing
where the phase transitionmight occur. This hysteresis region whose
span grows with the size of the network is shown in Fig. 4 (see Sup-
plementary Note 3 for the analytical calculations). We observe that,
whentheaveragenumberofentangledpairs ineach linkof thenetwork
is larger than a critical number of qubit pairs nc, the traditional

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00866-7 ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:105 | https://doi.org/10.1038/s42005-022-00866-7 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


percolation phase transition is recovered as shown in Fig. 4 (Supple-
mentary Note 4 for details). The critical number of qubit pairs nc
increasesquicklywith thesizeof thenetwork(seeSupplementaryNote
4 for details). It is useful to mention that we have used α= 1 as a
conservative value (see Supplementary Note 1). As α increases the
average number of qubit pairs necessary to avoid the discontinuous
phase transition will also increase.

Quantum scale-free networks. These observations lead to a
natural question about how general our results are—especially in
terms of the network model. As such it is useful to explore the
scale-free Barabási-Albert quantum network whose classical
counterpart is known to be more robust than the Erdős-
Rényi25,42,43. In scale-free networks, the degree distribution fol-
lows a power law at least asymptotically. This promotes the
existence of hub nodes with a degree much larger that the average
one (see Fig. 1a for an example). Such distribution is observed in
a diverse types of real-world networks27. The Barabási-Albert
model44 is a simple example that allows us to generate and
explore scale-free networks, based on the preferential attachment
principle. This means that when links are added to the network
they disproportionately connect to nodes with higher degrees27.
In Fig. 5(a, b) we plot the operational distance lop(pop) and the
diameter of connected component D(poppext) versus the prob-
ability a link is operational and not removed p= poppext for
various network sizes N. Our results for the Barabási-Albert
network show that we are in the supercritical regime for much
lower values of pext, which highlights its ability to distribute
entanglement even when a large number of links fail. This is to be
expected, the Barabási-Albert network, and other scale-free net-
works, are known to be more robust than an Erdős-Rényi
network43,44. More importantly in Fig. 5c we observe no

discontinuous phase transition in the N= 103–105 region (unlike
what occurred in the Erdős-Rényi situation Fig. 3, and therefore
there is only one critical probability of links not failing
pextc1 ¼ pextc2 ¼ pextc . This is exemplified in Fig. 5d by the absence of
a region where both the subcritical and supercritical are stable
solutions of Eq. (3). In fact, one can show that there is always a
critical quantum-repeater efficiency αc such that for an efficiency
large than the critical one α < αc the discontinuous phase transi-
tion is suppressed (our network used in Fig. 5a, b, c, d has αc > 1).
It is useful to explore this αc parameter in a little more detail.
When our resources are exponentially distributed, it is straight-
forward to show (supplementary Note 4 for details) that αc is
given by

αc ¼ min
p<pc

dðpÞ= ln p
dDðpÞ=dðlnðpÞÞ ð4Þ

which establishes the existence of a sufficient repeater efficiency
so that most of the classical behavior is recovered. Despite the
suppression of the discontinuous phase transition for α < αc there
are still a few differences between the various quantum cases.
Unlike what one expects for a typical Barabási-Albert network
25,43 the point at each of the networks breaks apart, does not
change significantly with the network size. To understand this, it
is useful to look at the relation between pextc and the classical
percolation critical probability pc (which for the usual Barabási-
Albert network tends to zero as N increases). When our resources
are exponentially distributed, pextc (or pextc2 for a discontinuous
phase transition) is related to the classical percolation critical
value pc by, (see Supplementary Note 5 and Fig. S3. for details)

pextcðc2Þ ¼ ðpcÞ
Dmaxð Þα

nh i ; ð5Þ

Fig. 2 Quantum network backbone. Illustration of how the quantum backbone can be computed where the numbers written in each link represents the
number of entangled pairs contained in it. We begin in a with a D= 3 network and the operational distance lop= 0 meaning none of the links in the network
need to be removed. As the operational distance lop is increased from 1b to 2c we see that we have removed links with nij < 2. Further in c we notice that the
distance of the network increases from D= 3 to D= 4 due to the v5–v6 link being removed in b due to lack of resources. Then in d, e we continue to remove
various links until we reach an operational distance that is largest than the diameter of the network. We are now left in e where the largest connected
network component, termed our quantum backbone. Finally in f we superimpose this quantum backbone (shown in red) onto the entire network. The size
of the backbone (number of nodes in the largest connected component of the backbone) is the number of red nodes nodes in f, namely 6.
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Fig. 3 Robustness of a quantum Erdős-Rényi network. Exploration of bond percolation on a quantum Erdős-Rényi network (ER) with average degree c= 6
where the number of entangled pairs in each link follows an exponential distribution with mean number 〈n〉. We plot the operational distance lop and the
network diameter d versus the probability that links are both operational and not removed p= poppext, for hni ¼ 15 lnNð Þα with α= 1 in a and hni ¼
15 lnNð Þα with α= 2 in b, respectively. The large colored dots indicate their intersection. Here the operational distance lop and network diameter d are
scaled by lnN for ease of comparison. Labelled are the curves lop(pop) for pext ¼ pextc1 (pextc2 ) which correspond to the smallest (largest) value of p indicating a
stable lop(pop)= D(poppext) solution in the subcritical regime. Further the classical percolation critical probability pc gives the point where the networks
breaks completely apart to become structurally disconnected meaning there is no giant set of nodes that can connect to each other with any fidelity. We
generated one Erdős-Rényi network for each value of N, then dop(p) was determined by removing each link of the network with probability 1− p. dop(p) was
computed based on 100 runs for each value of p. The intersection between the two nodes at p0, is marked by blue dots for solutions in the supercritcal
regime, and red dots for solutions in the subcritical regime. Next the size of the backbone (number of nodes in the backbone) is plotted as a function of in
b for α= 1. intersection point found in a, b) there is a corresponding size in c, d. Finally the size of the backbone is plotted as a function of the probability
that links are not removed pext in e, f for α= 1, 2. The functionally connected regime is represented as the blue region while the functionally subcritical
regime is shown as the light red region. The blue/red stripped area represents the region where both the functionally connected and subcritical regimes are
stable. The dark red region on the other hand represents the structurally disconnected regime for a network of size N= 105. Shaded region around each
curve represents the standard deviation of the same.
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with Dmax being the critical network diameter, defined as the
diameter of the network at the classical phase transition point

Dmax ¼def DðpcÞ. This provides quite an interesting insight into this
apparent change of behavior. It is well known that the classical
percolation critical value pc tends to zero with the network size for
the Barabási-Albert network43, but so does Dmax (this is what
prevents the suppression of the phase transition). This means that
the decrease of pextcðc2Þ can be mitigated by increasing the average

degree of the network nh i proportionally with the critical network
diameter to the power of α, ðDmaxÞα.

Measuring the robustness of complex networks. Our explora-
tion of the Erdős-Rényi and scale-free Bollobás quantum net-
works has highlighted how the topology of those networks plays a
significant role in its robustness, meaning the ability to distribute
entanglement in the presence of link failures, but how? We need

Fig. 4 Phase diagram of a quantum Erdős-Rényi network. Depicted are phase diagrams of hni= lnN versus the probability that a link is not removed pext

for a quantum Erdős-Rényi network network comprised of N= 104 (a), 105 (b), and 106 (c) nodes, respectively, with c= 6 average degree and α= 1. Here
we assume the number of entangled pairs in each link follows an exponential distribution with mean 〈n〉. The functionally supercritcal regime is represented
as the blue region while the functionally subcritical regime is the light red region. Further the stripped (blue/light red) area represents the region where
both the functionally connected and subcritical regime are stable. The dark red region represents the structurally disconnected regime. Next the classical
percolation critical probability pc is the point where the networks breaks completely apart, meaning there is no giant set of nodes that can connect to each
other with any fidelity. Also shown are the critical mean resource number nc= lnN for which the discontinuous phase transition is avoided.

Fig. 5 Robustness of a quantum Barabási-Albert network. Exploration of bond percolation on a quantum Barabási-Albert network with N nodes and
average degree c= 6 where the number of entangled pairs in each link follow an exponential distribution with mean 〈n〉. We simulated the the Bollobás
variant of the Barabási-Albert model49 where we generated one Barabási-Albert network for each value of N. The diameter of the network D(p) was then
determined by removing link from the network with probability 1− pext, based on 100 runs for each value of p. We plot the operational distance lop(pop)
and the network diameter D(p) versus the probability that links are both operational and not removed p= poppext for hni ¼ ð10 lnðNÞÞα with α= 1 in a with
the large colored dots indicating their intersection. Labelled are the curves Labelled are the curves lop(pop) for pext ¼ pextc which correspond to the smallest
value of p indicating a stable lop(pop)=D(poppext) solution. The intersection between two nodes at p0, is marked by blue dots for solutions in the
supercritical regime, and red dots in the subcritical regime. Next the size of the backbone (number of nodes in the backbone) is plotted as a function of p in
b. For each intersection point found in a there is a corresponding size in b. In c the size of the backbone is plotted as a function of the probability that links
are not removed pext. The functionally supercritical regime is represented as the blue region while the functionally subcritical regime is shown as the light
red region. The dark red region on the other hand represents the structural subcritical region for a network of size N= 105. We immediately observe that
no discontinuous phase transition is seen (unlike in the Erdős-Rényi case). Finally in d we depict the phase diagrams of hni= lnN versus y for N= 105 nodes
including the curves for the critical probabilities pextc and pc. Shaded region around each curve represents the standard deviation of the same.
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to quantify this behavior using three important characterization
parameters. The first two parameters are related to how many
links need to be removed before the network breaks apart while
the third is associated with the efficiency of the repeater protocol.
These three parameters can be determined for both the Erdős-
Rényi network and Barabási-Albert networks. It is also useful to
determine these parameters for geometric networks. In a geo-
metric network, nodes are distributed across a geometric space,
and nodes that are closer are more likely to be connected than
nodes further apart. This type of model is very natural in quan-
tum communication networks, given the fact that direct quantum
links spanning large distances are difficult to generate. We con-
sider two types of geometric networks, geometric graphs45, where
only nodes that are closer than a certain radius are connected to
each other, and the Waxman model where the probability pij that
two nodes connect to each other decays exponentially with the

distance46 as pij ¼ βe�
rij
R , with rij being the distance between node

i and j, and R the average connection distance, and in our work
we considered β= 1. Although we can describe these networks as
a function of the number of nodes and links, for the geometric
networks these parameters are associated with physical
dimensions45. To give an example, a random geometric graph
with a connecting radius of 266 km, an average degree c= 6, and
a total number of 103 nodes correspond to a network spanning a
physical distance on the order of 103 km. This conversion is
explained in detail in supplementary Note 4 and displayed on the
top axis of Fig. 6. With these four network topologies in mind—
Erdős-Rényi, Barabási-Albert, geometric random graphs and
Waxman model—we plot in Fig. 6 the classical percolation cri-
tical probability pc, Dmax, and αc versus N, for values of average
degree c= 6, 8, 10. Our plots clearly show that scale-free net-
works are more robust according to all three parameters, that it is
the only network that for the selected parameters is able to avoid
the discontinuous phase transition for α > 1 with N > 103. The
reasons for this are as follows. The classical percolation critical

probability pc is the typical measure of the robustness of a net-
work in the Bernoulli-percolation model. Scale-free networks are
known to be extremely robust against random failures in the
Bernoulli-percolation model as the hubs keep the network con-
nected even when a large fraction of links are missing27. In
contrast, the geometric random graphs seem to be the less robust
networks according to this parameter. The lack of links con-
necting distant parts of the network hinders their robustness
against random failures. Erdős-Rényi and scale-free networks are
both small-world networks, meaning the distances between nodes
in these networks grow with the logarithm of the number of
nodes, and scale-free networks are something called ultrasmall
networks because their network distances tend to be even lower27.
On the other hand, geometric network models tend not to be
small-world45. As expected the critical distance Dmax is lower for
the scale-free network and largest for the geometric networks.
Scale-free networks are also more robust than other networks in
terms of the critical quantum-repeater efficiency αc. This can be
explained by the fact that αc depends on how the diameter of the
network changes when links are removed from the network, Eq.
(5). It can be seen from Fig. 3, and Fig. 4 that the diameter of the
scale-free network grows considerably slower than that of an
Erdős-Rényi network, explaining why this is the case. The dia-
meters of the Waxman and geometric random graphs show
similar behavior to the Erdős-Rényi network when nodes are
removed. Quantum networks based on capacity channel upper-
bounds15,16, can be seen as a special case of our model when the
quantum-repeater efficiency is set to α= 0, a regime in which
classical percolation tools can be used, and therefore there are no
discontinuous phase transitions. Our results show the importance
that the quantum-repeater protocol efficiency plays in a quantum
internet, and the importance of choosing the right network
topology to mitigate such effects. It is possible, however, to
recover the classical behaviors for quantum networks with any
topology and sizes for quantum repeaters that operate with α= 0.
Realistically, it is unlikely that the first generations of quantum-

Fig. 6 Robustness of the network as a function of its topology. Shown are the three critical parameter the critical classical quantum-repeater efficiency,
αc, the critical classical percolation probability, pc, and the critical network diameter Dmax. The critical classical quantum-repeater efficiency αc is the
required quantum-repeater efficiency necessary to avoid the phase transition for a given network. The classical critical percolation probability, pc in the
minimum probability that a link is not removed, in order to have the network in the connected regime. The relation between the critical classical percolation
probability in our model pcðc2Þ and the classical critical percolation probability, pc depends on the third parameter the critical network diameter Dmax, see Eq.
((5)). The critical network diameter Dmax is the diameter of the network at the phase transition point. In the left, center, and right panel these are shown for
the Erdős-Rényi (ER), Barabási-Albert (SF) geometric graphs (rgg), and the Waxman networks for N varying between 102.5–105. For a network to be robust
we want αc and pc to be as large as possible with Dmax to be as small as possible. We estimate the parameters above based on 100 network realization for
each network model and value of c. For each network D(p) was computed based on 100 runs. Error bars show the standard deviation associated with each
estimation. Show in the upper axis is estimation of the order of magnitude for physical range of the two geometric network (rgg and Waxman) assuming a
connecting radius of 266 km (see Supplementary Note 6 and Note 7, and Table S1).
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repeaters networks will be close to that regime, especially when
local gate inefficiencies are included. Our results provided a
lower, and therefore more practical, threshold for the quantum
efficiency required for the construction of a robust network.

There is one more important consideration we must address
here in terms of the generality of our results. This relates to our
choice of an exponential resource distribution used throughout
the paper. The exponential resource distribution was primarily
chosen for the ease of our calculations. Other distributions,
uniform, for instance, show similar network behavior and our
conclusion about the robustness of the Barabási-Albert networks
remains unchanged (see Supplementary Note 4 for details). The
form of the quantum repeaters, their operation, and how
engineers of the future quantum Internet distribute resources
throughout the network will determine what the resource
distribution actually is. It is still an open question as to what
the optimal resource distribution actually would be.

By introducing the quantum backbone, we derived a metric to
measure the connectivity of a quantum network, and have shown
how large-scale quantum networks based on noisy quantum-
repeater nodes connected by noisy channels are prone to
discontinuous phase transitions. This abrupt behavior breaks the
network into disconnected pieces, severely limiting its operational
reach. We found that the discontinuous phase transitions can be
suppressed if the efficiency of the quantum-repeater protocol is
above a certain value that depends on the topology and size of the
network, αc. Furthermore, we have shown that the robustness of a
quantum network can be fully characterized using three parameters,
the classical percolation critical probability pc, the critical network
diameter Dmax and the critical quantum-repeater efficiency
necessary to avoid the first-order phase transition, αc. Our results
capture an inherent fragility that geometric networks possess, they
tend to be more fragile than other networks. On the other hand,
scale-free networks are more robust than all other networks
according to these three parameters, and the required quantum-
repeater efficiency necessary to avoid the first=order transition is
not too large. We have shown that the right network topology
combined with advanced repeater architectures47 provide potential
solutions for the realization of robust quantum networks. Never-
theless, it does not mean a scale-free network will be sure of a
feasible topology for a quantum network.

Discussion
One of the key requirements to generate a scale-free network in
geometric spaces is the existence of direct links spanning long
distances. As it as been mentioned before, those are problematic
to generate for a quantum network. A combination of short links
using optical fiber, and long links using communication through
satellite might be enough to generate a scale-free-like quantum
network, but more research needs to be done in this regard. Our
work also does not consider multi-path purification protocols
given the fact that they are still in their infancy. Multi-path
purification protocols could be an interesting way to increase the
reach of our network, but further research on this type of protocol
would be required before we can perform analyses. Finally, it has
been shown that scale-free networks although robust against
target attacks can be very fragile against target attacks27. This
phenomenon was also reported to be present in quantum
networks15. Our model does not say anything about how robust
these networks are against random attacks, and it would be an
interesting question to address in future work. Our results pro-
vide a guiding principle for the design and development of a
robust large-scale quantum Internet, at least against random
failures, and provide a framework that can be generalized to study
another type of failures or attacks.

Data availability
Data for a snapshot of the structure of Internet at the level of autonomous systems are
available at http://www-personal.umich.edu/m̃ejn/netdata/as-22july06.zip.

Code availability
All codes in this work are available from the corresponding author on request.
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