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Disorder-assisted quantum 
transport in suboptimal 
decoherence regimes
Leonardo Novo1,4, Masoud Mohseni2 & Yasser Omar1,3,4

We investigate quantum transport in binary tree structures and in hypercubes for the disordered 
Frenkel-exciton Hamiltonian under pure dephasing noise. We compute the energy transport efficiency 
as a function of disorder and dephasing rates. We demonstrate that dephasing improves transport 
efficiency not only in the disordered case, but also in the ordered one. The maximal transport efficiency 
is obtained when the dephasing timescale matches the hopping timescale, which represent new 
examples of the Goldilocks principle at the quantum scale. Remarkably, we find that in weak dephasing 
regimes, away from optimal levels of environmental fluctuations, the average effect of increasing 
disorder is to improve the transport efficiency until an optimal value for disorder is reached. Our 
results suggest that rational design of the site energies statistical distributions could lead to better 
performances in transport systems at nanoscale when their natural environments are far from the 
optimal dephasing regime.

Recently, the study of exciton transport in complex networks has received a boost, mainly due to recent experiments 
showing the presence of long-lived quantum coherences in exciton transfer in certain natural light-harvesting 
complexes (LHC’s)1–4. These coherences are present even at ambient temperature where quantum effects are not 
expected due to the interaction with a highly noisy environment. Moreover, such systems exhibit a high energy 
transfer efficiency5, so it is a relevant question to understand how the coherent evolution induced by the structure 
and the environmental fluctuations causes such an efficient transport.

In trying to explain these high efficiencies, the idea of environment-assisted quantum transport (ENAQT) has 
been proposed6–11. In the simplest approach, the exciton transport can be modelled by a tight-binding Hamiltonian 
with site energies disorder, losses and a trap, interacting with the environment. In such systems, it was found that 
there are regimes of noise in which transport efficiency is improved. The gist of the idea is the following: in a dis-
ordered system, transport is suppressed due to localization12 caused by scattering and destructive interferences 
inside the medium; however, the presence of environmental fluctuations damps such interferences and localization 
can be overcome. This is not the only case where transport can be enhanced by interaction with the environment. 
In ref. 10, it was found that either noise or disorder can, independently, increase transport efficiency in highly 
symmetric structures, due to the presence of large invariant subspaces which are not coupled to the trapping site. 
Moreover, in ref. 13 it has also been found that in ordered systems the presence of dephasing noise can enhance 
transport efficiency. General considerations about the scaling of mean trapping time with dephasing, in the weak 
and strong dephasing regimes, are presented in ref. 14. Decoherence-assisted transport is also observed when a 
spin bath is considered as the environment15. It is also worth mentioning that in the scenario where the system 
reaches a non equilibrium steady state, analytical results regarding the conductivity as a function of disorder and 
dephasing strengths are known for a chain16. In general, it is still an open question to understand what are the 
kinds of structures that lead to efficient transport in a noisy environment17. The understanding of how the inter-
play between noise and disorder affect transport could have interesting applications, for example, in the design of 
devices for photodetection, bio-sensing or photovoltaic light-harvesting systems.

In this work, we study this interplay for quantum transport on two structures: binary trees and hypercubes. 
Binary trees are interesting structures which appear in a variety of applications including quantum algorithms18,19 
and as a possible structure for artificial light-harvesting systems20,21. The hypercube has been studied, for example, 
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in the context of quantum state transfer22 and of quantum search algorithms23. Our model of transport con-
sists of a tight-binding Hamiltonian with losses and a trap, interacting with the environment via a Haken-Strobl 
(pure-dephasing) model24. We consider site energies disorder and analyse how the transport efficiency depends 
on the dephasing rate and on the amount of disorder. Our goal is to understand the full picture of the dynamical 
interplay between disorder and dephasing and its consequences for the transport efficiency.

In the case of the binary tree, we start the quantum walk in a statistical mixture of the leaves and place the trap 
at the root of the tree, whereas in the case of the hypercube the quantum walk starts as a statical mixture of all the 
sites and the trap is placed at one of the vertices. We find that the regime which maximizes transport efficiency is 
when the timescale of dephasing matches the timescale of hopping, verifying the quantum Goldilocks principle25–27. 
This principle was put forward as a design principle for efficient structures: it states that a convergence of typical 
timescales of the system and the environment leads to optimal transfer efficiency. In this optimal dephasing regime, 
the efficiency is very robust against disorder. However, below this regime of dephasing we find that disorder can be 
beneficial for quantum transport. In fact, there is an optimal value of disorder for a fixed dephasing rate, as long 
as the latter is below its optimal value. Remarkably, we observe that the qualitative behaviour of efficiency in the 
whole range of parameters of disorder and dephasing is very similar for both the hypercube and the binary tree. 
This is consistent with previous results10,14 for structures with large symmetry, for which there is a large subspace 
of the Hilbert space which is orthogonal to the trap.

For a better and more intuitive understanding of the physics behind this transport problem, we plot the dynam-
ics of the population at the trap and the coherences between the trap and neighbouring sites, for the transport in the 
binary tree. This way, we observe clearly that in the zero disorder and zero dephasing scenario, there is destructive 
interference at the trap leading to very low transport efficiency. We observe also that the addition of disorder and 
dephasing suppresses these destructive interferences, opening the path to the trap. As a result, the population at 
the trap as well as the coherences between the trap and neighboring sites lasts for longer times. It is particularly 
counterintuitive that although dephasing damps all coherences, the interplay between Hamiltonian dynamics and 
dephasing makes some coherences last longer.

Finally, in the last part of the section Results we focus on the possibility to use disorder as a tool to optimize 
transport efficiency. We study numerically how much improvement of the transport efficiency can be obtained 
from adding the optimal value of disorder, for different values of the dephasing rate. We see that the improvement 
is maximal in the weak dephasing regime and is washed out when dephasing reaches its optimal value. However, 
the improvement is quite significant in the suboptimal dephasing regime reaching values as large as 30%. It should 
be noted that, in practice, one always has non-zero dephasing, but not necessarily optimal dephasing for quantum 
transport. This way, our results could be explored for engineering novel materials that exploit quantum interference 
effects in the presence of environmental fluctuations, namely, by engineering the distribution of site energies to 
achieve better performances.

The effect of disorder as a tool for optimization of transport efficiency has been also addressed in refs 28,29. 
In these works, the authors study the transport efficiency (defined in a different way than here) of a random con-
figuration of chromophores inside a sphere. They conclude that configurations with high efficiency are very rare 
and result from an optimization of the structure which leads to fast and coherent transport to the trap. However, 
a different conclusion was reached in ref. 17, which also studies random configurations of chromophores inside a 
sphere, but, among other differences, sets a lower bound for the distance between chromophores. The conclusion 
was that configurations that have high efficiency are not rare as long as we have the right chromophore density. 
Furthermore, in30, the authors identify structural motifs that lead to efficient and robust quantum transport through 
disordered systems.

In contrast, in this work we study the behaviour of transport efficiency with the strength of random disorder 
measured by the standard deviation of the site energies instead of trying to find a particular configuration of 
site-energies and couplings that optimizes efficiency. This scenario is thus easier to implement in experiments, if 
there is not a very accurate control over the site-energies of the system.

Results
Quantum transport in binary tree structures. Tree structures appear in quantum information in some 
algorithms designed as quantum walks19,18. Furthermore, dendrimer-like structures have been proposed as arti-
ficial light harvesting systems20,21. The nearest neighbour tight-binding Hamiltonian (11) for a binary tree with g 
generations is:
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In this section, we investigate the transport of an excitation in the binary tree of 5 generations under the effect of 
disorder and dephasing, since these are factors that will naturally be present in an experimental implementation of 
these systems. First, we look at the transport efficiency as a function of these factors and then at the time evolution 
of the density matrix elements of the population at the trap and coherence with neighbouring sites, which will give 
us a better understanding of the behaviour of the transport efficiency.

Transport efficiency vs. disorder and dephasing. We study the quantum transport of an excitation in a binary 
tree of 5 generations, setting as initial condition an homogeneous statistical mixture of the leaves and placing the 
trap at the root of the tree, site 1 (see Fig. 1). Furthermore, we set κ =  1 and Γ  =  0.01, as typical trapping rate and 
dissipation energy scale, respectively, observed in biological light-harvesting complexes8. We calculate numerically 
the efficiency of transport, defined in Eq. (18), as a function of static disorder δϵ and of dephasing γφ. We vary δϵ 
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from 0 to 2.5 and γφ from 0 to 1.2. We recall that these values are always given in units of the nearest neighbours 
coupling V, as described in Sec. Methods. The corresponding results are presented in Fig. 2 where, at each point, 
the efficiency is averaged over 100 trees with random site energies of mean 0 and standard deviation δϵ.

Analysing the results presented in Fig. 2, we start by noting that in the ordered case (δϵ =  0) with no interaction 
with the environment (γφ =  0) the transport efficiency is very low: 5.84%. In fact, it is the minimum efficiency in 
the range of parameters considered. Although at first sight this result might seem counter-intuitive, it can be 
explained by considering the invariant subspace of the Hamiltonian of the graph10. The invariant subspace is the 
subspace spanned by the eigenvectors of the Hamiltonian (in this case given by Eq. (1)) which have no overlap 
with the trap. The method to obtain this subspace is the following: if the eigenvector is not degenerate and has no 
overlap with the trap, it belongs to the invariant subspace; otherwise, in case there is a degenerate eigenspace of 
dimension D, one can always choose a basis such that D −  1 eigenvectors of that subspace are not coupled to the 
trap, and thus also belong to the invariant subspace. If we set as initial condition of the transport problem a state 
which belongs to the invariant subspace, since it is an eigenstate and has no overlap with the trap, it will result in 
0 transport efficiency, even if there are no losses through recombination. Thus, the only component of the initial 

Figure 1. A binary tree structure with 5 generations. We set a statistical mixture of the leaves of the tree 
(black dots) as initial condition for the quantum transport and we place the trap at the root of the tree (red dot).

Figure 2. Transport efficiency η as a function of the disorder parameter δϵ and dephasing rate γφ, in the 
binary tree with 5 generations. We consider as initial condition a statistical mixture at the leaves of the tree, and 
trapping at the root. The efficiency at each point is averaged over 100 random configurations for the site energies, 
where each site energy is sampled from a normal distribution with mean 0 and standard deviation δϵ. We 
observe a large optimality region around γφ ≈  1. Below this region, we see that disorder improves significantly 
the transport efficiency until δϵ ≈  1. All units are given in terms of the nearest neighbour coupling V.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:18142 | DOI: 10.1038/srep18142

state which can eventually be absorbed at the trapping site is the one which does not belong to the invariant sub-
space. Let us call D′  the dimension of the invariant subspace and λi the vectors spanning it, with ∈ ,…, ′i D{1 }. 
In the case of no disorder and no dephasing, and for a given initial condition ρ0, we have:

∑η λ ρ λ≤ − .
( )=

′
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2i

D

i i
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0

For the binary tree with 5 generations and setting the initial condition as a statistical mixture of the leaves of 
the tree
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we obtain from Eq. (2)
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This inequality is saturated if there is no recombination (Γ  =  0). In Fig. 2, the efficiency without disorder 
and dephasing is 5.84%, only slightly smaller than the bound of 6.25%, because the recombination rate is small 
(Γ  =  0.01) compared to the other energy scales of the system (couplings V =  1, trapping rate κ =  1).

Still considering the ordered case (δϵ =  0), we observe that the efficiency increases with dephasing. This means 
that environment-assisted quantum transport takes place even in the ordered scenario. Thus, the usual justification 
of ENAQT, arguing that the presence of dephasing overcomes the localization due to disorder, cannot be applied 
here. However, this can be justified by the fact that the addition of dephasing will destroy, after some time, the 
invariant subspace and thus open new pathways through the network10. Even if some dephasing can be good, 
though, too much dephasing will cause the freezing of transport due to quantum Zeno effect31. So, there exists an 
optimal dephasing regime that maximizes transport efficiency. We find that the optimal value of dephasing is at 
γφ =  1.6. After this maximum, as we will see in Fig. 3, the efficiency starts decreasing and tends to zero in the limit 
of infinite dephasing, as expected due to the previous argument. The improvement of transport efficiency due to 
dephasing in the ordered case is further discussed in the Supplementary material.

In the optimal regime of dephasing, the transport efficiency is very robust to disorder and remains almost 
constant as the latter varies within a large range of values (from δϵ =  0 to δϵ ≈  1.5). This is in agreement with the 
quantum Goldilocks principle25–27, where the authors propose that the timescale associated with hopping and with 
dephasing should match for optimal and robust transport efficiency.

Figure 2 also shows that for any given dephasing rate γφ below the optimal value, increasing the disorder from 
zero up to around δφ ≈  1 enhances transport efficiency. So, even though disorder is usually associated to the hin-
dering of quantum transport, here we observe disorder-assisted quantum transport in the suboptimal dephasing 
regime. In the case of zero dephasing, this effect is explained in ref. 10: random site energies disorder also destroys 
the invariant subspace, making all eigenstates couple to the trap. However, for very small disorder, this coupling 
is weak and the transport to the trap slow. Thus, because of losses, the efficiency is still low. Very high values of 

Figure 3. Transport efficiency η as a function of the disorder parameter δϵ and the logarithm of 
the dephasing rate γφ, on the binary tree with 5 generations, for three orders of magnitude of the 
recombination rate: Γ = 10−2, 10−3, 10−4, plotted respectively in (a–c). We consider as initial condition a 
statistical mixture at the leaves of the tree and trapping at the root. The efficiency at each point is obtained 
by averaging over 100 random configurations of site energies disorder. We verify that the optimality region 
increases with the inverse of the recombination rate. At very high dephasing rates, transport is suppressed due 
to Zeno effect. As the recombination rate decreases, the efficiency for 0 dephasing and 0 disorder tends to 1/16, 
as established in Eq. (4), corresponding to the overlap of the initial condition with the eigenstates that couple 
to the trap. Outside the origin of the plot, the efficiency tends to 1 as Γ  tends to 0, because both disorder and 
dephasing destroy the invariant subspace. All units are given in terms of the nearest neighbours coupling V.
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disorder, though, can cause large energy mismatches between adjacent sites difficulting the propagation through 
the lattice. We see then that there must be an optimal disorder which maximizes transport efficiency. Our results 
show that this optimal disorder also exists for each fixed dephasing rate in the suboptimal dephasing regime. This 
is consistent with the results of ref. 14. The improvement due to disorder is maximal in the purely unitary case 
(γφ =  0), where the efficiency grows from 6% (for δϵ =  0) to 34% (for δϵ =  0.83). This improvement is washed out 
with increasing dephasing until the latter reaches its optimal value. This is understandable because dephasing 
destroys interferences, so high dephasing values mitigate the effect of disorder. However, for finite dephasing in 
the suboptimal regime, this effect can still be quite significant: for example, when the dephasing rate is 0.2, disor-
der improves the transport efficiency from 30% (for δϵ =  0) to 47% (for δϵ =  0.8). Our results suggest that if such 
system, designed for quantum transport, has to work in the suboptimal dephasing regime, one could, in principle, 
engineer the site energies distribution in order to obtain better performances.

In order to understand the role of dissipation in the transport efficiency, we explore the effect of varying the 
recombination rate in Fig. 3. In this figure, we show the dephasing axis in a logarithmic scale in order to observe 
a wider range of dephasing values and we vary the recombination rate three orders of magnitude: 
Γ  =  10−2, 10−3, 10−4. For very high values of dephasing we observe that transport is suppressed due to the Zeno 
effect. As expected, for lower recombination rates there is an overall increase of the efficiency. In the case of Γ  =  10−4 
shown in Fig. 3c), it is visible that the addition of disorder or dephasing destroys the invariant subspace: in the 
limit when Γ  tends to 0 the efficiency tends to 1 for any non-zero value of disorder or dephasing. In the case of 
zero disorder and zero dephasing (corresponding to the origin of the plot), the transport efficiencies are respec-
tively: 5.84% for Γ  =  10−2, 6.20% for Γ  =  10−3 and 6.25% for Γ  =  10−4. Thus, as Γ  tends to 0, the efficiency tends 
to the value 1

16
 as predicted in Eq. (4).

Population and coherence dynamics at the trap. In order to visualize better the dynamics of the exciton close to 
the trap when there is no disorder nor dephasing, we study the time-evolution of the wavefunction at the trap  
(site 1) and adjacent sites (2 and 3). Here, we set as initial condition the pure state n. Writing the wave-function as 

ψΨ( ) = ∑ ( )=t t ii
n

i1 , we obtain the evolution equation for ψ ( )t1 :

ψ ψ ψ κ ψ( ) = − ( ( ) + ( )) − ( + Γ) ( ), ( ) t i t t t 51 2 3 1

from the Schrödinger equation with the Hamiltonian from Eq. (20). Thus, the evolution of ψ1 is governed by the 
interference of ψ2 and ψ3 and damped at a rate κ +  Γ . The solution of Eq. (5) is plotted in Fig. 4. It is interesting to 
observe in this figure that the excitation lives much longer outside the trap than at the trap. After a short time, ψ2 
and ψ3 synchronize (keeping opposite signs) and interfere destructively, preventing the excitation from reaching 
the trap. This helps us to understand why disorder and dephasing increase significantly the transport efficiency: 
both of them prevent this destructive interference from happening.

It is also interesting to observe the dynamics of the population at the trap ρ11 and of the coherences between 
the trap and neighbouring sites ρ12 and ρ13, for different values of disorder and dephasing. We start again from the 
initial state n. The evolution equation for ρ11 is given by

ρ
ρ ρ κ ρ

∂ ( )

∂
= − ( ( ) + ( )) − ( + Γ) ( ), ( )

t
t

t t t2 Im 2 6
11

12 13 11

obtained from the master equation (19). In Fig. 5, we present ρ11, Im(ρ12) and Im(ρ13) as a function of time. The rows 
of the table correspond to three different dephasing rates (0, 0.2 and 1) and the columns to two values of disorder 
(0 and 1.4). The transport efficiency η, given by Eq. (18), is proportional to the integral over time of ρ11, so the 
longer the excitation remains at the trap, the higher the efficiency will be. This is precisely the effect of dephasing 
and disorder, as we can see in Fig. 5. Not only the excitation stays longer at the trap, but the coherence between 
sites 1 and 3 also lasts longer in the presence of dephasing and disorder. Despite the fact that dephasing alone 
damps off-diagonal terms of the density matrix, the interplay between dephasing and the driving Hamiltonian 

Figure 4.  Plots of: (a) the real part of ψ1; (b) the imaginary part of ψ2 and ψ3. The imaginary part of ψ1 is always 
0, as is the real part of both ψ2 and ψ3. We choose as initial condition to have the exciton in a single leaf of the 
tree. Without loss of generality, we pick site 31, i.e. the initial state is 31 . The time the excitation spends at the 
trap is much shorter than the time it spends outside the trap. This is due to the destructive interference between 
ψ2 and ψ3, as is clearly shown in (b). We set the trapping rate κ =  1 and the recombination rate Γ  =  0.01 as in 
Fig. 2. All units are given in terms of the couplings V.
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causes the coherences to last longer. Furthermore, we see clearly that in the suboptimal dephasing regimes the 
effect of adding disorder increases transport significantly whereas when dephasing is close to optimal, disorder 
does not help transport any longer. Indeed, the transport efficiency in the optimal dephasing region is very robust 
to disorder: changing disorder from 0 to 1.4 only causes a few percent loss of efficiency.

Quantum transport in hypercubes. In this section, we study the transport efficiency as function of dis-
order and dephasing, for the quantum walk on the hypercube of dimension 4, similarly to what was done in the 
previous Subsection for the binary tree. Here, we consider as initial condition a homogeneous statistical mixture 
of all sites, since all sites are equivalent in the graph. The hypercube is an interesting structure studied in different 
quantum information tasks, such as state transfer22 and quantum search23.

An hypercube of dimension d has 2d vertices. Each vertex can be labelled by a d-bit string and two vertices are 
connected if they differ by one bit. Thus, each vertex is connected to d vertices and the adjacency matrix of the 
graph is given by:

∑σ= ,
( )=

( )A
7j

d

x
j

1

where σ( )x
j  represents the Pauli σx matrix acting on bit j. This way, the tight-binding Hamiltonian of the hypercube 

of dimension d is given by:

Figure 5. In this figure, we plot the population at the trap ρ11 and the imaginary parts of ρ12 and ρ13, which 
are the terms coupled to ρ11 in the master equation (see Eq. (6)). The rows correspond to different dephasing 
values (0, 0.2 and 1) and the columns to different disorder values (0 and 1.4). The plots with disorder δϵ =  1.4 
are obtained after averaging over 100 random configurations of site energies. The initial condition is a pure state 
at the leaves of the tree (site 31). It is clear that the population at the trap and superposition with neighbouring 
sites is prolonged with the addition of dephasing and disorder, which leads to an improvement in the transport 
efficiency. However, when dephasing is 1, the addition of disorder does not help transport any longer.
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In Fig. 6 and 7 we present the variation of efficiency with respect to dephasing and disorder, as studied in the 
previous section for the binary tree (Figs 2 and 3). Interestingly, the results obtained are qualitatively very similar 
for both structures. At zero disorder and zero dephasing, considering the concept of invariant subspaces (see 
Eq. (2)), we obtain:

η ≤ . ( )
5

16 9

Once again, the disorder-assisted effect exists in the suboptimal dephasing regime and is washed out as the dephas-
ing rate increases, disappearing when it reaches its optimal value of γφ ≈  1. To give an example, in the suboptimal 
dephasing regime with γφ =  0.2, the transport efficiency increases up to 16% by introducing disorder, from 54% 
(at δϵ =  0) to a maximum of 70% (at δϵ =  1.4). In fact, the main difference between both structures is that the values 
obtained for the efficiency are higher in the case of the hypercube than the ones obtained in Fig. 2, since we are 
now dealing with a smaller structure with only 16 nodes, in contrast with the binary tree structure considered 
before, which has 31 nodes.

Optimizing transport efficiency with disorder. To understand better the significance of disorder in the 
improvement of transport efficiency, and for a fairer comparison between the effects of disorder in both struc-
tures, we define the maximum improvement of the transport efficiency due to disorder Δ max, for a given dephasing 
rate γφ, as the difference between the efficiency η for the optimal value of the static disorder δϵ and the efficiency 
η for δϵ =  0:

 ( ) ( )γ η γ δ η γ δ∆ ( ) = , = − , = . ( )φ φ φoptimal 0 10max

This is the maximum amount by which efficiency can improve due to disorder, for a fixed dephasing rate. We plot 
this quantity in Fig. 8 for the binary tree and the hypercube, using the data from Figs 3a and 7a). The improvement 
due to disorder is maximal at zero dephasing. It decreases quickly as dephasing increases, reaching zero at the 
optimal dephasing regime. Once again, we observe that the qualitative behaviour is the same in both structures. It 
is clear from these results that disorder can indeed be used as a tool to significantly improve transport efficiency, 
if we are in the suboptimal dephasing regime.

Discussion
In this work we studied the efficiency of quantum transport in two different structures, the binary tree and the 
hypercube, as a function of site energies disorder and dephasing. We observed in these structures that, in the 
absence of disorder, the purely unitary evolution leads to low efficiency, and that the addition of dephasing and 
disorder can improve significantly the performance of transport. Optimality is reached when the dephasing rate 

Figure 6. Transport efficiency η on the hypercube of dimension 4 as a function of the disorder parameter 
δϵ and dephasing rate γφ, starting with a statistical mixture of all vertices and setting κ = 1 and Γ = 0.01. 
The efficiency at each point is obtained by averaging over 100 random configurations of site energies disorder. 
It is interesting to observe that the efficiency varies in a similar way as in the binary tree (see Fig. 2). Here, 
the optimality region is larger because we are dealing with a smaller structure. The disorder-assisted effect 
in suboptimal dephasing regimes is also visible in the hypercube. All units are given in terms of the nearest 
neighbour coupling V.
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matches approximately the hopping rate. At the optimal dephasing, the transport efficiency is very robust against 
disorder and it only decreases slightly if one increases disorder within a large range of values. However, when 
dephasing is below this optimal regime, disorder can improve transport efficiency in a very significant way, up 
to 30% in our model. To better understand these results, we studied the wave function and the density operator 
population and coherences at the trapping site as a function of time. We observed that the addition of both disorder 
and dephasing can increase the time the excitation spends at the trap, contributing thus to an improvement of 
transport efficiency. We also found that the time the excitation remains delocalized between the trap and adjacent 
sites increases with both disorder and dephasing. It is remarkable that although dephasing alone damps superposi-
tions between wavefunctions at different sites, its interplay with the hopping Hamiltonian leads to the prolongation 
of certain superpositions. Here, we do not deal with the issue of entanglement in single excitonic transport32,33 
since we believe it would not provide additional information beyond what is already being captured by quantum 
coherence. These studies suggest that by engineering the distributions of disorder in excitonic transport systems, 
better performances can be achieved, if decoherence is below the optimal regime.

Methods
Quantum transport with pure-dephasing noise. Our system Hamiltonian describing the quantum 
transport of an excitation in a structure with N sites is given by the tight-binding model with nearest neighbour 
couplings:

∑ ∑= + ( + ).
( )= ,

H m m V m n n m
11

S
m

N

m
m n

mn
1

Figure 7. Transport efficiency η on the hypercube of dimension 4 as a function of the disorder parameter 
δϵ and the logarithm of the dephasing rate γφ, starting with a statistical mixture of all vertices with κ = 1 
and for different values of the recombination rate: Γ = 10−2, 10−3, 10−4, plotted respectively in (a–c). The 
efficiency at each point is obtained by averaging over 100 random configurations of site energies disorder. The 
qualitative behaviour of the transport efficiency is very similar to the binary tree (see Fig. 3). All units are given 
in terms of the nearest neighbour coupling V.

Figure 8. Maximum improvement in the transport efficiency due to disorder, as defined in Eq. (10), here 
plotted as a function of the logarithm of the dephasing rate, for both the binary tree (5 generations) and the 
hypercube (dimension 4). The maximum improvement is approximately 30%, when the dephasing tends to 0. 
When dephasing reaches its optimal value of γφ ≈  1 there is no more improvement due to disorder. The binary 
tree and the hypercube exhibit a similar behaviour.
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The states m represent the wave function of an excitation localized at site m, ϵm is the energy it takes for an 
excitation to occupy site m and Vmn is the coupling between nearest neighbours and thus it is zero if sites m and 
n are not connected.

We consider static disorder in the site energies ϵm by assigning random values from a normal distribution with 
mean 0 and standard deviation δϵ. We will choose our units such that ħ =  1 and V =  1, and so all values of energies 
and rates will be given in units of V.

We assume that the interaction of the system with the environment is dominated by white-noise captured 
within the Haken-Strobl model (pure-dephasing)24. This is a good approximation if we assume the system-bath 
interaction HSB causes rapid stochastic fluctuations of the site energies of the system, i.e.

∑= ( ) ,
( )

H q t m m
12SB

m
m

where the qm(t) are random Gaussian variables with two-point correlation functions given by

δ δ γ( ) ( ) = ( ) , ( )φq t q t0 13m n mn

where γφ is a site-independent rate. This model assumes that the coupling to the environment and thus the standard 
deviation of the energy fluctuations is the same at each site. Furthermore, fluctuations at different sites are consid-
ered independent. If the time scale of the fluctuations is much smaller than the typical time scales of the system, 
the averaging over fluctuations results in the master equation of the Lindblad type34,35:

ρ ρ ρ ρ( ) = − + ( ), ( ) = − , ( ) + ( ( )), ( )φ
t i H H t t i H t L t[ ] [ ] 14S SB S

where ρ(t) is the density matrix of the system and the Lindblad operator Lφ(ρ(t)) is given by

∑ρ γ ρ ρ ρ( ( )) =






( ) − ( ) − ( )





,

( )φ φ
† † †L t A t A A A t t A A1

2
1
2 15m

m m m m m m

with generators =A m mm . The dephasing term Lφ(ρ(t)) damps all off-diagonal entries of the density matrix, 
suppressing superpositions of localized states at a rate γφ, which is called the dephasing rate. Note that the 
pure-dephasing (Haken-Strobl) model is a simplified but useful model that has been successfully used in numerous 
studies in quantum optics, quantum information science, physical chemistry, and condensed matter physics. Its 
prediction becomes more realistic when the system is interacting with a thermal bath at high temperatures, where 
its effects can be modelled by white noise. Furthermore, we account for exciton loss at each site via the addition of 
an antihermitian term Hrecomb to the system Hamiltonian, with

∑= − Γ
( )=

H i m m
16recomb

m

N

1

where Γ  is the recombination rate. This term causes a damping of all entries of the density matrix. Furthermore, 
we introduce a trapping term in one of the sites, the target site. This term reads

κ= − , ( )H i trap trap 17trap

where κ is the rate at which the exciton gets trapped. With this, we can define the energy transport efficiency

∫η κ ρ= ( ) ( )
∞

dt trap t trap2 180

as the probability of the exciton being trapped at the trapping site, instead of its energy being dissipated through 
recombination. This will be the figure of merit of our model.

Finally, the master equation governing the evolution of the system is given by

ρ ρ ρ ρ( ) = − ( − ) + ( ( )), ( )φ

†t i H H L t 19

where the total Hamiltonian H results from adding the contributions of Eqs (11), (16) and (17):

= + + . ( )H H H H 20S trap recomb

This model has been used in the studies of excitonic transport in several works, such as refs 8,9,13.
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