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In this article, we discuss the identity and indistinguishability of quantum systems and the

consequent need to introduce an extra postulate in Quantum Mechanics to correctly

describe situations involving indistinguishable particles. This is, for electrons, the Pauli

Exclusion Principle, or in general, the Symmetrization Postulate. Then, we introduce

fermions and bosons and the distributions respectively describing their statistical

behaviour in indistinguishable situations. Following that, we discuss the spin-statistics

connection, as well as alternative statistics and experimental evidence for all these results,

including the use of bunching and antibunching of particles emerging from a beam

splitter as a signature for some bosonic or fermionic states.

1. An extra postulate is required

I believe most physicists would consider that the postulates

(or at least the properties they embody) concerning the

superposition, evolution and measurement of quantum

states cover the essence of Quantum Mechanics, the theory

that is at the basis of current fundamental Physics and gives

us such an accurate description of Nature at the atomic

scale. Yet, if the theory was only based on these postulates

(or properties), its descriptive power would be almost zero

and its interest, if any, would be mainly mathematical. As

soon as one wants to describe matter, one has to include an

extra postulate: Pauli’s Exclusion Principle. One of its usual

formulations, equivalent to the one proposed originally by

Wolfang Pauli in 1925 [1], is the following:

Pauli’s Exclusion Principle—No two electrons can

share the same quantum numbers.

This principle refers to electrons, which constitute a

significant (but not the whole) part of matter, and is crucial

in helping us explain a wide range of phenomena, including:

(a) the electronic structure of atoms and, as a conse-

quence, the whole Periodic Table;

(b) the electronic structure of solids and their electrical

and thermal properties;

(c) the formation of white dwarfs, where the gravitational

collapse of the star is halted by the pressure resulting

from its electrons being unable to occupy the same

states;

(d) the repulsive force that is part of the ionic bond of

molecules and puts a limit to how close the ions can

get (e.g. 0.28 nm between Naþ and Cl7 for solid

sodium chloride), given the restrictions to the states

the overlapping electrons can share.

We thus see how Pauli’s insight when proposing the

Exclusion Principle was fundamental for the success of

Quantum Mechanics. Although he made many other

important contributions to Physics, it was for this one that

he was awarded the Nobel prize in 1945.

Historically, it is also interesting to note that this

happened before Samuel Goudsmit and Georg Uhlenbeck

introduced the idea of electron spin [2,3] later in 1925. In

1913, Niels Bohr presented his model for the electronic

structure of the atom to explain the observed discrete

energy spectra of hydrogen and other elements [4]: the

electrons fly around the positive nucleus in circular orbits{
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with quantized angular momentum. This quantization

restricts the possible orbits to a discrete set, each

corresponding to an energy level of the atom. This model

was then improved during the following decade, mainly by

Arnold Sommerfeld and Alfred Landé, rendering it more

sophisticated, trying to make it able to account for the

multiplet structure of spectral lines, including for atoms in

electric and magnetic fields. In 1922, Pauli joins the effort

(actually, it was rather a competition) to find an explana-

tion for the then-called anomalous Zeeman effect, a splitting

of spectral lines of an atom in a magnetic field that was

different from the already known Zeeman splitting (see [5]

for a technical historical account on this competition).

Another puzzle at the time, identified by Bohr himself, was

the following: how to explain that in an atom in the ground

state the electrons do not all populate the orbit closest to

the nucleus (corresponding to the lowest energy level) [6]?

These two problems led Pauli to postulate, towards the end

of 1924, a new property for the electron—‘a two-valuedness

not describable classically’ [7]—and soon after the Exclu-

sion Principle [1] as fundamental rules for the classification

of spectral lines. But Pauli did not present any model for

this extra degree of freedom of the electrons. A few months

later, Goudsmit and Uhlenbeck introduced the idea of an

intrinsic angular momentum of 1
2�h for the electron, finding

not only a definite explanation for the anomalous Zeeman

effect, but also establishing since then a connection between

spin and the Exclusion Principle, a connection whose

depth they could not guess.

Pauli’s Exclusion Principle remains as a postulate, for

Pauli’s own dissatisfaction, as he expressed in his Nobel

prize acceptance lecture in 1946:

‘Already in my original paper I stressed the circum-

stance that I was unable to give a logical reason for the

exclusion principle or to deduce it from more general

assumptions. I had always the feeling, and I still have it

today, that this is a deficiency.’ [8]

In any case, as inexplicable as it may be, Pauli’s Exclusion

Principle seems to beg for a generalization. In fact, it was

soon realized that other particles apart from electrons suffer

from the same inability to share a common quantum state

(e.g. protons). More surprising was the indication that

some particles seem to obey the exact opposite effect,

being—under certain circumstances—forced to share a

common state, as for instance photons in the stimulated

emission phenomenon, thus calling for a much more drastic

generalization of Pauli’s Principle, as we shall see.

2. Identity and indistinguishability

We saw that Pauli’s Exclusion Principle intervenes in a wide

range of phenomena, from the chemical bond in the salt on

our table to the formation of stars in distant galaxies. This

is because it applies to electrons and we consider all

electrons in the universe to be identical, as well as any other

kind of quantum particles:

Identical particles—Two particles are said to be

identical if all their intrinsic properties (e.g. mass,

electrical charge, spin, colour, . . . ) are exactly the

same.

Thus, not only all electrons are identical, but also all

positrons, photons, protons, neutrons, up quarks, muon

neutrinos, hydrogen atoms, etc. They each have the same

defining properties and behave the same way under the

interactions associated with those properties. This brings us

to yet another purely quantum effect, that of indistinguish-

able particles.

Imagine we have two completely identical classical

objects, that we cannot differentiate in any way. Should

we give them arbitrary labels, we could always—at least in

principle—keep track of which object is which by following

their respective trajectories. But we know that in quantum

mechanics we must abandon this classical concept. The best

information we can get about some particle’s location

without measuring it (and thus disturbing it) is that is has a

certain probability of being in a particular position in space,

at a given moment in time. This information is contained in

the particle’s spatial state, for instance given by

cj iV ¼
Z

c r; tð Þ rj i d3 r ; ð1Þ

where the vectors jri, each representing the state corre-

sponding to a particular position of the particle in the

three-dimensional Euclidean space, constitute an orthonor-

mal (continuous) basis of the Hilbert space associated with

the position degree of freedom. The coefficient c(r, t), also
known as the particle’s wave function, contains the

probabilistic information about the location of the particle,

the only information available to us prior to a measure-

ment. The probability of finding the particle in position r0

at a time t is given by

P r0; tð Þ ¼ r0 j ch iV
�� ��2 ¼ c r0; tð Þj j2: ð2Þ

Note that there is usually a volume V outside which

c(r, t) quickly falls off to zero asymptotically. We associate

the spread of the wave function to this volume V, which can

evolve in time. Finally, recall that because of Heisenberg’s

uncertainty relations we cannot simultaneously measure the

particle’s position and its momentum with an arbitrary

precision (see, for instance, [9]).

How can we then distinguish identical particles? Their

possibly different internal states are not a good criterion,

438 Y. Omar

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

L
] 

at
 0

8:
11

 1
4 

M
ar

ch
 2

01
6 



as the dynamics can in general affect the internal degrees

of freedom of the particles. The same is valid for their

momentum or other dynamical variables. But their

spatial location can actually be used to distinguish them,

as shown in figure 1. Let us imagine we have two iden-

tical particles, one in Alice’s possession and the other

with Bob. If these two parties are kept distant enough so

that the wave functions of the particles practically never

overlap (during the time we consider this system), then it

is possible to keep track of the particles just by keeping

track of the classical parties. This situation is not

uncommon in quantum mechanics. If, on the other

hand, the wave functions do overlap at some point, then

we no longer know which particle is with which party, as

shown in figure 2. And if we just do not or cannot

involve these classical parties at all, then it is in general

also impossible to keep track of identical particles. In

both these cases, the particles become completely indis-

tinguishable, they are identified by completely arbitrary

labels, with no physical meaning (as opposed to Alice

and Bob). In these situations very interesting new

phenomena arise.

3. Symmetries, fermions and bosons

Let us consider the following example. Imagine that we have

two electrons in an indistinguishable situation, e.g. as the

one described in figure 2. We can arbitrarily label them 1

and 2. We also know that one of the particles has spin up

along the z direction and the other has spin down along the

same direction. How shall we describe the (spin) state of our

system? One possibility would be to consider the vector:

mj i ¼ "j i1 #j i2 ; ð3Þ

where j "ii and j #ii represent the two opposite spin

components along z for each particle i, and {j "ii, j #ii}
constitutes an orthonormal basis of the 2-dimensional

Hilbert space. But, since the particles are indistinguishable,

we could permute their labels and the state of the system

could equally be described by the vector:

nj i ¼ #j i1 "j i2 : ð4Þ

Note that the state of the system is the same, but we have

two different vectors that can validly describe it. In fact,

taking into account the superposition principle, a linear

combination of jmi and jni will also be a possible

description of our state:

kj i ¼ a "j i1 #j i2 þ b #j i1 "j i2 ; ð5Þ

where a; b 2 C are chosen such that jaj2þ jbj2¼ 1. So, we

actually have an infinity of different mathematical descrip-

tions for the same physical state. This is a consequence of

the indistinguishability of particles and is known as

exchange degeneracy. How can we then decide which of

the above vectors is the correct description of our state, i.e.

which one will allow us to make correct predictions about

measurements or the evolution of the system? Should it be

jki, and for which particular values of a and b? Also, note

that our example could be generalized to more and other

species of particles: the exchange degeneracy appears

whenever we deal with indistinguishable particles. The

problem of finding the correct and unambiguous descrip-

tion for such systems is thus very general and requires the

introduction of a new postulate for quantum mechanics:

the Symmetrization Postulate.

Symmetrization Postulate—In a system containing

indistinguishable particles, the only possible states of

the system are the ones described by vectors that are,

with respect to permutations of the labels of those

particles:

(i) either completely symmetrical—in which case the

particles are called bosons;

(ii) either completely antisymmetrical—in which

case the particles are called fermions.

Figure 1. This figure represents two distant identical particles,

as well as the spread of their respective wave functions. Each

one of them occupies a distinct region of space, arbitrarily

labelled A and B, thus allowing us to distinguish these

identical particles, just as in a classical case.

Figure 2. This figure represents two identical particles in a

situation where their respective wave functions overlap. It is

no longer unambiguous which region of space each particle

occupies. The particles are indistinguishable—a purely

quantum effect—and must now obey the Symmetrization

Postulate: there are symmetry restrictions to the states

describing the joint system.
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It is this information that will allow us to lift the

exchange degeneracy. But first, let us consider a general

example to discuss the concepts and issues introduced by

this postulate.

Imagine we have a system S of N indistinguishable

particles, to which we associate the Hilbert space

HN � H�N. We arbitrarily label the particles with numbers

from 1 to N. The state of the system can be described by

Oj iN � aj i1 � bj i2 � � � � � xj ii � � � � � tj iN ; ð6Þ

where jxii arbitrarily indicates that particle i is in state

xj i 2 H. But the above postulate imposes some symmetries.

Let us first define the following terms.

A completely symmetric vector jcSi is a vector that

remains invariant under permutations of its N labels (or

components), such that

P̂N cSj i ¼ cSj i ð7Þ

for any permutation PN of those N different labels. In jOiN,
and in most of our other examples, these will just be the

integers from 1 to N. Also, note that there are N! such

permutations.
Similarly, a completely antisymmetric vector jcAi is a

vector that satisfies:

P̂N cAj i ¼ ePN
cAj i ð8Þ

for any permutation PN, and where:

ePN
¼ þ1 if PN is an even permutation;

�1 if PN is an odd permutation:

�
ð9Þ

To impose these symmetries to a vector, we can define

the symmetrizer and antisymmetrizer operators, respectively

given by

Ŝ � 1

N!

X
PN

P̂N ð10Þ

and

Â � 1

N!

X
PN

ePN
P̂N ; ð11Þ

and where the sums are taken over the N! possible

permutations PN of a set of N elements. We can then

apply these operators to jOiN to obtain a completely

symmetric vector:

OSj iN � Ŝ Oj iN ; ð12Þ

as well as a completely antisymmetric vector:

OAj iN � Â Oj iN ; ð13Þ

one of which will be the correct description of our system S,
in accordance to the Symmetrization Postulate. Note that Ŝ

is the projection operator onto the completely symmetric

subspace of HN, i.e. the Hilbert space spanned by all the

independent completely symmetric vectors ofHN, which we

shall call HS. Analogously, Â is the projector onto the

completely antisymmetric subspaceHA. In general, we have

the relation:

HN ¼ HS � HA � Hm ; ð14Þ

where Hm is a subspace of HN with mixed symmetry. We

thus see that, for systems of indistinguishable particles, the

Symmetrization Postulate restricts the Hilbert space of the

system. The only acceptable vectors to describe the system

must lie in either the completely symmetric or in the

completely antisymmetric subspaces. But how do we know

which one of these two exclusive possibilities to choose? In

particular, coming back to the example system S, which of

the vectors jOSiN and jOAiN represents the state of our

system? This is something that depends on the nature of the

particles, if they are either bosons or fermions respectively.

And to which of these two classes a particle belongs is

something that ultimately can only be determined experi-

mentally.

3.1 Fermions

We call fermions identical particles that, in an indistin-

guishability situation, can only be found in antisymmetric

states, i.e. described by vectors in the system’s antisym-

metric subspace. Such states can be constructed using the

antisym-metrization operator Â defined in equation (11). It

is interesting to note that the sum of permutations with

alternating sign can formally be obtained using a determi-

nant. This is known as the Slater determinant and offers us

a practical way to construct completely antisymmetric

vectors. For instance, jOAiN of our example can be

calculated the following way:

jOAiN ¼ ÂjOiN

¼ 1

N!

jai1 jbi1 � � � jxi1 � � � jti1
jai2 jbi2 � � � jxi2 � � � jti2
..
. ..

. . .
. ..

. . .
. ..

.

jaii jbii � � � jxii � � � jtii
..
. ..

. . .
. ..

. . .
. ..

.

jaiN jbiN � � � jxiN � � � jtiN

����������������

����������������

: ð15Þ

Note that if there are two particles of the system in the

same state, say jai¼ jbi, then two columns of the Slater

determinant will be equal and the determinant will be

zero. This means that there are no vectors to describe

systems of fermions where two particles are in the same

state. This is just as the Exclusion Principle which we
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introduced for electrons in section 1, but now for a much

broader set of particles. We conclude that the Symme-

trization Postulate not only includes, but actually

generalizes Pauli’s Exclusion Principle to other particles

than electrons. Moreover, we can now say that electrons

are fermions. This information allows us to apply the

postulate to our example of the two electrons with anti-

aligned spins discussed in the beginning of section 3 and

thus finally lift the respective exchange degeneracy. Let us

assume, for the sake of the argument, that in this example

the total spatial wave function of the particles is

symmetrical. The correct description of this system is

then given by the vector in equation (5) with the following

choice of coefficients to make it, together with the full

state, completely antisymmetric:

kAj i � 1

21=2
"j i1 #j i2� #j i1 "j i2

� �
: ð16Þ

We see that, even for electrons, the Symmetrization Postu-

late gives us more information than the Exclusion Principle.

We now have a more physical and operational definition

of fermions: particles that, when indistinguishable, can

never be in the same state. This restriction has very clear

consequences when we study the statistical properties of

quantum systems of many identical particles. All fermions

follow the same distribution for the average number of

particles in a certain quantum state, say ‘, in function in

terms of the parameters of the system:

n‘h i ¼ 1

exp ½ðE‘ � mÞ=kBT� þ 1
; ð17Þ

where m is the chemical potential per particle, E‘ is the

energy of the particle in state ‘, T is the temperature of the

system and kB’ 1.386 10723 JK71 is Boltzmann’s con-

stant. This is known as Fermi-Dirac’s statistical distribution

and is a direct consequence of the antisymmetry of the

fermionic states (see, for example, [10] for the proof). Note

that we always have (n‘)41, as we would expect. This

distribution was first calculated for electrons by Enrico

Fermi [11] in 1926 and its more general relations with

quantum mechanics were established soon after by Paul

Dirac [12]. This distribution plays a central role in quantum

statistics. It is, for example, fundamental for describing the

electronic structure of solids and their electrical and thermal

properties. Note also that in the limit where particles

become distinguishable (e.g. because of a lower density, a

larger separation between energy levels, etc.) as thermal

fluctuations become more important than the quantum

ones, we recover the classical Boltzmann distribution.

We thus have two ways to decide whether a given type of

particles are fermions: they explicitly obey the Exclusion

Principle (more easily observable in systems with few

particles) and they follow the Fermi–Dirac distribution

(a criterion more adequate for systems of many particles).

In any case, an experimental proof is necessary. It has also

been observed that all fermions have half-integer spin. It

should be noted that this surprising and useful property is

not part of the definition of fermions, or at least does not

need to be. The connection between spin and statistics will

be further discussed in section 3.3. Particles that are

nowadays known to be fermions include: electrons and in

fact all leptons, quarks, protons, neutrons, baryons in

general, 3He, etc.

Finally, note that the symmetry requirements of the

Symmetrization Postulate are, in the second quantization

formalism{, replaced by imposing certain algebraic rela-

tions on the fermionic creation and annihilation operators,

respectively denoted âi
{ and âi. These are defined by

â
y
i jn1; . . . ; ni�1;0i; niþ1; . . .i¼ ð�1Þpi jn1; . . . ; ni�1; 1i; niþ1; . . .i
â
y
i jn1; . . . ; ni�1;1i; niþ1; . . .i¼ 0

(

ð18Þ
and

âijn1; . . . ; ni�1;1i; niþ1; . . .i¼ ð�1Þpi jn1; . . . ; ni�1; 0i; niþ1; . . .i
âijn1; . . . ; ni�1;0i; niþ1; . . .i¼ 0

�
ð19Þ

with pi¼Sk5iNk, where Nk is the eigenvalue of the number

operator N̂k: â{k âk. The condition of complete antisym-

metry for vectors describing indistinguishable fermions is

then replaced by the following anti-commutation relation

on the creation and annihilation operators describing the

system:

âi; â
y
j

h i
þ
� âi â

y
j þ â

y
j âi ¼ dijÎ; ð20Þ

where i and j are sets of labels for (in general) different

modes, dii¼ 1 and dij¼ 0 for i 6¼ j. The two formalisms are

equivalent.

3.2 Bosons

We call bosons identical particles that, in an indistinguish-

ability situation, can only be found in symmetric states, i.e.

described by vectors in the system’s symmetric subspace.

Such states can be constructed using the symmetrization

operator Ŝ defined in equation (10). The average number of

bosons in a certain quantum state, say ‘, is given by the

Bose–Einstein statistical distribution [10]:

n‘h i ¼ 1

exp ½ðE‘ � mÞ=kBT� � 1
; ð21Þ

{The reader unfamiliar with this formalism is referred to appendix A for a

brief introduction.
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where m is the chemical potential per particle and m5 0, E‘

is the energy of the particle in state ‘, T is the temperature

of the system and kB is Boltzmann’s constant. Formally,

this distribution differs only by a sign when compared with

Fermi–Dirac’s one, given by equation (17), but the

differences are actually great: in this case, (n‘) is

unbounded. For bosons there is no Exclusion Principle.

Firstly, an arbitrary number of them can occupy the same

state. Secondly, in certain cases the Symmetrization

Postulate actually forces the particles to share a common

state, other alternatives being incompatible with the

symmetry requirements. It is almost like bosons follow

some kind of aggregation principle, opposing Pauli’s one.

The Bose–Einstein distribution was first proposed by

Satyendranath Bose in 1924 for a gas of photons [13] and

very soon after generalized by Albert Einstein to an ideal

monoatomic gas [14,15]. Einstein noticed then that, under a

certain critical temperature, a fraction of the particles

would gather in the energy ground state [15]; this fraction

grows as the temperature decreases and eventually includes

all the particles when the temperature is zero. This phase

transition is known as the Bose–Einstein condensation and

has only been directly observed (with non-interacting

particles) in 1995—seventy years after Einstein predicted

it—using rubidium atoms at 20 nK [16]. As in the case of

fermions, the Bose–Einstein distribution tends to Boltz-

mann’s as particles approach the classical regime.

For bosons there is also a connection between spin and

statistics. In fact, we believe that all particles of integer spin

(including 0) are bosons: photons, gluons,W+, Z0, mesons,
4He and any other atoms or nuclei with integer spin, etc.

This property will be discussed in more detail in section 3.3.

Finally, a word about the treatment of bosons in second

quantization. In this formalism we define the bosonic field

creation operator âi
{ by

â
y
i jn1; . . . ; ni�1; ni; niþ1; . . .i ¼ ni þ 1ð Þ1=2j n1; . . . ;

ni�1; ni þ 1; niþ1; . . .i;
ð22Þ

and the bosonic field annihilation operator âi by

âijn1; . . . ; ni�1; ni; niþ1; . . .i ¼ n
1=2
i j n1; . . . ;
ni�1; ni � 1; niþ1; . . .i:

ð23Þ

Note that we use exactly the same notation for the bosonic

and fermionic field operators (defined in section 3.1):

although this can at first seem a source of confusion, this

notation will be useful later. But, of course, one should

keep in mind at all times that these are different operators

by definition, with different commutation properties. In

particular, the requirement of complete symmetry for

bosons is obtained imposing the following commutation

condition on the creation and annihilation operators

describing the system:

âi; â
y
j

h i
�
� âiâ

y
j � âyj âi ¼ dijÎ; ð24Þ

where i and j are sets of labels for (in general) different

modes, dii¼ 1 and dij¼ 0 for i 6¼ j.

3.3 The spin-statistics connection

We saw that to determine whether a given particle is a

fermion or a boson, we need to investigate its statistical

behaviour in the presence of (at least one) other identical

particle, when they are all indistinguishable. Of course, we

can expect that if a composite particle is made of bosons, or

of an even number of fermions, then it should be a boson.

And if, on the other hand, the particle is composed of an

odd number of fermions, then it should be a fermion itself.

But for the particles we believe to be fundamental, a direct

study of their statistical nature may be required. From the

experimental point of view, such a study can represent quite

a difficult challenge. For instance, we may be dealing with

rare particles, difficult to observe (e.g. neutrinos), to find in

free form (e.g. quarks and gluons) or even to produce (e.g.

the top quark), or particles that are just too unstable or

short-lived (e.g. the t lepton) or yet to be observed (e.g. the

graviton). Indirect methods could also help us reach a

conclusion, but before any of that a simple and intriguing

property can actually come to our rescue: the spin-statistics

connection.

Spin-Statistics Theorem—Particles with integer spin

are bosons. Particles with half-integer spin are fermions.

This is not only a widely known empirical rule in Physics,

but in fact a theorem, even if its proofs are not all completely

clear and free from controversy. Thanks to it, it is very easy

to determine whether some particle is either a fermion or a

boson. In particular, this criterion works also for composite

particles and is consistent with the previous conclusion that

particles composed of an arbitrary number of bosons and/or

of an even number of fermions are bosons and that particles

composed of an odd number of fermions are fermions. It is

quite surprising to find such a connection between the spin

of a particle and its statistical nature, a connection whose

origins I think are still not well understood.

The first and reference proof of the Spin-Statistics

Theorem is usually and fairly attributed to a 1940 article

by Pauli [17], despite some earlier contributions towards

this problem (see [18] for a historical and technical account

of those works). Pauli’s proof, referring only to free

particles, is based on two (reasonable) assumptions:

(a) by assuming that the energy must be a positive

quantity, he concludes that particles with half-integer

spins cannot be bosons;
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(b) by assuming microcausality{, he concludes that

particles with integer spin cannot be fermions.

Markus Fierz had just proven a year earlier that, under

these same assumptions, particles with integer spin could be

bosons and particles with half-integer spin could be

fermions [19], and with those results Pauli could conclude

his proof. Pauli wanted to present the spin-statistics

connection as a direct consequence of Special Relativity,

but his negative and asymmetric proof depended also on the

condition of positive energy. Several other proofs appeared

over the following decades, more or less along the lines of

Pauli’s work and always in the context of Relativistic

Quantum Mechanics, and in particular of Quantum Field

Theory (see [18] and references therein). Note also Steven

Weinberg’s proof [20] based solely on the Lorentz

invariance of the S-matrix{, breaking with some traditions

in the approach to the theorem [22]. These (and other

similar) works were a source of debates and brought some

extensions and clarifications to details of other proofs, but

there was no real advance in our understanding of this

connection. To put it in Richard Feynman’s words:

‘It appears to be one of the few places in physics where

there is a rule which can be stated very simply, but for

which no one has found a simple and easy explanation.

[ . . . ] This probably means that we do not have a

complete understanding of the fundamental principle

involved.’ [23]

If this relation between spin and statistics is indeed a

relativistic effect, or at least if the proof of the respective

theorem relies on Special Relativity, then the spin-statistics

connection has to be introduced in (non-relativistic)

Quantum Mechanics as a postulate. Recently, some non-

relativistic proofs have been proposed [24–26], but the

claims are not uncontroversial (see [26]). It remains that the

connection between spin and statistics is an empirical rule,

and for now that is probably how it should be introduced in

the context of Quantum Mechanics.

Research on the connection between spin and statistics

continues also in other directions, in particular in the study

of particles obeying alternatives statistics. These will be

briefly discussed in section 4. Note also that in 1974 a new

fundamental symmetry was proposed [27], supersymmetry,

which transforms bosons into fermions and vice versa,

providing a framework for the unification of gravity with

the other interactions (for more details, see for example

[28]). To this date, no experimental evidence of super-

symmetric particles has been found though [29]. Nor, in

fact, any evidence of violations of the predictions of the

Spin-Statistics Theorem—maybe our best and clearest

proof so far that it holds.

3.4 Discussion of the Symmetrization Postulate

Historically, Werner Heisenberg was the first to show—in

1926, in the context of wave mechanics [30,31]—that the

states of a system of identical particles are restricted to

specific symmetry classes which cannot be transformed into

each other. To decide which particles should be associated

to a particular symmetry is something that must ultimately

be determined by observation. The Symmetrization Postu-

late matches the study of such symmetries with our

empirical knowledge: as far as we know today, there are

two classes of particles in Nature according to their

collective behaviour in indistinguishable situations. These

are, of course, bosons and fermions: no particles have been

found so far that under the same circumstances could be

described by vectors that are neither symmetrical nor

antisymmetrical (see section 4). It is important to note that

none of this could have been deduced from the other

postulates of Quantum Mechanics. Yet, the Symmetriza-

tion Postulate is rarely evoked. In textbooks, it is never

presented with the postulates of Quantum Mechanics, but

rather postponed for a final chapter about identical

particles, if it appears at all as such. Pedagogical and

epistemological issues aside, such an approach gives in my

opinion an incomplete picture of the theory, both formally

and physically, responsible for some ignorance and

misunderstandings. It is true that the Symmetrization

Postulate applies only to indistinguishable particles and

is, in that sense, less general than the other postulates of

Quantum Mechanics. Moreover, it imposes a limitation on

theHilbert (or state) space postulate, by restricting the state

space of the system to its completely symmetric or

antisymmetric subspaces. But, on the other hand, it is also

true that what makes Quantum Mechanics so interesting is

that it can describe matter (and fields) around us, and for

that, as we saw, it is necessary to introduce the Pauli

Exclusion Principle, or—more generally—the Symmetriza-

tion Postulate. This is, after all, the way we formally

introduce fermions and bosons in Quantum Mechanics.

The awkward status of the Symmetrization Postulate

probably reflects our discomfort in trying to understand

some of these issues, as Pauli mentioned already in 1946:

‘Of course in the beginning I hoped that the new

quantum mechanics, with the help of which it was

possible to deduce so many half-empirical formal rules

in use at that time, will also rigorously deduce the

{The usual special relativity restriction that the measurement of a physical

system cannot influence another if the two are space-like separated.
{The S-matrix formalism is an alternative approach to relativistic quantum

physics based on the unitary S-matrix that encodes all the information on

all possible scattering processes. Formally, the S-matrix is the realization of

the isomorphism between the in and out Fock spaces. For more details, see

for instance [21].
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exclusion principle. Instead of it there was for electrons

still an exclusion: not of particular states any longer,

but of whole classes of states, namely the exclusion of

all classes different from the antisymmetrical one. The

impression that the shadow of some incompleteness fell

here on the bright light of success of the new quantum

mechanics seems to me unavoidable.’ [8]

We have a very simple and elegant rule, crucial for the

success of Quantum Mechanics as a theory describing

Nature, undisputed and apparently free from interpreta-

tions, unlike other quantum rules. We have no clear

understanding of its origin, not even within the framework

of a more sophisticated theory than Quantum Mechanics{,

and are thus happy (or forced) to accept it as an empirical

rule, but one separated from the other postulates of the

theory, even if it is not less mysterious than these, nor less

fundamental as far as we know today.

Let us now analyse the statement of the Symmetrization

Postulate. The principle applies only to indistinguishable

particles. This is exactly how we have presented it here,

although some prefer to state it as applying to identical

particles in general. A priori, the latter approach implies

that, for instance, every electron in the universe would

have to be antisymmetrized with respect to all the others.

And every other kind of particle would have to obey a

similar requirement, adequate to its statistical nature. This

picture is of course very unsatisfactory, but—conveni-

ently—it can be shown that the (anti)symmetrization

terms have a vanishing probability when we can

distinguish the identical particles (see, for example, [9]).

Thus, the Symmetrization Postulate ends up being applied

only to indistinguishable particles. Note also that, given a

system, we often consider separate vectors to describe its

spatial and its internal degrees of freedom. Then, the

symmetries of each vector are not independent, as they

must consistently contribute to the symmetry requirement

of the full vector describing the state of the system. This is

a natural consequence of the postulate and is not implied

by the concept of complete symmetry, which specifically

refers to all possible permutations that can be considered.

Finally, note that if a composite particle is made of

bosons or of an even number of fermions then it is a

boson, and if it is composed of an odd number of

fermions then it is itself a fermion.

All evidence to this date points to the fact that quantum

indistinguishable particles either follow Fermi–Dirac’s or

Bose–Einstein’s statistics, something that is generally

referred to as particle or quantum statistics. Accordingly,

the Symmetrization Postulate, with its complete symmetry

or antisymmetry requirement, rules out the consideration

of other statistics from the onset. Yet, without this

restriction, Quantum Mechanics would actually allow

unusual symmetries, more complex than the previous ones.

As we shall see in section 4, consistent theories have been

developed allowing for small deviations from the conven-

tional statistics which might have been undetected in the

experiments performed so far.

Finally, I would like to point out the interesting and

possibly deep fact that, according to the Standard Model of

Particle Physics, the fundamental constituents of matter—

quarks and leptons—are fermions, whereas the force carriers

are bosons. Note also that, within the framework of Quantum

Field Theory, the equivalent to the Symmetrization Postulate

is introduced by imposing local (equal-time) commutation

and anti-commutation rules on the field operators, similar to

the ones given by equations (24) and (20).

4. Experimental evidence and alternative statistics

Particle statistics, or the existence of fermions and bosons

and their respective properties, is well established, account-

ing for a series of different physical phenomena and having

been subjected to extensive experimental corroboration.

The origin of the Symmetrization Postulate itself lies in

the attempt to explain experimental data, in particular the

energy spectra of atoms. In 1925, Pauli proposed the

Exclusion Principle (as we discussed in section 1). Soon

after, Heisenberg was able to introduce it, together with

spin, in the context of wave mechanics and used the

symmetry properties of the electrons’ wave functions

(decomposed in spatial and spin wave functions) to explain

the two classes of spectral lines observed for helium: para-

helium and ortho-helium [31]. Here came into play the

exchange interaction, relating the energy levels occupied by

the electrons to the symmetry of their wave functions and

the corresponding spatial and spin states, a purely quantum

effect associated with the Pauli Principle.

As we saw, the Symmetrization Postulate generalized the

Pauli Exclusion Principle to more particles than just

electrons, i.e. fermions, and introduced a fundamentally

new type of particle, i.e. bosons. Moreover, it applies to

composite systems in general, where one single particle may

be enough to change the system’s statistical nature and

corresponding behaviour. A paradigmatic example is given

by the two isotopes of helium: 3He (a fermion) and 4He (a

boson). The latter exhibits remarkable properties when

cooled down to temperatures below 2K: it becomes a

superfluid liquid, with practically no viscosity and capable

of flowing with no friction through tiny capillaries [32]{.

{As opposed to the spin-statistics connection, a property that we believe

can be derived in the context of relativistic Quantum Mechanics, as we saw

in section 3.3.

{Note that at even lower temperatures, below 3mK, 3He can also exhibit a

superfluid phase [33,34], as the fermionic helium atoms pair up to form

bosonic quasiparticles.
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Particle statistics helps us explain and model a number of

other phenomena, those pointed out in section 1, as well as

covalent bonding, ferromagnetism, superconductivity,

Bose–Einstein condensation, the formation of stars, the

structure of hadrons, etc., always in accordance with

experimental observations. Note also some recent attempts

to do quantum information processing based solely on the

use of the statistical properties of particles [35–37].

Despite all our understanding of particle statistics, it is

still quite mysterious why (or how) fermions with common

values in their internal degrees of freedom will resist being

brought close together, as in the dramatic example of the

formation of neutron stars, this resistance resulting in an

effective force, completely different from the other interac-

tions we know. This force is sometimes referred to as Pauli

pressure. Equally intriguing is the tendency of photons to

bunch together, as in the Hanbury Brown and Twiss effect

[38], in which case the interaction seems to have exactly the

opposite effect.

One interpretation for these effects lies in interference.

This can best be observed using a beam splitter. Here we

use the term beam splitter in a generic sense, referring not

only to the common optical element (a partially silvered

mirror) used with photons, but also to any device

presenting an analogue behaviour for other kinds of

particles, as was recently proposed for electrons, using a

quantum dot and nanowires to direct the incoming and

outgoing particles [39]. Note that two photons with the

same frequency and polarization impinging simulta-

neously in a 50/50 beam splitter will always bunch [40],

i.e. they will always come out together in the same

output arm, as is shown in figure 3. Equivalently, two

electrons with the same spin projection impinging

simultaneously in a 50/50 beam splitter will always

antibunch [39], i.e. they will always come out separately,

one in each output arm, as illustrated in figure 4. When

the particles meet in the beam splitter under the

circumstances described above they are fully indistin-

guishable and the Symmetrization Postulate must then be

taken into account. The bunching and antibunching of

these particles are effects of particle statistics. Here, they

can be interpreted as the result of constructive and

destructive interference. Note that these results can easily

be generalized: in such balanced beam splitters two

indistinguishable particles will always bunch if they are

bosons, and always antibunch if they are fermions.

Another very interesting aspect is that performing simple

path measurements on the output particles can offer us

(probabilistic) information about their internal states.

Particle statistics, and in particular the Symmetrization

Postulate, represent a limitation on Quantum Mechanics.

There is nothing, apart from our empirical knowledge, that

would lead us to impose such constraints. From the

theoretical point of view, it is perfectly possible to consider

different constraints, i.e. to have quantum mechanical

theories following alternative statistics, more general than

the one we know. Moreover, it is also possible that such

Figure 3. This figure represents two identical bosons

bunching to the left out of a 50/50 beam splitter. If the

two particles are initially in the same internal state—e.g.

two photons with the same polarization, as represented by

the arrows—then the Symmetrization Postulate imposes

that they always leave the beam splitter in the same arm,

either to the left or to the right, each possibility being

equally likely. This phenomenon has been observed

experimentally for photons [40].

Figure 4. This figure represents two identical fermions

antibunching out of a 50/50 beam splitter. If the two

particles are initially in the same internal state—e.g. two

electrons with aligned spins, as represented by the arrows—

then the Symmetrization Postulate (or just Pauli’s

Exclusion Principle) imposes that they always leave the

beam splitter in separate arms. This phenomenon has

recently been observed experimentally for electrons [39].
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alternative constraints haven been masked by experiments

performed so far.

Alternative statistics have actually been studied. For

instance, parastatistics [41] proposes the following general-

ization of fermions and bosons:

(a) parafermions of order n, for which a maximum of n

indistinguishable such particles can be in a symmetric

state, i.e. at most n particles can occupy the same

state;

(b) parabosons of order n, for which a maximum of n

indistinguishable such particles can be in an antisym-

metric state.

Note that the case n¼ 1 corresponds to the usual particle

statistics and that, for all known particles, parastatistics is

clearly violated for any larger n. Yet, in the early sixties,

when the quark model was first proposed, it seemed that

baryons (particles composed of three quarks, such as the

proton) could only be described by a symmetric wave

function, even though they were fermions. At the time it

was considered that quarks could obey parastatistics [42],

but the problem was later solved with the introduction of

the colour internal degree of freedom in quarks [43]—the

charge of the strong interaction—which implied an anti-

symmetric wave function to describe baryons, as one would

expect according to the Symmetrization Postulate, and thus

confirming particle statistics in the end.

Another alternative to particle statistics are quons [44], a

continuous interpolation between fermions and bosons. In

such a theory, the field operators describing the states of the

particles obey the following relation:

âiâ
y
j � qâ

y
j âi ¼ dijÎ; ð25Þ

where q2 [71,1]. The limits q¼71 and q¼ 1 correspond

to fermions and bosons respectively, where we recover the

anticommutation and commutation relations given by

equations (20) and (24). Quons offer us a setting to extend

these relations infinitesimally (and continuously) and thus

model and investigate small deviations to Fermi–Dirac and

Bose–Einstein statistics. No such violations have been

found up to this date. In fact, several high precision

experiments have been performed recently looking for

direct evidence of the violation of particle statistics or the

spin-statistics connection and have not only confirmed that

they hold—as one would expect—but also established very

low probability bounds for a violation to occur [45–50].

Finally, let us mention anyons, quasiparticles in two

dimensions that obey fractional statistics, i.e. the permuta-

tion of two of them can give any phase [51], not only the

usual þ1 and 71 associated to bosons and fermions. For

example, the set composed of a charged particle orbiting

around a magnetic flux tube has this property. Anyons are

believed to play a role in the fractional quantum Hall effect

[52], and possibly also in high temperature superconduc-

tivity [53]. Recently, it was proposed to use anyons for

quantum computation [54], exploring the intrinsic fault-

tolerant properties that these objects can offer.

5. Summary and concluding remarks

QuantumMechanics, a theory at the basis of current funda-

mental Physics, gives us an incredibly accurate description of

Nature at the atomic scale. Yet, its descriptive power would

be very limited without the introduction of the Symmetriza-

tion Postulate. This is a very simple rule that encodes in an

elegant way the observed fact that all known quantum

particles belong to one of two possible classes given their

behaviour in indistinguishable situations: they are either

fermions or bosons. We have no clear understanding of the

origin of this behaviour, not even within the framework of a

more sophisticated theory, and are thus happy (or forced) to

accept it as an empirical rule. Yet, the Symmetrization

Postulate is often neglected (if not ignored) when compared

to the other postulates of the theory, even if it is not less

mysterious than these, nor less fundamental as far as we know

today. This unfair attitude has hindered the research on the

origin of quantum statistics, as well as on the understanding

of the origin of the Spin-Statistics connection, still today one

of the greatest mysteries of theoretical Physics.
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Appendix A: Second quantization formalism

The formalism used throughout most of this article,

sometimes referred to as first quantization, is standard to

describe non-relativistic Quantum Mechanics, but the

second quantization formalism, introduced in this appendix,

could have been used just as well. The second-quantized

theory is more general though: it contains non-relativistic

Quantum Mechanics, but it is a full-fledged relativistic

theory that can describe new processes, such as the creation

and annihilation of particle–antiparticle pairs.

The second quantization formalism is used in Quantum

Field Theory, where different types of particles are

described as quanta of different fields. For instance, a

photon is a quantum of the electromagnetic field. Different

photons, i.e. photons with different energies and polariza-

tion, correspond to different modes of the field. To each of

these modes, i.e. to each possible state of the photons, we

associate a number state that keeps track of the number of

particles/quanta in that state/mode. Imagine the following

restricted situation, where we have only:

(a) 2 photons with energy E1 and polarization H

(horizontal);

(b) 0 photons with energy E1 and polarization V

(vertical);

(c) 3 photons with energy E2 and polarization H;

(d) 2 photons with energy E2 and polarization V.

Then, we could describe it by the following number state:

j2; 0; 3; 2i ¼ j2iE1H;j0iE1;V
j3iE2;H

j2iE2;V
: ðA1Þ

Formally, we use the creation operator âm
{ and the

annihilation operator âm to respectively increase or decrease

by one the population of mode m. Note that âm
{j0 i can also

be used as a description of j1im, with j0i representing

the vacuum state, where all modes are unpopulated. The

population of a mode is given by the eigenvalue of the

number operator:

N̂m � âymâm: ðA2Þ

Note also that:

âmj0i ¼ 0: ðA3Þ

This formalism can be applied not only to photons, but to

bosons in general. In fact, it can also be applied to
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fermions, although in this case the creation and annihila-

tion operators will be different, as we can see in sections 3.1

and 3.2.
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